
Citation: Malaspina, R.; Pierini, L.;

Shekhovtsova, O.; Pacetti, S.

Analytical Inverse QCD Coupling

Constant Approach and Its Result for

αs . Particles 2024, 7, 780–791. https://

doi.org/10.3390/particles7030045

Academic Editor: Armen Sedrakian

Received: 31 July 2024

Revised: 26 August 2024

Accepted: 26 August 2024

Published: 30 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Analytical Inverse QCD Coupling Constant Approach and Its
Result for αs

Rocco Malaspina 1 , Lorenzo Pierini 2,3 , Olga Shekhovtsova 4,5 and Simone Pacetti 1,5,*

1 Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via Alessandro Pascoli,
06123 Perugia, Italy; rocco.malaspina@dottorandi.unipg.it

2 Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Via Giuseppe Saragat, 1,
44122 Ferrara, Italy; lorenzo.pierini@unife.it

3 INFN Sezione di Ferrara, 44122 Ferrara, Italy
4 NSC Kharkov Institute for Physics and Technology, Institute for Theoretical Physics, 61108 Kharkiv, Ukraine;

olga.shekhovtsova@lnf.infn.it
5 INFN Sezione di Perugia, 06123 Perugia, Italy
* Correspondence: simone.pacetti@unipg.it

Abstract: We propose a model for the QCD running coupling constant based on the analytical
inverse QCD coupling constant concept with an additional regularization in the low momentum
region. Analyticity in the q2-complex plane, where q is the four-momentum transfer, is imposed by
methods of the Analytic Perturbation Theory. The model incorporates a peculiar low-momentum
behavior for αs(q2) as a divergence at q2 = 0 to retrieve color confinement, without spoiling its
correct high-momentum behavior. This was achieved by means of a two-parameter regularization
function, for which we considered three possible analytic expressions. In fact, within the framework
of the Analytic Perturbation Theory, αs(q2) assumes a finite value for q2 = 0, at all perturbative
orders (infrared stability), hence the infrared divergence cannot be implemented. For this reason,
we found it more straightforward to work with its reciprocal, namely, εs(q2) = 1/αs(q2), imposing
its vanishing at the origin of the q2-complex plane via the multiplication of the aforementioned
regularizing functions and the spectral density. Once the two free parameters of the regularization
functions were settled by fitting to the experimental values of αs(q2) at the momenta where these
data were available and reliable, the model could reproduce the QCD running coupling constant at
any other momentum transferred.

Keywords: APT; analytical inverse QCD coupling constant ICC; regularization functions; αs(M2
Z)

1. Introduction

The goal of our model is to define and use the inverse QCD coupling constant (ICC)

εs(q2) =
1

αs(q2)
. (1)

As we see in more detail in the following, the advantages of using the ICC go beyond
the simpler arithmetical inversion of αs(q2) in the formula [1]. The failure of perturbation
theories at renormalization scales where the running coupling constant is approaching
from below the edge of the convergence domain is a well-known limit of such theories.
In the leading logarithmic approximation, the expression of the QCD running coupling
constant αs(q2) is [2,3]

αs(q2) =
4π

β0

1
ln(−q2/Λ2)

, (2)

where β0 = 11 − 2n f /3 depends on n f , the number of active quark flavors, i.e., those with
masses below the energy

√
|q2|. The parameter Λ represents Landau’s pole or ghost pole at
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the spacelike momentum squared q2 = −Λ2. Approximations above the leading order of
perturbation theory present similar issues, namely, logarithmic divergences.

A procedure adopted to avoid the appearance of these singularities in the definition
of the running coupling constant is the Analytic Perturbation Theory (APT) [2–4], which
indeed aims to improve the results of the Perturbation Theory (PT) in Quantum Field
Theories (QFTs), imposing the general principles of analyticity, hence causality, and unitarity.
It assumes that propagators and coupling constants, as functions of q2, can be extended
analytically in the whole q2-complex plane using the Källén–Lehmann’s Spectral Representation
(KL), which formally is a dispersion relation. For the QCD running coupling, the KL is [2]

[αs(q2)]an =
1
π

∫ ∞

0
dσ

ρ(σ)

σ − q2 , (3)

where ρ(σ) is the spectral density and corresponds to the imaginary part of αs(q2) calculated
on the lower edge of the physical cut, i.e.,

ρ(σ) = lim
ϵ→0+

Im[αs(−σ − iϵ)] . (4)

In this way, all the unphysical singularities produced as artifacts of the PT expansion
at finite orders, such as ghost poles and unphysical cuts, are eliminated. We worked
with the cut along the negative real semi-axis, taking Q2 = −q2 as the opposite of the
space-like four-momentum squared. From Equation (2), the expression of αs at the leading
order becomes

αs(Q2) =
4π

β0

1
ln(Q2/Λ2)

, (5)

where the argument has simply been changed in Q2 by omitting the negative sign. Of
course, in this form, the Landau’s ghost pole occurs at Q2 = Λ2.

By calculating the spectral density ρ(σ) from Equation (4) using Equation (5) and then
solving the integral of Equation (3), we obtain

[αs(Q2)]an =
4π

β0

[
1

ln
(
Q2/Λ2

) +
Λ2

Λ2 − Q2

]
,

which is regular at Q2 = Λ2. The Landau’s pole has been subtracted, and hence [αs(Q2)]an
is finite in the infrared (IR) region, namely, at Q2 ≪ Λ2; in particular, its value at the origin
Q2 = 0 is

[αs(0)]an =
4π

β0
.

Moreover, this result is independent of the order of the loop expansion [4], a property
of the theory called infrared stability [2,3]. As a consequence, to have a coupling constant
with an explosive IR behavior, divergent in the limit Q2 → 0, i.e., a behavior which
could produce the color confinement phenomenon of QCD, it needs to define a different
spectral density.

The goal of our model is then to go beyond the APT result, which relies on the simple
cancellation of Landau’s ghost pole either by subtraction or multiplication. Indeed, in
our case, Landau’s pole problem is bypassed by defining a spectral function for the ICC
defined in Equation (1), which is inferred by the leading-order expression of the QCD
running coupling constant of Equation (5), and by analytically continuing it at each Q2. The
advantage of working with the ICC is consequently explained by the fact that confinement
is translated into going to zero at Q2 = 0. Also, this condition implies the vanishing of the
imaginary part of the ICC, which corresponds to the spectral density of Equation (4), in the
same limit Q2 → 0.
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Since the APT does not directly give a confining expression of the ICC, we introduce
three different types of regularizing functions in the spectral density of the KL to incorporate
color confinement.

The paper is organized as follows. In Section 2, we describe the main features of our
model which brings together the methods of the APT and the regularizing function ap-
proach. We propose three parameterizations for the regularizing function, ensuring correct
high- and low-momentum behaviors, and as a final result, we present analytical formulae
for the momentum dependence of both ICC and αs(Q2) within two-loop orders. Numerical
predictions of ICC and the QCD running coupling constant at certain momentum points
and their comparison with experimental data are obtained and discussed in Section 3. In
particular, we compute the ICC at the Z-boson mass, i.e., at q2 = M2

Z. Technical details of
the calculations are collected in Appendix A.

2. Application of APT Formalism with Additional Regularizing Functions for the ICC

To apply the KL to the ICC of Equation (1), it is necessary to start from its PT expan-
sion [5,6], from which we obtain the renormalization group equation for the ICC

∂

∂ ln(µ2)

1
4πεs

= − β0

(4πεs)2 − β1

(4πεs)3 + . . . ,

which implies

4π
∂εs

∂ ln(µ2)
= β0 +

β1

4πεs
+ · · · =

∞

∑
n=0

βn

(4πεs)n . (6)

The solution of Equation (6) truncated at the leading ultraviolet (UV) behavior of the
2-loop order is

εs(Q2) = K0 ln
(

Q2

Λ2

)
︸ ︷︷ ︸

ε
(0)
s

+K1 ln
(

K0

K1
ln
(Q2

Λ2

))
︸ ︷︷ ︸

ε
(1)
s

, (7)

where K0 = β0/(4π), K1 = β1/(4πβ0) with β1 = 102 − 38n f /3. For n f = 5, it is K0 ≃ 0.61

and K1 ≃ 0.40. The 1-loop term is ε
(0)
s (Q2), while ε

(1)
s (Q2) is the 2-loop correction. Using

the KL, we obtain the analytical expressions

[ε
(0,1)
s (t)]an = [ε

(0,1)
s (Λ2)]an +

(Λ2 − t)
π

∫ ∞

0
dσ

ρ(0,1)(σ)

(σ + t)(σ + Λ2)
, (8)

where t = Q2 is the spacelike Mandelstam variable. The dispersion relation subtracted at
t = Λ2 is required, otherwise the integral would be divergent for any complex value of t.
The expressions of the two spectral densities are obtained from

ρ(0,1)(σ) = lim
α→0+

Im[ε
(0,1)
s (−σ − iα)] . (9)

Inserting the two terms of Equation (7) in Equation (9), we have

ρ(0)(σ) = −πK0 ,

ρ(1)(σ) = −K1arccotan
(

ln(σ/Λ2)

π

)
. (10)

Evaluating the two integrals of Equation (8), we have the following expressions

[ε
(0)
s (t)]an = K0 ln

(
t

Λ2

)
, (11)

[ε
(1)
s (t)]an = K1 ln

(
t

t − Λ2 ln
(

t
Λ2

))
. (12)
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Similarly to [αs(q2)]an, Equations (11) and (12) have the correct analytical behavior,
although they do not show confinement. We then introduce a regularizing function r(σ) in
the spectral density to achieve

lim
Q2→0+

[εs(Q2)]an = 0 .

This means that the spectral density, which is the imaginary part of the ICC, also
has to be zero in the same limit. Moreover, the regularizing function must also not spoil
the correct perturbative UV limit. Therefore, this function can be chosen from the set of
arbitrary continuous functions fulfilling the conditions

r(σ)

 −→
σ→0+

0

−→
σ→+∞

1
. (13)

It follows that the KL representation becomes

[ε
(0,1)
s (t)]an = [ε

(0,1)
s (Λ2)]an +

(Λ2 − t)
π

∫ ∞

0
dσ

ρ(0,1)(σ)

(σ + t)(σ + Λ2)
, (14)

where the regularized spectral densities are

ρ(0,1)(σ) = ρ(0,1)(σ)r(σ) .

The subtraction parameter [ε(0,1)
s (Λ2)]an is then fixed by requiring the vanishing at

Q2 = 0 of the functions of Equation (14). The three parameterizations for the regularizing
function r(σ), shown in Figure 1, ensuring the correct high- and low-momentum behaviors
of Equation (13) are

r̂p(σ) =
1

1 + (Λ2/σ)
p ; (15)

r̆p(σ) =
1

(1 + Λ2/σ)
p ; (16)

r̃p(σ) =
(

1 − e−σ/Λ2
)p

, (17)

where p ∈ (0, 1) and σ ∈ R+. The constraints on p are demanded by Equation (13); in
addition, the condition p < 1 guarantees the convergence of some integrals appearing in
the soft-gluon resummation theory [7]. In other words, we want [αs(q2)]an to be divergent in
the IR region but still integrable.

To simplify the reading, we present here the scheme to obtain [ε
(0,1)
s (t)]an only for the

regularizing function in the form of Equation (17). In a similar way, [ε(0,1)
s (t)]an can be

obtained for the other two parameterizations. The corresponding calculations are reported
in Appendix A.

Thus, following Equation (7), the zero-order ICC is written as

[ε̃
(0)
s (t)]an =[ε̃

(0)
s (Λ2)]an +

Λ2 − t
π

∫ ∞

0
dσ

ρ̃
(0)

(σ)

(σ + t)(σ + Λ2)
,

where the regularized spectral density is

ρ̃
(0)

(σ) = ρ(0)(σ)r̃p(σ) = −πK0

(
1 − e−σ/Λ2

)p
.
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Figure 1. The three regularizing functions, with p = 0.8 and Λ = 300 MeV.

Using the expression of Equation (17) for the spectral density, we find the follow-
ing form

[ε̃
(0)
s (z)]an = [ε̃

(0)
s (Λ2)]an − K0F(z) ,

where

F(z) = (1 − z)
∫ ∞

0
dx

(
1 − e−x)p

(x + z)(x + 1)
.

By means of the expansion for the regularizing function

r̃p(x) =
(
1 − e−x)p

=
∞

∑
k=0

(−1)k
(

p
k

)
e−kx ,

with the convergence condition e−x ≤ 1, we obtain

[ε̃
(0)
s (z)]an = [ε

(0)
s (z)]an + K0γK0

∞

∑
k=1

(−1)k
(

p
k

)[
ekzΓ(0, kz) + ln(k)

]
, (18)

where γ ≃ 0.57721 is the Euler–Mascheroni constant and

Γ(0, x) =
∫ ∞

x

e−t

t
dt = E1(x) .

is the exponential integral function [5].
We calculate an expression for the ICC at the zeroth order, which is given by a sum

of the analytical unconfined ICC of Equation (11) and several confining corrections terms,
whose definitions contain the function Γ(0, x) = E1(x) and the constant γ.

At the same time, the confined expression for ICC at the first order is obtained by
repeating the same steps as in Equation (18). In this way, we obtain an expression which
is written in the form of confining corrections to the analytical unconfined contribution
of ICC at the first order, see Equation (12), but in this case, the confining corrections are
written in an implicit integral form, i.e.,

[ε̃
(1)
s (z)]an = [ε

(1)
s (t)]an +

∞

∑
k=1

(−1)k
(

p
k

)
Ĩk(z) , (19)
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with

Ĩk(z) =
1
π

∫ ∞

0
dx

ρ(1)(x)(1 − e−kx)

x(x + 1)
+

1 − z
π

∫ ∞

0
dx

ρ(1)(x) · e−kx

(x + z)(x + 1)
. (20)

These integrals are not solvable in a closed form because of the function ρ(1)(x), given
in Equation (10). Some procedures for solving the integrals of Equation (20) are defined in
Ref. [5].

The details regarding the calculations of the other two parameterizations are given in
Appendix A, and additional details can be found in Refs. [5,6].

Our main analytical result can be summarized by the expression

[εs(t)]an = [ε
(0)
s (t)]an + [ε

(1)
s (t)]an ,

where ε
(0,1)
s for the regularizing function with the exponential of Equation (17) are presented

in Equations (18) and (19), and the remaining two parameterizations are presented in
Appendix A.

3. Numerical Results

First, we illustrate the results obtained in the previous sections by considering the
momentum spectra for both [εs(t)]an and αs(t) = 1/[εs(t)]an.

In Figures 2 and 3, we show the momentum distributions according to our model for
three regularizing function parametrizations, where n f = 5, p = 0.8, and Λ = 300 MeV.

Figure 2. The ICC [εs(t)]an, with p = 0.8, Λ = 300 MeV and n f = 5.

As a next step, we calculated αs at the Z-boson mass. Results for several values of p
and Λ are reported in Tables 1–3. In fact, our values αs(M2

Z) are compatible with the world
average value [8]

αPDG
s (M2

Z) = 0.1180 ± 0.0009 ,

for all three regularizing function parameterizations. For all values of p and Λ presented in
Tables 1–3 the difference between the model prediction and the PDG value is less than 10%
for all three parameterizations.
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Figure 3. Four-momentum distribution for [αs(t)]an, for p = 0.8, Λ = 300 MeV and n f = 5.

Table 1. Best values of the parameter Λ at fixed values of the parameter p for the model [α̂s(M2
Z)]an.

[α̂s]an

Λ
p

0.5 0.6 0.7 0.8

0.2 0.11612 0.11683 0.11729 0.11761

0.3 0.12358 0.12441 0.12494 0.12530

0.4 0.12949 0.13043 0.13102 0.13142

Table 2. Best values of the parameter Λ at fixed values of the parameter p for the model [ᾰs(M2
Z)]an.

[ᾰs]an

Λ
p

0.5 0.6 0.7 0.8

0.2 0.10342 0.10756 0.11087 0.11362

0.3 0.10932 0.11396 0.11769 0.12079

0.4 0.11395 0.11900 0.12307 0.12647

Table 3. Best values of the parameter Λ at fixed values of the parameter p for the model [α̃s(M2
Z)]an.

[α̃s]an

Λ
p

0.5 0.6 0.7 0.8

0.2 0.10058 0.10406 0.10674 0.10887

0.3 0.10616 0.11004 0.11304 0.11544

0.4 0.11052 0.11473 0.11800 0.12062
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By setting Λ = 300 MeV, the values of the parameter p obtained by fitting to the data
for αs, measured by the experiments JADE, LEPII, and CMS [9] and the corresponding
χ2’s are

[α̂s]an : p = 0.25 ± 0.01 (χ2 = 0.695) ;

[ᾰs]an : p = 0.64 ± 0.03 (χ2 = 0.723) ;

[α̃s]an : p = 0.80 ± 0.05 (χ2 = 0.724) .

The theoretical curves are shown in Figure 4.
In conclusion, it is worth mentioning that all results presented here can be produced

using our code [10], both Mathematica [11] and Python versions are presented there. The
numerical values produced by the codes differed by less than 0.01%, and Tables 1–3 contain
the values obtained from the Python code. It is to be noted that the “quad” method from
the scientific library SciPy [12] was applied in the Python code, whereas the “GaussKronro-
dRule” method was chosen in Mathematica.

Figure 4. The running coupling constant αs(t), with Λ = 300 MeV and the optimal values of p.

4. Conclusions

This study represented an attempt to define an analytic model for the QCD coupling
constant, where for the first time, the function of interest was the ICC. The advantage of
using the inverse of the coupling constant, which could be interpreted as the QCD vacuum
permittivity, lies in the possibility of formally treating poles and hence singularities of the
coupling constant, since they coincide with zeros of the ICC. It follows that, assuming
quite naturally that the running coupling constant does not vanish at finite values, the
analyticity domain of the ICC is larger than that of αs(Q2). In particular, the phenomenon
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of the QCD color confinement occurring at low momentum, i.e., at large distances, assumed
to be a consequence of the divergence of the coupling constant as Q2 goes to zero, should
correspond to a regular zero for the ICC in the same limit Q2 → 0.

The procedure for defining an analytic expression of the ICC as a function of the
four-momentum transferred squared, having the desired IR behavior, was achieved by
exploiting the APT approach to introduce a parametric regularizing function which ensured
the vanishing of the ICC as Q2 → 0.

Three possible parameterizations were considered for such a regularizing function. All
three expressions, given in Equations (15)–(17), depended on the same pair of parameters,
namely, the adimensional power p, whose values were limited in the interval (0, 1) by the
convergence condition of the dispersion relations’ integral and the momentum scale Λ.

Concerning the meaning of these parameters, while Λ can be naturally identified
as the QCD momentum scale, the adimensional p instead does not have a clear physical
interpretation. There are, however, studies (see, e.g., Ref. [7]) where a similar p-power law
has been used to regularize soft-gluon resummation in the IR limit of QCD.

Finally, we presented the first attempts to fit the free parameters of the regularizing
functions to the data on the QCD coupling constant. Preliminary results, shown in the three
panels of Figure 4, which correspond to the three parameterizations of the regularizing
functions given in Equations (15)–(17), were quite encouraging because the values which
provided the best description of the data were in agreement with the physical expectations.
In these cases, by setting the momentum scale Λ to the value of 300 MeV, only single-
parameter fits were performed. Such a limitation was due to the computing power required
by the double-parameter fit procedure being too high.

A complete study is in progress where the effect of both parameters is taken into
account, also considering other observables in which the Q2-functional form of αs, especially
in the IR region, plays a crucial role, such as the hadronic contributions [13,14] to the
anomalous magnetic moment of the muon [15] and to the inclusive decay width of the τ
lepton [16].
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Appendix A

This appendix provides a brief guide for the [εs(t)]an calculation taking into account
the regularizing functions of Equations (15) and (16).

Appendix A.1. Model r̂p(σ)

The parametrization r̂p(σ) consists in Equation (15). It has to be inserted in the integral
of Equation (8) to obtain the contributions of both ICC contributions. The zero-order term
of the regularized spectral density is

ρ̂
(0)

(σ) = ρ(0)(σ)r̂p(σ) =
−πK0

1 + (Λ2/σ)
p .
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Inserting this expression in the integral of Equation (8), we obtain

[ε̂
(0)
s (t)]an = [ε̂

(0)
s (Λ2)]an − K0

(
Λ2 − t

) ∫ ∞

0

1
1 + (Λ2/σ)

p
dσ

(σ + Λ2)(σ + t)
.

In the case of p = n/m ∈ Q, with n and m positive integers, the result is

[ε̂
(0)
s (t)]an = K0 ln

(
t

Λ2

)1 +
1
n

n

∑
j=1

m

∑
l=1

cl
m +

ln(bj/cl)
ln(t/Λ2)

bj

(
t

Λ2

)1/m

(
t

Λ2

)1/m
bj − cl

 ,

where 
bj = − exp

(
iπ

2j − 1
n

)

cl = − exp
(

iπ
2l − 1

m

) ,

with (j, l) ∈ {1, 2, . . . , n} × {1, 2, . . . , m}.
Using the spectral density

ρ̂
(1)

(σ) = ρ(1)(σ)r̂p(σ) =
−K1arccotan

(
ln
(
σ/Λ2)/π

)
1 + (Λ2/σ)

p

we calculate the two-loop ICC term

[ε̂
(1)
s (t)]an = −K1

n

n

∑
j=1

m

∑
l=1

bj

bj − z−k1/mcl

∞

∑
k=0

[
ln


(

y(j)
k − iπ/m

)(
y(l)k + iπ/m

)
(

y(j)
k + iπ/m

)(
y(l)k − iπ/m

)


+ ln


(

eiπ/m + z−1/mcl

)(
1 + bj

)(
eiπ/m + bj

)(
1 + z−1/mcl

)
]

,

where z = t/Λ2 and 
y(j)

k =

(
2j − 1

n
+ 2k

)
iπ

y(l)k =

(
2l − 1

m
+ 2k

)
iπ − ln(z)

m

with (j, l) ∈ {1, 2, . . . , n} × {1, 2, . . . , m} and ∀ k ∈ Z.

Appendix A.2. Model r̆p(σ)

The parametrization proposed in Equation (16) gives to the spectral densities the
forms [6]

ρ̆
(0)

(σ) =
−πK0

(1 + Λ2/σ)
p ,

ρ̆
(1)

(σ) =
−K1arccotan

(
ln
(
σ/Λ2)/π

)
(1 + Λ2/σ)

p .

The two contributions to the ICC are therefore calculated by inserting these expressions
in Equation (8). We obtain
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[ε̆
(0)
s (t)]an =

K0

p 2F1

(
1, p; 1 + p;

t − Λ2

t

)
,

where 2F1(a, b; c; z) is the Gaussian Hypergeometric Function, the analytic continuation of the
Gaussian Hypergeometric series

∞

∑
n=0

(a)n(bn)

(c)nn!
zn ,

the Pochhammer symbol here is used for the ascending factorial

(a)n =
Γ(a + n)

Γ(a)
.

The two-loop ICC term is not calculated in a closed form, but we arrive at a partial
expression which contains a series instead of an integral, valid when |t| > Λ2

[ε̆
(1)
s (t)]an = K1

sin(πp)
π

A + K1

(
t

t − Λ2

)p
ln
(

ln
t

Λ2

)
+ K1

π cos(πp)
sin(πp)

(
t

t − Λ2

)p

+ K1
sin(πp)

π

∞

∑
l,k=0

(p)k
k!

γ + ln(p + k + l + 1)
p + k + l + 1

(
Λ2

t

)l+1

,

where A is a constant given in terms of an integral depending only on the parameter
p, namely,

A = −
∫ 1

0
dy

ln(− ln y)
y

(
y

1 − y

)p
.
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