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Abstract: In this review, we begin with a historical survey of some singular solutions in the theory
of gravitation, as well as a very brief discussion of how black holes could physically form. Some
possible scenarios which could perhaps eliminate these singularities are then reviewed and discussed.
Due to the vastness of the field, its coverage is not exhaustive; instead, the concentration is on a
small subset of topics such as possible quantum gravity effects, non-commutative geometry, and
gravastars. A simple singularity theorem is also reviewed. Although parts of the manuscript assume
some familiarity with relativistic gravitation or differential geometry, the aim is for the broad picture
to be accessible to non-specialists of other physical sciences and mathematics.
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1. Introduction

Despite its ubiquity, gravitation remains one of the most enigmatic phenomena in
the physical sciences. There is, for example, its universal nature, which is not shared by
the other fundamental forces. There is also its direct connection to causality and causal
structure; gravitation determines what is the past, present, and future. In fact, our best
theories of gravity thus far (of which general relativity still comes out on top even after
over a century of scrutiny) indicate that gravity is not a force in the traditional sense at all.
For much of this manuscript, it is assumed that gravitation, at least in the low-energy arena,
is described by the theory of general relativity, which is governed by the Einstein equations

Gµν := Rµν −
1
2

R gµν + Λgµν = 8πTµν . (1)

For the non-gravitational specialist, in Equation (1), Rµν represents the components
of the Ricci curvature tensor, R := Rα

α is its invariant trace (the Ricci scalar), gµν is the
components of the metric (essentially the gravitational potentials), and Tµν is the stress–
energy tensor of the gravitating material. The signature of the metric is +2 (one negative
metric eigenvalue and three positive values) and Greek indices (0 → 3) spanning the full
spacetime, with the zeroth component assumed to be time-like (measuring time) and the
1, 2, 3 components being space-like (measuring space). Roman indices will denote only
the spatial components of the tensors. Λ is the cosmological constant, which is generally
assumed to be zero in this paper unless otherwise indicated. The Einstein tensor Gµν

is identically divergence-free such that ∇µGµ
ν ≡ 0, which via Equation (1) implies the

conservation law
∇µTµ

ν = 0 . (2)

In all expressions in this manuscript, the speed of light is set equal to one, as are
the gravitational constant and Planck’s constant. We concentrate here on the theory of
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general relativity, and not all results in this manuscript hold if the theory of gravity is not
general relativity.

The theory of general relativity has been highly successful. However, like many classi-
cal theories in physics, some of its solutions are singular, and these solutions, singularity
aside, are not just academic curiosities but physically viable solutions to the equations of
motion. It is desirable therefore to try to eliminate these singularities in some physically
acceptable way. There is, of course, a long history to this arena of study, and here we
only briefly describe a few of the many possible methods of singularity avoidance. It
is hoped that this will give the reader some understanding of the problem and some of
the methods which can be employed in attempting to rectify it, along with some of the
difficulties encountered in the attempt. This manuscript is based on a seminar given at the
International Conference on Gravitation, Astrophysics and Cosmology 2024, where the
audience consisted of physical scientists and mathematicians. Some familiarity with the
topic of relativistic gravity and differential geometry is assumed, but these details can just
be accepted by non-specialists, and it is hoped that the overall picture will be accessible to
a wider audience of scientists and mathematicians than just gravitational specialists.

This paper is laid out in two main sections. In Section 2, we briefly discuss the history
of some important gravitational solutions which possess some sort of singularity. These
include the famous Schwarzschild and Kerr solutions and Friedmann–Lemaître–Robertson–
Walker metrics. We further briefly describe the physical process which could lead to the
formation of a black hole. In the following section (Section 3), we discuss some possible
ways that the singularities can be circumvented. An appendix is included which presents a
simple singularity theorem illustrating how certain types of singularities can occur.

2. A History of Some Singular Solutions in Gravity

Here, we will present a brief history of some of the most important gravitational field
solutions which possess some sort of singularity. The review here will be in chronological
order, and therefore we will start with the result of Isaac Newton in his famous Principia [1]

V(r) = −G
M
r

, (3)

where V represents the gravitational potential outside of a spherically symmetric body of a
total mass M. The above potential leads to a gravitational force on an external mass m of
the form

F = −G
Mm
r2 r̂ . (4)

From the expressions above, it is clear that there will be an infinite gravitational force
at r = 0 in the case where M is a point mass.

Let us now move on to general relativity, governed by Equation (1). As in the Newto-
nian analysis above, let us concentrate on situations exhibiting spherical symmetry, and
we will also assume that the potentials are time-independent. In this scenario, the metric
tensor, which as mentioned above encodes the gravitational potentials, has the following
components for spherical coordinates:

ds2 = gµνdxµdxν = −eγ(r)dt2 + eα(r)dr2 + r2dθ2 + r2 sin2 θ dϕ2 . (5)

with x0 = t, x1 = r, x2 = θ, and x3 = ϕ. If we calculate the Ricci tensor and Ricci scalar
with the metric components in the above line element and use them in the Einstein equation
(Equation (1)), then the following equations result:

r−2 ·
[
1 − e−(α+γ) · ∂1(reγ)

]
+ 8π T1

1(r) = 0 , (6)

e−α ·
[
− (1/2) ∂1∂1γ − (1/4)(∂1γ)2
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+ (1/2) r−1(∂1α − ∂1γ) + (1/4) ∂1α · ∂1γ
]
+ 8π T2

2(r) = 0 , (7)

r−2 ·
[
1 − ∂1

(
re−α

)]
+ 8π T0

0(r) = 0 . (8)

The G3
3 equation in this coordinate system is identical to the G2

2 equation and thus is
not written.

The conservation of stress–energy law (Equation (2)) only has one non-trivial compo-
nent in this scenario:

r
2
∇µTµ

1 =− T2
2(r) + (r/2) · ∂1T1

1 +
[
1 + (r/4) · ∂1γ

]
T1

1(r)

− (r/4) · ∂1γ · T0
0(r) = 0 . (9)

We will treat two of the components of the matter distribution, encoded in Tµ
ν, as being

prescribable, since this is the level at which the system of equations is underdetermined.
In this scenario, we can solve for the metric functions α(r) and γ(r), and the remaining
stress-energy components (T2

2 = T3
3) as follows:

1. Prescribe T0
0(r), which is “minus the energy density in the comoving frame” here,

and solve Equation (8) for e−α(r).
2. Now that e−α(r) is known, prescribe T1

1(r), which is the “radial pressure in the
comoving frame” here, and solve the equation made up of the linear combination of
Equation (6) minus Equation (8) in order to find eγ(r).

3. The stress–energy tensor component T2
2 (in this case, the transverse pressure in the

comoving frame) will be defined by the conservation law in Equation (9).

The above procedure, thanks to J. L. Synge [2] and extended by A. Das, yields the fol-
lowing solution (see [3] for details, although this is a fairly straightforward manipulation):

e−α(r) = 1 +
1
r

[
8π
∫ r

T0
0(r

′) r′2dr′
]

, (10)

eγ(r) = e−α(r) · exp
{

8π
∫ r [

T1
1(r

′)− T0
0(r

′)
]
· eα(r′) · r′ dr′

}
, (11)

T2
2(r) ≡ T3

3(r) := (r/2) · ∂1T1
1 +

[
1 + (r/4) · ∂1γ

]
· T1

1(r)

− (r/4) · ∂1γ · T0
0(r) . (12)

Now, let us look for the general relativistic analog of the Newtonian gravitational
potential (Equation (3)). We recall that the Newtonian gravitational potential was due to a
point mass M located at r = 0. Let us therefore use such a distribution in Equations (10)–(12);
that is, let us prescribe

T0
0 = −M

δ(r′)
4πr′2

, (13)

recalling that T0
0 in this coordinate system corresponds to a value minus the energy density

in the comoving frame of the gravitating material. The factor of 4πr′2 comes from the
definition of the spherical coordinate delta function when the impulse is located at r′ = 0,
which is coincident with a boundary of the integration domain (It may seem that a factor
of
√
|g11| is missing. This is due to the same factor being missing in the measure of the

integral in Equation (10). A more physical explanation for these factors comes from the
ADM mass integral of the spacetime. See, for example, [4]). If one instead uses another
common definition where

∫ ϵ
0 δ(r′)dr′ = 1/2 instead of one, then the delta function is
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written as δ(r)/(2πr′2) (see, for example, [5,6]). Using Equation (13) in Equation (10)
immediately yields

e−α(r) = 1 − 2M
r

. (14)

Now, according to the solution scheme outlined above, we still need to prescribe
the radial pressure T1

1. For this, we will appeal to the junction conditions. Namely,
Synge’s junction condition in static spherical symmetry dictates that the radial pressure be
continuous at all points in spacetime. Since away from the point mass, the radial pressure
(and all stress–energy components) are zero, we will use Synge’s junction condition of radial
pressure continuity to tell us that at the point mass, the radial pressure should be zero; that
is, T1

1(0) = 0. Admittedly though, it is somewhat dubious to rely on a junction condition
at a singular point. With this choice of vanishing T1

1, we find from Equation (11) that

eγ(r) =

(
1 − 2M

r

)
eh0 , (15)

with h0 as a constant. This constant can be absorbed in the rescaling of the t coordinate in
Equation (5), where eh0/2t → t. At this stage, we have the metric (gravitational potentials)
in general relativity for a “point mass” at r = 0:

ds2 = −
(

1 − 2M
r

)
dt2 +

dr2

1 − 2M
r

+ r2 dθ2 + r2 sin2 θ dϕ2 . (16)

The above is the famous Schwarzschild solution. Schwarzschild wrote the line element
in a −2 signature and in a slightly different way in his original paper [7], and this is
illustrated in Figure 1, which is taken directly from the original publication:

Figure 1. An excerpt from K. Schwarzschild’s original paper [7]. Please note that R in Schwarzschild’s
paper is analogous to r in this manuscript. Note that negative values of r in this figure are allowed
by extension, taking us down to R = 0 (the singularity). As we can see in this figure, there is a C2

coordinate transformation between Schwarzschild’s R coordinate and Schwarzschild’s r coordinate
(∂R/∂r = r2/(α3 + r3)2/3, ∂2R/(∂r)2 = 2α3r/(α3 + r3)5/3, ∂r/∂R = R2/(R3 − α3)2/3, ∂2r/(∂R)2 =

−2α3R/(R3 − α3)5/3), save for at the singular point r = −α (R = 0), which Schwarzschild did
not consider. Figure included with the kind permission of the Berlin-Brandenburg Academy of
Sciences and Humanities—Academy Library—Shelfmark: Z 350—19,161 (Akademiearchiv, Berlin-
Brandenburgischen Akademie der Wissenschaften).

Related to the issue of singularities, we notice that the metric in Equation (16) has two
singular points (not including the benign issue at the poles θ = 0, π). These are located at
r = 2M and r = 0. In order to study these possible pathologies, we can look at the Riemann
curvature tensor components, which essentially encode the “strength” of the gravitational
field via the amount of spacetime curvature it produces. These components are not invariant
though and are therefore subject to coordinate effects, meaning that pathologies found in
the Riemann tensor components might be due to the coordinates utilized and not a true
pathology. In order to alleviate this problem, we shall introduce an orthonormal tetrad, a
set of four (α̂ = 0, 1, 2, 3) orthonormal vectors whose components (µ = 0, 1, 2, 3) will be
denoted as eµ

α̂. The hatted indices represent orthonormal components, meaning that they
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are raised and lowered by the orthonormal (i.e., Minkowski) metric. We shall choose for
our set of vectors a set pointing in the coordinate directions; that is, we will pick

eµ
r̂ = δ

µ
r

√
|g11| = δ

µ
r

√∣∣∣∣1 − 2M
r

∣∣∣∣, eµ

θ̂
= δ

µ
θ

√
|g22| = δ

µ
θ

1
r

,

eµ

ϕ̂
= δ

µ
ϕ

√
|g33| = δ

µ
ϕ

1
r sin θ

, eµ

t̂ = δ
µ
t

√
|g00| = δ

µ
t

1√∣∣∣1 − 2M
r

∣∣∣ . (17)

This set is orthonormal since it satisfies[
eµ

α̂eµβ̂

]
= [ηα̂β̂] = diag[−1, 1, 1, 1] ,

with the Minkowski metric [ηα̂β̂].
Projecting the Riemann curvature tensor into the orthonormal frame

Rα̂β̂γ̂δ̂ = Rµνρσeµ
α̂eν

β̂
eρ

γ̂eσ
δ̂

,

yields the following singular components (plus those related by index symmetry and
components that are finite):

Rt̂r̂t̂r̂ = −2M
r3 = −Rθ̂ϕ̂θ̂ϕ̂

Rt̂θ̂ t̂θ̂ =
M
r3 = Rt̂ϕ̂t̂ϕ̂ = −Rr̂θ̂r̂θ̂ = −Rr̂ϕ̂r̂ϕ̂ . (18)

We notice immediately from Equation (18) that r = 0 possesses a curvature singularity.
However, the other potentially problematic surface, r = 2M, does not. As is well known,
the event horizon (r = 2M) is non-singular.

Moving now into the 1920s and 1930s, scientists wished to apply the then-new theory
of general relativity to the universe as a whole. A couple of assumptions went into this
endeavor. Due to the difficulty of the problem, it was assumed that, on the absolute largest
scales, the universe is homogeneous and isotropic. In the geometric language of general
relativity, these assumptions mean that the spatial geometry of the universe is of a constant
curvature; that is, at a fixed instant of time, the universe is constantly curved, and the
choices for the constant curvature are of course zero curvature (flat), a constant positive
curvature, or a constant negative curvature. There is a set of mathematical conditions that
describe constant curvature spaces which lead almost directly to the metric compatible
with these assumptions. We shall not describe them here, but interested readers may find
them in [3]. The resulting metric is the one which yields the following line element:

ds2 = −dt2 + a2(t)
[

dr2

1 − k r2 + r2 dθ2 + r2 sin2 θ dϕ2
]

. (19)

The above famous metric is known as the Friedmann–Lemaître–Robertson–Walker
metric [8–11]. The constant k determines whether the t =const. spatial slices are flat (k = 0),
negatively curved (k < 0), or positively curved (k > 0). The function a(t) is arguably the
most important part of Equation (19), since its behavior tells us how the geometry of the
spatial slices evolve over time.

An orthonormal tetrad may be constructed for this metric, and the Riemann curvature
tensor’s components projected in the orthonormal frame can be computed. We shall not go
into the same level of detail as with the Schwarzschild metric, but the important results
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for us are summarized in the following two components, where the tetrad has been taken
along the coordinate directions:

Rt̂r̂t̂r̂ = − ä(t)
a(t)

, Rr̂θ̂r̂θ̂ =
ȧ2(t) + k

a2(t)
. (20)

We see that if a(t) reaches zero, then we will have a curvature singularity, unless
ä(t) → 0 and ȧ2(t) → −k as a(t) → 0. This is the famous Big Bang singularity. Of course,
if these conditions can be met, or a(t) = 0 can be avoided, then we can circumvent the
singularity. Unfortunately, when solving the Einstein field equations using physically
reasonable Tµ

ν components, these conditions generally cannot be avoided, and a Big Bang
singularity is predicted at some finite time in the past.

Returning to the Schwarzschild solution now, recall that we derived this (Equation (16))
under the assumption that the source term was the stress–energy of a “point mass” at
r = 0. The result was a singular spacetime. Nature, however, may very well not like true
point masses. Instead, one should more realistically consider an extended body, like a
star or nebula, which collapses under its own gravitational attraction and see what sort
of metric results when Einstein’s equations are applied to this scenario. Such a study was
first published in 1939 in the seminal paper by J. R. Oppenheimer and H. Snyder titled “On
Continued Gravitational Contraction” [12].

Due to the extreme complication of the model, Oppenheimer and Snyder assumed
that the gravitating material was a pressureless “dust”, although some analysis in the paper
was performed for nonzero pressure. Outside of the spherically collapsing matter, in the
vacuum region, the metric was taken to be that of Schwarzschild (Equation (16)). This is
not really an assumption since it can be fairly easily shown that the Schwarzschild solution
is unique in general relativity in describing a spherically symmetric vacuum. This is a
result of the Birkhoff–Jebsen theorem [13,14]. Oppenheimer and Snyder found in their
study that to an external observer, the matter collapses and asymptotically approaches
the radius r = 2M, with the redshift factor approaching infinity as r = 2M is approached.
Also, photons emitted from the collapsing matter can escape to infinity over a narrower
and narrower range of angles as the collapse progresses. Eventually, in finite time in the
comoving frame of the matter, no photons from the matter could be emitted which would
reach out to an observer beyond r = 2M; that is, the collapsing star will eventually appear
to be “dark”. This is the formation of a black hole, although it was not called that at the
time, with an event horizon at r = 2M. There was no real discussion of the singularity
at r = 0, but its eventual formation under mild assumptions (the positivity of the energy
density in the Oppenheimer–Snyder model) would be mathematically inevitable.

We now fast-forward to 1963. Roy Kerr studied a vacuum gravitational field which
could possibly exist due to a rotating mass [15]. It was later discovered by B. Carter [16],
R. Penrose [17], and R. Boyer and R. Lindquist [18] that this metric actually describes a
spinning black hole, and furthermore, the solution is unique in the realm of pure vacuum
gravity. In the Boyer–Lindquist coordinates, the Kerr line element is written as

ds2 = gµνdxµdxν = − a2 cos2 θ − 2Mr + r2

a2 cos2 θ + r2 dt2 +
a2 cos2 θ + r2

a2 − 2Mr + r2 dr2

+
(

a2 cos2 θ + r2
)

dθ2 − 4Mar sin2 θ

a2 cos2 θ + r2 dt dϕ

+
sin2 θ

[(
a2 + r(r − 2M)

)
a2 cos2 θ + r

(
(r + 2M)a2 + r3)]

a2 cos2 θ + r2 dϕ2 . (21)

Here, a represents the angular momentum per unit mass, a direct measure of the black
hole’s spin. The above line element reduces to the Schwarzschild one in Equation (16)
when a = 0.

Regarding the possible existence of curvature singularities, we could compute the
Riemann tensor components and project them onto an orthonormal frame. However, the
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results are unwieldy. Instead, we calculate the Kretschmann scalar of the Kerr metric (If the
Kretschmann scalar is infinite, then there is an infinite pathology in the curvature. If it is
finite, then there still might be a curvature singularity. In this sense, the Kretschmann scalar
is a less robust measure of curvature singularities than studying the individual components
of the Riemann tensor in an orthonormal frame):

K := RµνρσRµνρσ =
48M2(r6 − 15a2r4 cos2 θ + 15a4r2 cos4 θ − a6 cos6 θ

)
(r2 + a2 cos2 θ)

6 . (22)

At θ = π/2, we have

K =
48M2

r6 , (23)

heralding a curvature singularity in the Kerr black hole at r = 0 and θ = π/2.
Black hole-like objects were predicted, although not in their relativistic guise, by John

Michell in a work written in 1783 and printed in 1784 [19] and by Laplace in 1796 in his
Exposition du Système du Monde [20]. An excerpt from Michell’s work is shown in Figure 2.

Figure 2. An excerpt from Michell’s original 1784 paper [19]. “If there should really exist in nature
any bodies, whose density is not less than that of the sun, and whose diameters are more than
500 times the diameter of the sun, since their light could not arrive at us; or if there should exist
any other bodies of a somewhat smaller size, which are not naturally luminous; of the existence of
bodies under either of these circumstances, we could have no information from sight; yet, if any other
luminous bodies should happen to revolve about them we might still perhaps from the motions of
these revolving bodies infer the existence of the central ones with some degree of probability, as this
might afford a clue to some of the apparent irregularities of the revolving bodies, which would not be
easily explicable on any other hypothesis; but as the consequences of such a supposition are very
obvious, and the consideration of them somewhat beside my present purpose, I shall not prosecute
them any further.” Copyright status: Not in copyright.

Before ending this historical exposition, we mention here that the term black hole for
these objects is often attributed to J. A. Wheeler circa 1967 or 1968. However, this phrase
was in existence at least since 1964 in Science News [21]. The phrase was also allegedly used
at the 1963 Texas Symposium on Relativistic Astrophysics [22], and Wheeler may have
been present at the meeting. Thus, it still could have been Wheeler who coined the term
black hole. Others attribute the phrase to R. Dicke [23].
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Astrophysical Formation of Singular Spacetimes

The above discussion mainly described the mathematics of certain singular solutions.
However, it is important to keep in mind that if the singularities discussed have no way
of physically forming, then arguably, from a physics perspective, they are purely of an
academic nature. For this, we will look at a thoroughly simplified version of the end of a
main sequence star’s life, keeping in mind though that not all stars will follow this path.

A star will eventually run out of nuclear fuel and reach a state where its pressure
can no longer counteract gravity to maintain dynamic equilibrium. The star will begin to
contract under its own weight. Such a star may supernova, and this may leave behind a
(non-singular) white dwarf, which is a body supported by degenerate electron matter. In
some cases though, the remnant core may be massive enough that the degeneracy pressure
is insufficient to support the core, and further contraction will occur. The mass threshold
where this occurs is called the Chandrasekhar mass [24], which is approximately (with G,
h̄, and c not set to unity)

MChand ≈ α0

2(µemH)2

√
3π

(
h̄c
G

)3/2
(24)

Here, µe is the average molecular weight per electron, mH is the mass of a hydrogen
atom, and α0 is a constant that arises via the Lane–Emden equation of astrophysics.

What happens beyond the Chandrasekhar limit is that protons and electrons combine
via the reaction

p+ + e− → n + νe , (25)

forming neutrons and electron neutrinos. This combination allows further contraction
to form a neutron star, now supported by neutron degeneracy. However, if the neutron
star is massive enough, exceeding the Oppenheimer–Volkoff limit [25], then even this will
not halt the collapse. If this happens, then other degeneracies could perhaps support the
star (e.g., quark degeneracy), but still, above some mass limit, continued collapse will be
inevitable. In general relativity, the problem is augmented by the fact that the pressure
itself in the stress–energy tensor is a source of gravity and not simply the mass density, as
in Newtonian gravity. Regardless of the scenario, it seems that above some pressure and
energy density limit, black hole formation is inevitable unless some exotic physics comes
into play.

3. Possible Resolutions to Singular Spacetimes

We will present in this section some possible alternatives to the types of singular
spacetimes discussed in the previous section. As mentioned previously, this discussion and
coverage are far from exhaustive.

3.1. Quantum Gravity Effects

One issue with the field of gravitation is that practical experiments to measure gravita-
tional effects are notoriously difficult to perform. The main reason for this is that gravity
itself is so weak. One cannot set up an experiment in a laboratory to directly measure
gravity’s strong field effects. The singularities we have been discussing here are heralded
by an infinity in the (orthonormal) curvature, and at a large curvature, the gravitational
field is strong. Now, the theory of general relativity has been thoroughly tested in the weak
field limit, such as in the realm of the solar system [26]. It is also becoming fairly well
tested in the stronger field regime [27]. However, when we are talking about singularities,
we are in the realm of extremely strong gravity. It is possible that in this regime, general
relativity is not the correct theory of gravity, and instead, some other theory takes over. An
obvious candidate would be the theory of quantum gravitation. Unfortunately, to date,
no such fully developed theory exists, although there are a number of candidates. The
quantization of general relativity is fraught with problems. In the canonical 3 + 1 formula-
tion, it is plagued by divergences which cannot be addressed in the same way as, say, the
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theory of quantum electrodynamics. At the same time, the emergence of effective theories
renders renormalizability unnecessary at least in the lower energy regime of quantum
gravity effects.

One promising candidate theory of quantum gravity is loop quantum gravity (LQG) [28].
This theory is essentially a theory of quantum geometry and is a direct attempt at quantizing
general relativity. At extremely high energies, perhaps near the Planck scale, it is expected
that the effects of a quantum theory of gravity manifest themselves. However, while not
having a fully workable theory at hand, one can look for an effective classical theory which
encompasses some of the quantum effects.

We will be dealing within a symmetry reduced theory; that is, we will assume from
the start that the metric has a form similar to Equation (16), but the metric functions will
not be the same. We write the line element in Equation (16) in new variables as

ds2 = gµνdxµdxν = −N2 dτ2 +
(E2)

2

E3
dy2 + E3 dϱ2 + E3c0 sinh2(

√
d0ϱ)dφ2 , (26)

where N, E2, and E3 are functions of time. They are functions of time because, when
examining Equation (16), the classical singularity is located in the domain r < 2M inside
the event horizon. In the coordinate chart of Equation (16), grr < 0 and gtt > 0 for r < 2M
such that the r coordinate is actually time-like (measures time) and the t coordinate is
space-like (measures distances). The Schwarzschild metric for r < 2M is therefore actually
time-dependent and homogeneous. Since we are going to be dealing with domains close to
the singularity here, the metric functions are taken to be time-dependent, and we denote
this time as τ.

The c0 and d0 factors in Equation (26) control the geometry of the τ = const. and
y = const. subspaces. These are the cases:

1. c0 = −1, d0 = −1: For this choice, the (ϱ, ϕ) sub-manifolds are spheres.
2. lim

d0→0
c0 = 1

d0
, d0 = 0: In this case, the (ϱ, ϕ) sub-manifolds are toroidal (and the

sub-manifolds for this case are intrinsically flat).
3. c0 = 1, d0 = 1: In this case, the (ϱ, ϕ) sub-manifolds are surfaces of a constant negative

curvature of the genus g > 1. Such surfaces may be compact or not compact [29,30].

We will be dealing within the Hamiltonian formalism, and we omit the technical
details save for the few that are required to understand the results. For the scenarios above,
the gravitational Hamiltonian is given by

S = −
N
√

c0

2
√

d0E3γ2

[(
(a2)

2 − γ2d0

)
E2 + 2E3a2a3

]
+

N
2
√

E3γ2 ΛE2E3 . (27)

Here, Λ is the cosmological constant (required for the toroidal and higher genus
scenarios), and ai represents functions of time which are components of an su(2) connection
and are conjugate to Ei in the same way that positions and canonical momenta are conjugate
to each other in Hamiltonian mechanics. Also, γ is a number, known as the Barbero–Immirzi
parameter, which can be set by studying black hole entropy (see, for example, [31]).

We will apply some quantum corrections inspired by LQG to the above Hamiltonian.
Specifically, we will consider here what are known as holonomy corrections [32,33]. This
amounts to making the following substitution in Equation (27):

ai →
sin(aiδi)

δi
. (28)

There are several schemes in the literature for how to pick the quantities δi. In early
studies, δi was taken to be constant [34,35]. Other schemes were later developed which
improved the dynamics [34,36–38]. In this summary, we shall present the results in [39],
where the δi values are given by those similar to the improved dynamics in [34]:
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δ2 =

(
∆
E3

)1/2
, δ3 =

√
E3 ∆
E2

, (29)

where ∆ is taken to be be a constant (usually chosen to be roughly the Planck area).
Substituting Equation (29) into Equation (28) and then replacing the ai in Equation (27)

with that in Equation (28) yields the quantum-corrected Hamiltonian. It is then a mat-
ter of evolving the variables Ei and ai according the Hamiltonian equations of motion
ȧ2 = {a2, S}, etc. In particular, what is of interest is the variable E3, since E3 = 0 would
herald a curvature singularity analogous to the one in the Schwarzschild metric at τ = 0
(which was r = 0 in our discussion of the Schwarzschild metric earlier). Qualitatively, what
is happening when E3 = 0 is the following. Note from the line element in Equation (26)
that the volumes of the (ϱ, ϕ) sub-manifolds are given by

V(ϱ, ϕ) = E3(τ)
∫ √

c0 sinh(
√

d0ϱ)dϱ dϕ , (30)

and if the pre-factor E3(τ) trends toward zero, then the volume elements of this space, in
a sense, “infinitely compress” to a volume of zero, resulting in singular behavior. More
mathematically rigorous is that some of the components of the Riemann tensor in an
orthonormal frame of the effective metric (Equation (26)) become infinite when E3(τ) = 0.

The time evolution of E3 for the case of the loop quantum-corrected spherical scenario
(with Λ = 0.001) is illustrated in Figure 3. The initial conditions away from the classical
singularity were chosen to be the classical ones (i.e., the ones which satisfy the general
relativity Schwarzschild solution as well as a required constraint condition S = 0). Also in
Figure 3, the Hamiltonian evolution of E3 for the non-quantum corrected Hamiltonian (i.e.,
pure general relativity) is illustrated. It can be seen that at τ = 0, the uncorrected E3 trended
toward zero, and hence there was a curvature singularity. However, the quantum-corrected
Hamiltonian evolution avoided E3 = 0, thus avoiding the classical curvature singularity.
The full results are discussed in [39].

- - - -

Figure 3. The Hamiltonian evolution of the E3 factor in the classical and quantum corrected scenarios.
The classical evolution (red), which is the Schwarzschild metric with a small cosmological constant,
behaves as E3 = τ2, and there is a singularity (E3 = 0) at τ = 0. The quantum-corrected evolution
(black) avoids E3 = 0 and has no corresponding singularity. Parameters: γ = 0.274, M = 5, and
Λ = 0.001. The full results are discussed in [39].
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We close this section by pointing out some drawbacks to this study. First, we should
be clear that as of the writing of this manuscript, there is no actual fully developed theory of
quantum gravity. The study here simply implements some low-order corrections from the
theory of loop quantum gravity, and there are other corrections which can be applied [40].
Also, the scheme here is ambiguous in the step in Equation (29), and other schemes may be
employed [36,38,41].

3.2. Non-Commutative Geometry

Here, we discuss another possible theory which can avoid black hole singularities.
It is an implementation of non-commutative geometry [42,43]. In quantum mechanics,
non-commutative geometry refers to extending the usual commutator between positions
and momenta ([xj, pk] = iδj

k) to the positions

[xj, xk] = iθϵ
jk
ℓxℓ . (31)

Furthermore, this can be extended to non-commutativity between the momenta in an
analogous manner:

[pj, pk] = iβϵ ℓ
jk pℓ . (32)

In Equations (31) and (32), the constants θ and β measure the amount of
non-commutativity, and in quantum theory, this would be related to h̄. The full tech-
nical details of the discussion in this section maybe found in [44].

Moving “backward” to classical Hamiltonian mechanics, we replace the commutator
of quantum theory with the Poisson bracket of classical mechanics. For particle mechanics,
this means that the analog of Equations (31) and (32) would be{

pa, xb
}
= δb

a , (33a){
xa, xb

}
= ϵab

cθc , (33b)

{pa, pb} = ϵ c
ab βc . (33c)

Reviews of non-commutative mechanics may be found in [45,46] and the references
therein. Specifically, the Poisson generalization to non-commutative mechanics is given by
the Moyal product:

{ f , g} := f ⋆ g − g ⋆ f , (34)

where the Moyal product here is defined as

( f ⋆ g)(v) := exp
[

1
2

wab∂a∂̃b

]
f (v) g(ṽ)|ṽ=v , (35)

and operators with a tilde operate only on tilde coordinates and non-tilde operators operate
on non-tilde coordinates. The two sets of coordinates are made coincident in the end. Here,
wab represents the generalization of the symplectic form, whose matrix is given by

[
wab
]
=

[
ϵab

cθc −δab

δab ϵab
cβc

]
. (36)

Next, we transition to field theories from the particle mechanics picture above. In
field theories, the field variable is the configuration variable (ψa(y)), and associated with
this is canonical field momentum (πa(x)). Analogous brackets to Equations (33a)–(33c) are
implemented: {

πa(x), ψb(y)
}

∝ δb
a δ(x − y) , (37a){

ψa(x), ψb(y)
}

∝ ϵab
cθcδ(x − y) , (37b)
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{πa(x), πb(y)} ∝ ϵ c
ab βcδ(x − y) . (37c)

In gravitation, this procedure is not necessarily straightforward [47–52]. To make the
problem somewhat tractable, the symmetry is frozen so that the metric is fixed to the form
in Equation (26). The system then mimics a mechanical model, and it can be argued that
the Poisson algebra be augmented in a similar manner to Equations (37a)–(37c). For the
variables in Equation (26), these become

{
Ei, aj

}
= δij,

{
ai, aj

}
= ϵijθ ,

{
Ei, Ej

}
= ϵijβ , (38)

with ϵij being the two-dimensional antisymmetric symbol. The Hamiltonian in Equation (27)
is then used to evolve the system ȧ2 = {a2, S}, etc., with the crucial difference from
regular Hamiltonian evolution being that the brackets now include the extended non-
commutativity of Equation (38). As in Section 3.1, the critical variable for singularity
studies is E3, with the classical singularity corresponding to E3 = 0 at τ = 0. In Figure 4,
one of many possible evolutions are illustrated for the case of a spherical black hole. The
initial conditions are set in the same manner as in Section 3.1. We notice from this figure
that the singularity at τ = 0, where in the regular theory E3 → 0, is delayed indefinitely in
the non-commutative mechanics.

----

Figure 4. The Hamiltonian evolution of the E3 factor in regular Hamiltonian mechanics (red) and
the noncommutative theory (black) for a spherical black hole. The singularity in the regular scenario
at τ = 0 (signaled by E3 = 0) is pushed indefinitely into negative τ values. Parameters: M = 1,
Λ = −0.1, γ = 0.274, θ = −0.3, and β = −0.1. Full results may be found in [44].

There are of course many scenarios which can be studied here, since not only can
the geometry be spherical, toroidal, and higher-genus hyperbolic, but one can also choose
θ and β to be zero or nonzero individually. We summarize the various results of [44] in
Table 1.

A different non-commutative study using the same variables may be found in [53].
As in the previous section, we mention here some drawbacks to the scheme. First,

from the results illustrated, the singularity is not necessarily removed in all scenarios. In
particular, it seems non-commutativity in the canonical momenta is required in order to
have singularity avoidance (i.e., β ̸= 0). Non-commutativity in the configuration variables
(θ ̸= 0) is insufficient. Also, some scenarios are inconclusive due to the formation of a sec-
ond horizon. Also, adding the extra non-commutativity in the quantum mechanics of free
particles yields wave equations whose solutions mimic those of particles coupled to an elec-
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tromagnetic field within regular quantum mechanics [54]. Therefore, non-commutativity
seems to introduce some peculiar physical effects.

Table 1. Summary of the non-commutative evolution of various black holes.

1. Spherical

• θ ̸= 0, β = 0: Small values of θ delay the singularity. Large values of θ remove the
singularity.

• θ = 0, β ̸= 0: Singularity is removed.
• θ ̸= 0, β ̸= 0: Singularity is removed.

2. Toroidal

• θ ̸= 0, β = 0: Small values of θ delay the singularity. Large values of θ introduce a new
horizon *.

• θ = 0, β ̸= 0: Singularity is removed.
• θ ̸= 0, β ̸= 0: Singularity is removed for large θ values. For small θ a new horizon

appears.

3. Higher Genus

• θ ̸= 0, β = 0: Small values of θ delay the singularity. Large values of θ introduce a new
horizon.

• θ = 0, β ̸= 0: Singularity is removed.
• θ ̸= 0, β ̸= 0: Singularity is removed for large θ values. For small θ values, a new

horizon appears.
* The new horizon’s presence prevents the determination of a singularity beyond the second horizon since the
numerical scheme cannot penetrate horizons.

3.3. Gravastars

One final alternative to singular spacetimes which we present in this brief review
is an exotic object known as the gravastar (gravitational vacuum star). This model was
first proposed by P. Mazur and E. Mottola [55], and the idea is to not only eliminate the
black hole singularity but the horizon as well so that there is no black hole. The model is
essentially an extension of what were previously known as de Sitter core black holes [56–60].

The basic idea behind the gravastar is the following. Under extreme gravitational
conditions, such as those found near the singularity of a black hole, the vacuum undergoes
a phase transition, and the spacetime locally becomes one of constant positive curvature.
This is de Sitter spacetime, where the effective pressure equals minus the effective energy
density. Note that this violates the inequality in Equation (A3) and therefore circumvents
the singularity theorem of Appendix A. In the coordinate system of Equation (5), the
de Sitter spacetime possesses the line element

ds2 = gµνdxµdxν = −
(

1 − Λ
3

r2
)

dt2 +
dr2

1 − Λ
3 r2

+ r2dθ2 + r2 sin2 θ dϕ2 , (39)

with the cosmological constant Λ > 0. The Riemann tensor components in the orthonormal
frame, whose defining vectors eµ

α̂ point in the coordinate directions, are constant with a
magnitude Λ/3. Therefore, since in the vicinity of the black hole singularity (r = 0 here)
the spacetime is replaced by (39), the curvature singularity does not exist in the gravastar
model. If one moves the cosmological constant term in Equation (1) to the right-hand side
of the equals sign, one can interpret the cosmological constant term in Einstein’s equations
as a stress–energy of the vacuum (Since if Tµν, the stress–energy tensor of the material
vanishes, there is still a source term on the right-hand side of the field equations); that is, in
this interpretation the stress–energy of the vacuum is given by

Tµν
vac

= − Λ
8π

gµν . (40)
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Therefore, in the de Sitter scenario, which corresponds to Λ > 0, the energy density
−T0

0 is positive, and the pressures Ti
i (no sum) are negative.

The occurrence of such a phase transition described above is motivated by condensed
matter physics, where a stable low-energy state (analogous to the gravitational vacuum
here) phase transitions to another state at a critical temperature. Further discussion can be
found in [61], and an excellent review of gravastars in general may be found in [62].

As mentioned above, the gravastar proposal not only aims at the elimination of the
singularity but also the event horizon. However, there is now good observational evidence
for black holes or at least objects that closely resemble black holes. It is therefore postulated
that the phase transition occurs when gravitational conditions are such that a horizon is just
about to form, and outside the gravastar, the gravitational field is almost indistinguishable
from the spacetime of the corresponding black hole that the gravastar replaces. Quali-
tatively, the process would be something similar to the following. A star’s nuclear fuel
diminishes near the end of its life, and as described in the section on Astrophysical Forma-
tion of Singular Spacetimes, gravitational contraction ensues. Assuming that nothing stops
the contraction, as the material collapses in on itself, the gravitational field at some points
in spacetime approaches closer and closer to that of an event horizon. When the conditions
for event horizon formation are almost satisfied, the gravitational phase transition takes
over such that the would-be black hole now evolves to a gravastar configuration. Therefore,
just outside of where the horizon would have formed, the spacetime is almost exactly that
of the corresponding black hole, making it difficult to distinguish a gravastar from a black
hole using exterior observations. However, it is not impossible to distinguish between the
two scenarios [63].

In the case of spherical symmetry, the interior de Sitter spacetime (Equation (39)) needs
to transition to an essentially Schwarzschild spacetime (Equation (16)) at somewhere near
but outside of the event horizon r = 2M. In order for this to happen continuously, the
radial pressure T1

1 and the tangential pressures T2
2 and T3

3 must differ in some region
along the transition zone [64,65]. This makes the gravastar anisotropic in parts of its interior
region. This anisotropy is demanded by the Einstein equation (Equation (1)) governing the
gravitational field. Furthermore, it is physically desirable that the outermost layer of the
gravastar possess non-exotic physics. This means that the outer layer, which we call the
atmosphere of the gravastar, should have a decreasing radial pressure and energy density,
just like one expects in an ordinary star. The qualitative behavior of the continuous radial
pressure which transitions from de Sitter to Schwarzschild, as discussed here, is illustrated
in Figure 5. Continuity of the radial pressure in static spherical symmetry is demanded by
the Synge junction condition [2]:[

Tµ
νn̂ν
]
−
−
[

Tµ
νn̂ν
]
+
= 0 , (41)

when taking the unit normal n̂ν as pointing radially outward from an r = const. junction
surface. The + and − subscripts indicate whether one is approaching the junction surface
from above or below. Note that since Tµ

ν = 0 for the Schwarzschild metric, Equation (41)
implies that at the stellar surface, where the material terminates, the radial pressure must
be zero. This mathematically defines the boundary of the star.

There has been much work conducted on the gravastar alternative to black holes, and
a comprehensive review may be found in [62]. Of particular importance in astrophysics are
models with rotation. Perturbative rotating models were studied in [66–72], and a class
of exact models was constructed in [73], where an exactly de Sitter interior was smoothly
patched to an exactly Kerr (Equation (21)) exterior with a physically acceptable atmosphere
region. Rotating models are much more complicated to analyze, and thus we omitted a
detailed discussion of them here.

Again, we should close with some drawbacks to this model of singularity avoidance.
One potential issue is that it is not clear why such a phase transition, as required for
gravastar formation, should occur, nor exactly what the physics behind it would be. It
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is also not clear why the phase transition, even if it is feasible, should occur at the onset
of horizon formation. It is true though that there are arguments that quantum phase
transition effects are not only strong field effects but can occur under relatively weak
conditions [61], and thus the weakness of the gravitational field in the vicinity of a horizon
does not necessarily preclude some sort of gravitationally induced quantum effects from
occurring there.

r*

atmosphere

de Sitter
     core

0

Figure 5. The radial pressure T1
1 for a gravastar which is locally de Sitter at r = 0 and essentially

Schwarzschild at r > r∗, taken as the boundary of the star. Since Schwarzschild is vacuum, this
means the pressure must smoothly vanish at r∗. As stated in the main text, it is demanded that in the
atmosphere this pressure is monotonically decreasing. Full results may be found in [64,65].

4. Conclusions

We presented here a brief summary of the history of singular spacetimes, mainly
within the theory of general relativity. It has long been desired to find an acceptable way
to remove the singularities in these spacetimes and replace them with something more
benign. This often requires the invocation of new or exotic physics, and every alternative
has its pros and cons. We presented here only a few possibilities, such as certain possible
quantum gravity effects, non-commutative geometry effects, which were also inspired
by quantum mechanics, and the gravastar alternative to black holes. All of these are
admittedly speculative at the moment, but the topic of gravitation is extremely difficult
to test experimentally in a strong field regime, and thus a certain degree of speculation
is inevitable in the field. As mentioned in the main text, this is not an exhaustive review
but will hopefully provide the reader with an understanding of the problem and possible
avenues for a resolution.
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Appendix A. A Simple Singularity Theorem

Here, we present a simple singularity theorem which illustrates how certain types
of singularities can occur. The understanding of this theorem is not critical to the rest of
the manuscript and may be skipped without loss of continuity. A more in-depth analysis
of such singularity theorems may be found in the classic book by Hawking and Ellis [74].
We should note though that certain singularity theorems do not actually guarantee that a
singularity will occur [75].

Before presenting the theorem and its proof, we state the strong energy condition. The
strong energy condition asserts that

TµνVµVν ≥ 1
2

T VµVµ ∀ timelike Vµ , (A1)

where Tµν is the stress–energy tensor of the gravitating material and T := Tα
α is its invariant

trace. If the stress–energy tensor is diagonalizable, and the “zeroth” coordinate is time-like
while the other three are space-like (Hawking–Ellis type one [74]), then the stress–energy
tensor can be represented by [

Tµ
ν

]
= diag[−ρ, p1, p2, p3] , (A2)

where ρ represents the energy density of the material in its rest frame and pi is its principal
pressures (i.e., momentum flux). For this structure of stress–energy tensors, the strong
energy condition (Equation (A1)) simplifies to

ρ + pi ≥ 0 and ρ +
3

∑
i=1

pi ≥ 0 . (A3)

Now, if the Einstein field in Equation (1) with Λ = 0 holds, then it can easily be shown
by tracing the Einstein equations that T = −R/8π and, with this result, that

Rµν = 8π

(
Tµν −

1
2

T gµν

)
. (A4)

Therefore, in terms of the Ricci tensor, the strong energy condition in Equation (A1)
can be recast as

RµνVµVν ≥ 0 . (A5)

This statement of non-negative Ricci curvature physically implies that in general
relativity, matter should not create a repulsive gravitational effect for time-like test particles.

The singularity theorem is stated as follows [3]

Theorem A1. Assume that the following field equations hold in a domain D ⊂ R4:

Gµν = 8πTµν (A6)

Furthermore, assume that Tµν is diagonalizable, as in Equation (A2). Let the strong energy
condition in Equation (A1) hold. Also assume that the vorticity tensor vanishes, and further suppose
that a congruence of time-like velocities Vµ possesses a negative expansion scalar θ(x) < 0 in a
neighborhood of D. Then, each of the time-like geodesics x = χ(s) will terminate at a negative
expansion singularity at x∗ = χ(s∗) ⊂ ∂D after a finite proper time.

Proof. Consider the Raychaudhuri equation with vanishing vorticity:

dθ(s)
ds

+
1
3

θ2(s) = −
{

σµνσµν + RµνVµVν
}
|x=χ(s) , (A7)
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where σµν is the shear tensor whose square, σµνσµν, can be shown to be nonnegative [76].
The field equation (Equation (A4)) holds, and thus, via Equaton (A2), the Raychaudhuri
equation can be written as

dθ(s)
ds

+
1
3

θ2(s) = −
{

σµνσµν + 4π

(
ρ + ∑

i
pi

)}
|x=χ(s)

. (A8)

If the strong energy condition holds, then the right-hand side of the above is less than
or equal to zero such that

−
{

σµνσµν + 4π

(
ρ + ∑

i
pi

)}
|x=χ(s)

=: −[ f (s)]2 ≤ 0 , (A9)

and multiplying Equation (A8) by θ−2(s) allows us to write it as

d
ds

θ−1(s) =
1
3
+ [ f (s)]2[θ(s)]−2 ≥ 0 . (A10)

Now, assume that there is an initial convergence θ(s0) < 0. The solution to the
differential in Equation (A10) is

θ−1(s) = θ−1(s0) +
1
3
(s − s0) +

∫ s

s0

[ f (s′)]2[θ(s′)]−2 ds′ . (A11)

While assuming continuity and differentiability, from the monotonicity of
Equation (A11) there will be some finite s = s∗ > s0 where θ−1(s∗) = 0 or θ(s∗) → −∞,
and there will be infinitely strong contraction.
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