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Abstract: We analyze Hayward black holes (BHs) with a negative cosmological constant surrounded
by a cloud of strings, which we designate Hayward–Letelier AdS BHs. These solutions can be obtained
by coupling the Einstein equations with nonlinear electrodynamics and the energy–momentum
tensor of clouds of strings. We show that these solutions are no longer regular and have a curvature
singularity at the center. In turn, we analyze the thermodynamics associated with these BHs by
establishing the form of the Smarr formula and the first law of thermodynamics. We derive the
expressions for the thermodynamic quantities such as pressure, temperature, heat capacity, Gibbs
free energy, and isothermal compressibility. We explore the phase structure of these solutions by
analyzing the behavior of the heat capacity and Gibbs free energy. These solutions exhibit a first-order
phase transition, similar to van der Waals fluids. We also check the behavior of the thermodynamic
quantities near the critical points and calculate the values of the critical exponents. This illustrates a
robust analogy between our solutions and van der Waals fluids.

Keywords: Hayward–Letelier black holes; AdS spacetime; negative cosmological spacetime; cloud of
strings; nonlinear electrodynamics; thermodynamics quantities; phase structure of solutions

1. Introduction

Einstein’s general relativity (GR), the most celebrated theory of gravity, opened up a
new, enormously vast field of research for astrophysicists by predicting the existence of
some mysterious astrophysical objects that are ideal absorbers (absorb everything and emit
nothing) of nature. These astonishing compact objects known as black holes (BHs) have a
singularity at the center surrounded by the event horizon [1]. The presence of spacetime
singularities shows the breakdown of GR, which is believed to be because of ignorance
of the quantum mechanical effect in GR. The singularity problem in GR can be dealt with
by developing a more fundamental quantum theory of gravitation. In the absence of a
quantum theory of gravity, resolving curvature singularities at the level of classical gravity
remains open.

Sakharov [2] and Gliner [3] demonstrated that matter can avoid the singularities, i.e.,
with a de Sitter core, with the equation of state p = −ρ. This development led Bardeen [4]
to propose a black solution without a singularity at its center. He termed these solutions
regular BHs because the spacetime is well-behaved everywhere, including at the center
r = 0. Beato and Garcia [5] obtained the exact Bardeen solution. Bronnikov [6,7] made
a fascinating observation regarding regular black holes. This observation highlights that
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for the regularity of black holes, the nonlinear electrodynamics (NED) charge must be a
magnetic monopole. Since then, there has been an intense study of regular BHs that are
exact solutions of GR minimally coupled to NED [8–19].

Hayward [20] proposed a new regular spacetime, which can be described by the
following spherically symmetric metric

ds2 = −
(

1 − 2mr2

r3 + 2l2m

)
dt2 +

1(
1 − 2mr2

r3+2l2m

)dr2 + r2(dθ2 + sin2θdϕ2). (1)

Solution (1) is characterized by the BH mass m and the fundamental length l. At a
large distance, this solution behaves like Schwarzschild’s solution, while at a small distance,
it behaves like an AdS vacuum solution. The Hayward solution is straightforward for
analysis as it can be obtained by minimally coupling GR with NED (with magnetic charge g,
where the charge g is defined by g3 = 2 mL2), and hence, has received significant attention
in the last two decades [21–32].

BH thermodynamics is a fascinating subject that combines gravity with quantum
mechanics semi-classically and indicates that it is possible to relate BH physics with other
areas of fields through the AdS/CFT correspondence [33–35]. The story of BH thermo-
dynamics started with identifying the surface gravity and area of the event horizon as
the BH temperature and entropy, respectively, [36,37]. Later, Bardeen et al. [38] gave a
set of four laws governing BH thermodynamics. The pioneering work by Hawking and
Page [39], in which they demonstrated that BHs can undergo a phase transition to thermal
radiation in AdS space, showed that the BHs possess rich phase structures analogous to
ordinary thermodynamic systems. In AdS spacetime, where the negative cosmological
constant is identified as positive pressure [40,41], charged BHs show a van der Waals-like
phase transition between small and large BHs [42–44], which is analogous to the liquid–gas
phase transition of a van der Waal’s fluid. In contrast, some BHs exhibit re-entrant phase
transition [42,45], triple points [46], and heat engines [47].

This article aims to obtain a spherically symmetric Hayward BH solution surrounded
by a cloud of strings (CS) in AdS spacetime (Hayward–Letelier AdS BH) and to find the
effects of CS on the geometric as well as thermodynamic aspects of Hayward BHs. The
consideration of the BH solution surrounded by CS is motivated by the argument that
the Universe’s fundamental building blocks may be extended objects instead of point
objects. In that case, the one-dimensional string can be the most natural candidate [48].
Letelier [49] was the first to study BHs surrounded by CS. The event horizon for the classical
Schwarzschild metric in the background of a CS has a modified radius of rH = 2M/(1 − a),
where a is a string cloud parameter [49]. This enlargement of the Schwarzschild radius
by the factor (1 − a)−1 may have several astrophysical consequences, such as the for-
mation of wormholes. In recent times, a lot of attention has been given to BHs with
CS background [50–56]. The study of Einstein’s equations coupled with CS in GR and
modified theories may be significant.

The rest of the work is organized as follows: Section 2 discusses the geometric as-
pects of Hayward–Letelier BHs in AdS spacetime. Section 3 is dedicated to deriving and
discussing various thermodynamic quantities. Section 4 discusses the thermodynamic
stability and critical points of BHs. In contrast, in Section 5, we examine the behavior
of thermodynamic quantities near the critical point and determine the value of critical
exponents. Finally, we conclude the paper in Section 6.

2. Hayward–Letelier Solution in AdS Spacetime

Here, we intend to obtain a Hayward–Letelier BH in AdS spacetime. The action reads

S =
∫

d4x
√
−g
[

R + 6L−2 + LNED

]
+ SM, (2)
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where R is the curvature scalar, L is positive AdS radius related to the cosmological
constant Λ through the relation Λ = −3/L2, and LNED is the nonlinear Lagrangian of
electromagnetic theory. The Lagrangian is a nonlinear function of the electromagnetic
scalar F = FµνFµν, where Fµν = ∂µ Aν − ∂ν Aµ is the Maxwell–Faraday tensor for gauge
potential Aµ. SM is the Nambu–Goto action of the cloud of strings. The Lagrangian for the
Hayward solution that we are interested in is given as

LNED(F ) =
12µ̄(g2F/2)

3
2

g3
[
1 + (

√
g2F/2)

3
2

]2 , (3)

where µ̄ is a positive constant and g is the magnetic monopole charge. The action SM
reads [49,56]

SM = M
∫

Σ

√
−γ dλ0dλ1 = M

∫
Σ

[
−1

2
ΣµνΣµν

] 1
2
dλ0dλ1, (4)

where spacelike and timelike parameters parameterize the world sheet [48] represented by
λ0 and λ1, and M is a dimensionless positive constant that characterizes each string. The
quantity γ is the determinant of γab given by

γab = gµν
∂xµ

∂λa
∂xν

∂λb . (5)

The movement of a string in time sweeps out an area in two dimensions, which is
termed as its [48] world sheet Σ and has associated with it a bivector given by [49]

Σµν = ϵab ∂xµ

∂λa
∂xν

∂λa , (6)

where ϵab is the Levi–Civita tensor in two dimensions, which is anti-symmetric in the
indices a and b given by ϵ01 = − ϵ10 = 1. Variation of action (4) with respect to metric gµν

leads to following equation of motions

Rµν −
1
2

gµνR − 3L−2gµν = κ2(TNED
µν + Tcs

µν). (7)

The tensor Fµν obeys

∇µ

(
∂LNED(F )

∂F Fµν

)
= 0 (8)

and the Bianchi identities
∇µ(

∗Fµν) = 0, (9)

where ∗ denotes the Hodge dual. We consider a spherically symmetric metric ansatz

ds2 = − f (r)dt2 +
1

f (r)
dr2 + r2

(
dθ2 + sin2 θdϕ2

)
. (10)

For a spherically symmetric spacetime that is only magnetically charged, the only
nonzero component of Fµν is as in [6] (In [57], the authors explicitly show how the nonzero
components are obtained for a spherically symmetric electromagnetic field).

Fθϕ = g sin θ, (11)

and the scalar F is

F =
2g2

r4 . (12)
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The energy–momentum tensor of NED reads

TNED
µν = 2

(
∂LNED(F )

∂F FµσFσ
ν − 1

4
gµνLNED(F )

)
, (13)

and that of the cloud of strings as [49,53,56]

Tcs
µν =

ρΣµσΣσ
ν√

−γ
(14)

with ρ, and ρ/
√
−γ are the proper density and gauge invariant density of the cloud of

strings, respectively. The strings are characterized by a surface-forming bivector Σµν, and
the conditions for being surface-forming are Σµ[αΣβγ] = 0 and ∇µΣµ[αΣβγ] = 0, where the
square brackets denote antisymmetrization. These equations, along with Equation (6), lead
to the useful identity

ΣµσΣστΣτν = γΣνµ, (15)

which will be employed in subsequent calculations. By applying conservation of the
energy–momentum condition, Tµν

;µ = 0, and using Equation (15), we performed some
tensor calculus as given in [53,54] to obtain the following condition

∇µ(ρΣµσ)Σν
σ = 0 (16)

which, on using the coordinate system adapted to the surface parameterization, results in
in [53,54,56]

∂µ(
√
−gρΣµσ) = 0 (17)

where ρ and Σµν depend only on r, as we are looking for static, spherically symmetric
solutions. The only non-zero component of the bivector Σ is Σtr = −Σrt. Consequently,
Tt

t = Tr
r = −ρ|Σtr|, and from Equation (17), we obtain ∂r(r2Tt

t ) = 0 and, hence, we obtain
the energy–momentum tensor for the cloud of strings [53,54,56]

(Tν
µ)

cs = diag
[ a

r2 ,
a
r2 , 0, 0

]
(18)

Solving the Einstein equations, on using Equations (3), (7), (12), (13), and (18), we
obtain the metric function

f (r) = 1 − 2Mr2

g3 + r3 − a +
r2

L2 , (19)

where a is the cloud of strings parameter, and M is the constant of integration interpreted
as the mass of the black hole found to be equal to µ̄. In the limiting case, a → 0, we
find the Hayward–AdS solution [21], and for g → 0, the solution (19) reduces to the
Schwarzschild–AdS BH surrounded by a cloud of strings [58].

In order to locate the horizons, it is necessary to solve the equation f (r) = 0. Unfortu-
nately, obtaining analytical expressions for the horizon radius is not feasible. Therefore,
we employ numerical analysis to examine the horizon structure. This involves plotting
the metric function f (r) against the radial coordinate r in Figure 1. By doing so, we can
determine up to two horizons, which are contingent upon the values of several parameters
(g, a, L). To verify curvature singularities, it suffices to examine the Kretschmann scalar,
denoted as K = RµναβRµναβ, where Rµναβ represents the Riemann tensor, which reads
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K =
4a
r4

(
a +

4Mr2

r3 + g3 − 2r2

L2

)
+

16M
r3 + g3

(
M

r3 + g3 − 1
L2

)
+

4
L4

+4

(
− 4M

r3 + g3 +
6Mr3

(r3 + g3)
2 +

2
L2

)2

+

(
− 4M

r3 + g3 +
36Mr3

(r3 + g3)
2 − 36Mr6

(r3 + g3)
3 +

2
L2

)2

(20)

Because we included the parameter a of the cloud of strings, the Hayward BH loses its
regularity, and the Hayward–Letelier AdS BH has a curvature-singularity at the origin.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

r

f(
r)

M = 1, g = 0.8, L = 1

a = 0.6

aE = 0.343184

a = 0.1

Figure 1. Graphical representation of f (r) with respect to the radial coordinate with different values
of a and fixed g = 0.8, M = 1, and L = 1.

3. Thermodynamics

The investigation of BH thermodynamics is a fascinating area of study. In the following
section, we inquire into BH thermodynamics. John Wheeler [59,60] was the first to notice
that for any system consisting of a BH to follow the non-decreasing entropy law, it is
necessary to assign temperature and entropy to the BH. Based on this assertion, we can
conclude that a body while falling into a black hole transfers its entropy alongside its mass,
angular momentum, and charge. Later, Bekenstein and Hawking made a breakthrough
in the thermodynamic aspect of BHs, by relating the temperature and entropy of BHs at
the event horizon, respectively, with the surface gravity and the area of the event horizon
[36–38,61]. The temperature of a BH is related to its surface gravity by Tκ = κ/2π [62],
where the surface gravity κ is given by κ = f ′(r)/2|r=r+ , where r+ is the event horizon
radius. Using the above relation, we obtain the temperature for the Hayward–Letelier AdS
BH as

Tk =
1

4πr+(r3
+ + g3)

[
r3
+

(
1 − a +

3r2
+

L2

)
− 2(1 − a)g3

]
. (21)

In extended phase space thermodynamics, the negative cosmological constant Λ is
treated as a thermodynamic pressure (P) as:

P = − Λ
8π

≡ 3
8πL2 (22)



Particles 2024, 7 1022

By incorporating the cosmological constant as a thermodynamic pressure and inter-
preting the BH mass as enthalpy, extended phase space thermodynamics provides a more
comprehensive understanding of BH thermodynamics. As our black hole solution exhibits
two horizons, there must be different temperatures associated with these horizons. Hence,
theoretically, it is not possible to attain the thermal equilibrium. Here, we are taking into
consideration that the event horizon can attain a quasi-equilibrium with the surroundings
and the inner horizon remains isolated; thus, we can use the first law of black hole thermo-
dynamics to describe the thermodynamic properties. The first law of BH thermodynamics
for a charged and static BH in extended phase space becomes modified by the inclusion
of charge and cosmological constant along with their conjugates and has the following
form [42]

dM = THdS + Φdg + VdP, (23)

where M is the enthalpy of the system, Φ is the magnetic charge potential, and S is the
entropy of the system, which can be expressed in terms of the horizon area of a BH as [37]

S =
A
4

= πr2
+, (24)

where A is the area of the BH horizon. By using the first law of BH thermodynamics given
in Equation (23), one can derive the temperature and magnetic potential as follows:

TH =
∂M
∂S

, and Φ =
∂M
∂g

. (25)

By solving for f (r+) = 0, we obtain the mass M of the BH as

M =

(
g3 + r3

+

)(
3(1 − a) + 3r2

+

L2

)
6r2

+

. (26)

Using Equation (26) in Equation (25) leads to the following BH temperature expression

TH =

r3
+

(
3(1 − a) + 3r2

+

L2

)
− 2(1 − a)g3

4πr4
+

. (27)

It is intriguing that the temperature determined through surface gravity, denoted as
Tκ , does not align with the temperature obtained from the first law, represented as TH . This
discrepancy arises because of the invalidity of the first law, as presented in Equation (23),
within theories coupled to NED [63–65]. The Lagrangian density of NED relies explicitly
on the mass, necessitating a modification in the first law [66,67].

dM = dM

(
1 −

∫ ∞

r+
r2 ∂T0

0
∂M

dr

)
= W(r+, g)dM, (28)

where W(r+, g) is the correction factor, given by

W(r+, g) =

(
1 −

∫ ∞

r+
r2 ∂T0

0
∂M

dr

)
, (29)

and T0
0 is one of the components of the stress–energy tensor. The correction factor, W(r+, g),

correlates the old and new thermodynamic quantities.
The two temperatures, Tκ and TH , are related to each other by
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Tk = W(r+, g)TH = W(r+, q)
∂M
∂S

=
1

4πr+(r3
+ + g3)

(
r3
+(1 − a +

3r2
+

L2 )− 2(1 − a)g3

)
, (30)

with W(r+, g) = r3
+/r3

+ + g3.
As depicted in Figures 2 and 3, the temperature exhibits a varying pattern with the

entropy S, and displays local maxima and minima. This behavior confirms the occurrence
of phase transitions between different stages of BHs. The temperature reaches zero at a
specific entropy value, revealing an extremal BH. The extremal BH’s entropy allows us to
determine its corresponding radius, which can also be calculated from the metric function.
The extremal BH radius corresponds to where the metric function f (r) reaches its minimum,
signifying that the derivative of the metric function at that point is zero. The temperature
expressions for the Hayward–AdS and Schwarzschild–Letelier–AdS BHs, respectively, are
as shown in the figures.

0 10 20 30 40

0.00

0.02

0.04

0.06

S

T
κ

g = 0.4, P = 0.005

a = 0.6

a = 0.45

a = 0.2

Hayward

Figure 2. Graphical representation depicting the temperature associated with the Hayward–
Schwarzschild–Letelier–AdS solution (21) for varying values of a.
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Figure 3. Graphical representation depicting the temperature associated with the Hayward–
Schwarzschild–Letelier–AdS solution (21) for varying values of P.
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TkH =

r3
+

(
3 + 3r2

+

L2

)
− 2g3

4πr4
+

, (31)

TkL =

r3
+

(
3(1 − a) + 3r2

+

L2

)
4πr4

+

. (32)

Next, we want to derive the Smarr formula, which establishes a relation between the
mass and the other parameters. We can obtain the Smarr formula by using the properties
of the homogeneous function [68]. To do so, first, we write the mass of the BH in terms of
entropy as

M(S, g, a, Λ) =
1

6S
(3π(1 − a)− ΛS)

(
g3 +

S3/2

π3/2

)
. (33)

To find out the degree of homogeneity of the mass, we rewrite it in the given form

M(lhS, lbg, lca, ldΛ) =
1

6lhS

(
3π(1 − lca)− lh+dΛS

)(
l3bg3 + l3h/2 S3/2

π3/2

)
. (34)

By assuming b = h/2, d = −h, c = 0, and h = 1, we isolate l, and
Equation (34) becomes

M(lhS, lbg, lca, ldΛ) =
1

6S

√
l(3π(1 − a)− ΛS)

(
g3 +

S3/2

π3/2

)
. (35)

From Equation (35), it can be seen clearly that the mass is a homogeneous function
with a degree of homogeneity n = 1/2 [68].

According to Euler’s identity, a homogeneous function with degree n satisfies the
following relation [68]

n. f (x1, x2 . . . xm) = a1x1
∂ f
∂x1

+ a2x2
∂ f
∂x2

+ a3x3
∂ f
∂x3

+ . . . + amxm
∂ f

∂xm
. (36)

Using the above relation, we obtain the Smarr formula for our BH solution as

1
2

M(S, g, a, Λ) = THS +
1
2

Φg − AΛΛ, (37)

where TH and Φ are given by (25), and AΛ is

AΛ =
∂M
∂Λ

. (38)

By using Equation (28) and the Smarr formula (37), we can write the complete first
law for BHs with NED as

W(S, g)dM = TkdS + W(S, g)Φdg + W(S, g)AΛdΛ. (39)

As we know, for BHs obtained from NED sources, the Lagrangian depends explicitly
on some parameters, such as charge and mass, and thus, the fluctuations in the matter
sector can be problematic. However, the modified first law given in Equation (39) shows
that changes in the geometry sector can compensate for the fluctuations in the matter sector.
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4. Themodynamic Stability and Critical Points

In this section, we explore the thermodynamic stability and phase structure of the BHs
through an analysis of the behavior of the heat capacity, Gibbs free energy, and isothermal
compressibility, and also discuss the derivatives of the solution to find the critical points.
According to classical thermodynamics, a thermodynamic system having CV ≥ CP ≥ 0
and kT ≥ kS ≥ 0 is thermodynamically stable. Here, CV and CP are the specific heat at
constant volume and pressure, respectively, and kT and kS are the isothermal and isentropic
compressibilities, respectively, [69]. The specific heat at constant pressure and isothermal
compressibility at constant temperature are given by [70]

CP = Tk
∂S
∂Tk

∣∣∣∣
P

, (40)

kT = − 1
V

∂V
∂P

∣∣∣∣
T

. (41)

Using Equations (21) and (24) in Equation (40), we derive the following specific heat
at constant pressure

CP =
2S
(

π3/2g3 + S3/2
)[

S3/2(1 − a + 3S
L2 )− 2(1 − a)π3/2g3

]
2g3π3/2

[
π3/2g3 + S3/2

(
5(1 − a) + 6S

L2

)]
− S3(1 − a − 3S

L2 )
(42)

If we use Equation (27) instead of Equation (21), we obtain

C̄P =
2S
[
S3/2(1 − a + 3S

L2 )− 2(1 − a)π3/2g3
]

8(1 − a)π3/2g3 − S3(1 − a − 3S
L2 )

, (43)

which is not equal to the heat capacity in Equation (42); however, both heat capacities are
connected through the relation given below

CP = W(S, g)
∂TH
∂Tk

C̄P. (44)

The heat capacity of the Hayward–AdS and Schwarzschild–Letelier–AdS solutions are

CPH =
2S
(

π3/2g3 + S3/2
)[

S3/2(1 + 3S
L2 )− 2π3/2g3

]
2g3π3/2

[
π3/2g3 + S3/2

(
5 + 6S

L2

)]
− S3(1 − 3S

L2 )
, (45)

CPL = −
2S
(

1 − a + 3S
L2

)
(1 − a − 3S

L2 )
. (46)

Figures 4 and 5 depict the graphical behavior of the specific heat of the solution (19)
vs. its entropy. There exist two regions with both positive and negative values for CP,
where the solution is thermodynamically stable and unstable for some values of entropy,
respectively. Interestingly, for the range of small values of entropy, the specific heat, as
well as the temperature, are negative, and, therefore, this range is nonphysical. Hence, we
can conclude that the BH solution exhibits two phase transition points corresponding to
maxima and minima of the temperature, where CP flips its sign from positive to negative
or negative to positive such that small and large BHs are stable with CP > 0, whereas the
intermediate BHs with CP < 0 are thermodynamically unstable.
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Figure 4. Graphical representation of heat capacity at constant pressure corresponding to the
Hayward–Schwarzschild–Letelier–AdS solution (19) by considering g = 0.4, p = 0.005, and varying
values of a and S from left to right.
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Next, we want to explore the critical behavior of the solution through the equation of
state. We use the modified first law (39) to obtain the thermodynamic volume which reads

V =
∂M
∂P

=
4πr3

+

3
. (47)

Now, by using Equations (21) and (47), the equation of state P(T, V) can be obtained as

P(T, V) =
8πg3

(
1 − a + 3

√
6πT 3

√
V
)
− 3V

(
1 − a − 2 3√6π2VT

)
6 3
√

36πV5/3
. (48)

The pressure for the Hayward–AdS and Schwarzschild–Letelier–AdS solutions are

PH(T, V) =
8πg3

(
1 + 3

√
6πT 3

√
V
)
− 3V

(
1 − 2 3√6π2VT

)
6 3
√

36πV5/3
, (49)

PL(T, V) =
−3
(

1 − a − 2 3√6π2VT
)

6 3√36πV2
. (50)

To find the critical points, we use the conditions [71–73](
∂P
∂V

)
T
= 0, and

(
∂2P
∂V2

)
T
= 0, (51)

which results in the following critical values of pressure, temperature, and volume

Pc =
3
(

3 +
√

6
)
(1 − a)

16 22/3πg2
(

7 + 3
√

6
)5/3 , Tc =

52/3(1 − a)

4πg 3
√

118 + 48
√

6
,

Vc =
8
3

πg3
(

7 + 3
√

6
)

. (52)

The critical points for Hayward–AdS BHs are

PHc =
3
(

3 +
√

6
)

16 22/3πg2
(

7 + 3
√

6
)5/3 , THc =

52/3

4πg 3
√

118 + 48
√

6
,

VHc =
8
3

πg3
(

7 + 3
√

6
)

, (53)

however, Schwarzschild–Letelier–AdS BHs do not show critical behavior.
In Figure 6, we depict the isotherm on the P − V diagram, corresponding to three

different cases, T < Tc, T > Tc, and T = Tc, where Tc is the critical temperature to find the
for T > Tc, our system behaves like an ideal gas as the pressure monotonically decreases
with increasing volume. Conversely, for T < Tc, the system shows oscillating behavior,
signifying the van der Waals-like phase transition between small (high pressure) and large
(low pressure) BHs.

Now, we want to discuss a very important thermodynamic quantity called the com-
pressibility factor, Z, which tells us about the deviation of a thermodynamic system from
an ideal gas. The compressibility factor is defined as [69]

Z =
PV
T

. (54)
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By using the equation of state (48), we obtain the compressibility factor Z as a function
of T and V as

Z(T, V) =
8πg3

(
1 − a + 3√6π2VT

)
− 3V

(
1 − a − 2 3√6π2VT

)
6 3√36πV2T

. (55)

In the limiting cases a = 0 and g = 0, we find the compressibility factor of the
Hayward–AdS and Schwarzschild–Letelier–AdS BHs, respectively, as

ZH(T, V) =
8πg3

(
1 + 3√6π2VT

)
− 3V

(
1 − 2 3√6π2VT

)
6 3√36πV2T

, (56)

ZL(T, V) = −
3
√

V
(

1 − a − 2 3√6π2VT
)

2 3
√

36πT
. (57)

Figure 7 shows the behavior of Z against pressure for different values of tempera-
ture. The compressibility factor for our system shows a divergence for small values of
pressure. It then decreases as we increase the pressure to reach minima, and then it starts
increasing again as we further increase the pressure. We can easily see the deviation of the
compressibility factor of our system from the ideal gas for which Z = 1. We also calculate
the compressibility factor at the critical point, which is Zc ≈ 1.2345, which is more than
thrice that of a van der Waals fluid (Zc = 0.375 [72]).
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Figure 6. Graphic representation of the P − V behavior of the Hayward–Schwarzschild–Letelier–AdS
solution (19) with Tc = 0.056513 (Top) and Tc = 0.037675 (Bottom).
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ratio P/Pc to g = 0.4, a = 0.4, and Tc = 0.0565133.

A microscopic analysis of the compressibility factor leads to information about the
interaction of molecules of a fluid [66,74]. So, it is very interesting to carry out this analysis
of BHs by considering BHs to be made of some virtual molecules. According to Wei and
Liu [75], it is possible to analyze a BH microscopically through the idea of virtual molecules.
Hence, we would like to do the microscopic analysis through the number density of virtual
micro-molecules of the BH, i.e.,

n =
1
v
=

1
2l2

pr+
, (58)

where v, and lp =
√

h̄G/c3 are the specific volume of the BH and the Planck length,
respectively. Here, we are taking natural units, lp = 1 and n = 1/v = 1/2r+. Noticeably,
the specific volume is linear with the event horizon radius r+. So, we rewrite temperature
in terms of the number density, which reads

T(n) =
(1 − a)n2(1 − 16g3n3)+ 2πP

2πn(8g3n3 + 1)
. (59)

By keeping a = 0, and g = 0, we can obtain the temperature of Hayward–AdS and
Schwarz-schild–Letelier–AdS BHs, respectively, as

TH(n) =
n2(1 − 16g3n3)+ 2πP

2πn(8g3n3 + 1)
, (60)

TL(n) =
2πP + (1 − a)n2

2πn
. (61)

The behavior of temperature against number density for different values of pressure
is depicted in Figure 8.

Next, we want to check the global stability and order of the phase transition of the
system by analyzing the Gibbs free energy [71–73,76–79], G, which is defined as

G = M − TS. (62)

Inserting Equations (21), (24) and (26) in Equation (62), we obtain

G =

(
g3 + r3

+

)(
3(1 − a) + 8πPr2

+

)
6r2

+

+
r4
+

(
a − 1 − 8πPr2

+

)
+ 2(1 − a)g3r+

4
(

g3 + r3
+

) . (63)
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The Gibbs free energy for the Hayward–AdS and Schwarzschild–Letelier–AdS solu-
tions are

GH =

(
g3 + r3

+

)(
3 + 8πPr2

+

)
6r2

+

−
r4
+

(
1 + 8πPr2

+

)
+ 2g3r+

4
(

g3 + r3
+

) , (64)

GL =
1

12
r+
(

3(1 − a) + 8πPr2
+

)
. (65)
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Figure 8. Behavior Tk for Hayward–Schwarzschild–Letelier–AdS solution in terms of number density.

In Figure 9, we show how the Gibbs free energy of the system behaves.
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One can also analyze the phase transition via isothermal compressibility kT . By using
Equations (41) and (48), we obtain

kT =
24πr5

+

(
g3 + r3

+

)
2(1 − a)g6 + 2g3r3

+

(
5(1 − a) + 16πPr2

+

)
− r6

+

(
1 − a − 8πPr2

+

) . (66)

For Hayward–AdS and Schwarzschild–Letelier–AdS, we obtain

kTH =
24πr5

+

(
g3 + r3

+

)
2g6 + 2g3r3

+

(
5 + 16πPr2

+

)
− r6

+

(
1 − 8πPr2

+

) , (67)

kTL = −
24πr2

+

1 − a − 8πPr2
+

. (68)

Figure 10 shows that small and large BHs with positive isothermal compressibility are
thermodynamically stable, whereas, the intermediate BHs are unstable with kT < 0.
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Figure 10. Isothermal compressibility associated with the Hayward–Schwarzschild–Letelier–AdS
solution (19) with g = 0.4, p = 0.005.
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5. Critical Exponents

It is important to find out the values of the critical exponents because we can analyze
the behavior of thermodynamic quantities like specific heat and isothermal compressibility
around the phase transition point, which shows divergence at the transition point. To do
so, we use the following expressions [72,73]

CV = T
(

∂S
∂T

)
∝ |t|−α, (69)

η = V1 − V2 ∝ |t|β, (70)

kT = − 1
V

∂V
∂P

∝ |t|−γ, (71)

|P − Pc| ∝ |V − Vc|δ, (72)

where η is the difference in volume between the two phases, and t = T/Tc − 1. The value
of the critical exponent α depends upon the behavior of the specific heat at constant volume.
To do so, we rewrite the entropy in terms of volume by using Equations (24) and (47),
which yields

S(V) =
3

√
9V2π

16
. (73)

Hence, the specific heat at constant volume becomes

CV = T
(

∂S
∂T

)∣∣∣∣
V
= 0, (74)

which signifies α = 0. Before going forward, we define some dimensionless quantities as

t =
T − Tc

Tc
, ω =

V − Vc

Vc
, and p =

P
Pc

. (75)

We use the quantities defined in Equation (75) to write the equation of state (48) as

p ≈ 1 + t(2.63299 − 0.966326ω)− 0.0584446ω3 + O
(

ω4, tω2
)

. (76)

Using the fact that pressure remains constant during the phase transition, we can write
Equation (76) for two different states as

1 + t(2.63299 − 0.966326ω1)− 0.0584446ω3
1 = 1 + t(2.63299 − 0.966326ω2)− 0.0584446ω3

2, (77)

where subscripts 1 and 2 represent the two different states of the BH. By considering t as
constant, we can take derivative of p with respect to ω to obtain

dp = −
(

0.966326t + 0.1753338ω2
)

dω. (78)

To obtain the critical exponent β, we need to apply the well-known Maxwell’s area
law, which states [58,72,73,80,81] ∫ ω2

ω1

ωdp = 0. (79)

We solve Equations (77) and (79) to find

ω1 = −ω2 ∝
√

t and η ∝
√

t, (80)

which results in β = 1/2. The critical isotherm can be calculated by taking t = 0 as

|P − Pc|Tc
∝ ω3 ∝ |V − Vc|3, (81)
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and, hence, δ = 3. Now, we use (76) to calculate the isothermal compressibility to obtain

kT ∝
1
t

, (82)

which means γ = 1. It can be confirmed from the equations below that these critical
exponents satisfy the Griffiths, Rushbrooke, and Widom equalities [69,73,82];

α + β(1 + δ) = 2, γ(δ + 1) = (2 − α)(δ − 1), Griffiths (83)

α + 2β + γ = 2, γ = β(δ − 1), Widom (84)

which signifies that there are only two independent exponents.

6. Discussion

We began this article by obtaining an exact magnetically charged spherically symmet-
ric Hayward–Letelier AdS BH. The event horizon’s structure indicates that the obtained
solution may have up to two horizons, depending on the values of the CS parameter
a and the magnetic charge g. In the limits, namely a = 0 and g = 0, the solution re-
duces to the Hayward–AdS and Schwarzschild–Letelier–AdS BHs, respectively. However,
unlike the Hayward BH, the surrounding CS confirmed that our BH solution no longer
remains regular.

Furthermore, we analyzed the thermodynamic aspects of the obtained Hayward–Letelier
AdS BH solution by investigating various thermodynamic quantities. We started by deter-
mining the BH temperature Tκ through its surface gravity and the temperature TH using
the first law of BH thermodynamics. We observe that these two temperatures differ because
of the explicit dependence of the NED Lagrangian on the mass M. To address this issue,
we revised the first law by introducing a correction factor W(r+, g) that compensates for
changes in the matter sector through fluctuations in the geometry. Additionally, we derived
the Smarr formula by utilizing the homogeneity of the BH mass.

Subsequently, we studied the specific heat as a function of entropy and identified
regions of thermodynamic stability (CP > 0) as well as thermodynamic instability (CP < 0).
We also investigated the critical behavior of the system by obtaining the equation of state
and plotting isotherms on the P − V plane. Remarkably, our system exhibits behavior remi-
niscent of van der Waals fluids for temperatures below the critical temperature. Moreover,
we calculated the compressibility factor Z to assess the deviation of the system from an
ideal gas. In addition, we analyzed the temperature in terms of the number density of
virtual micro-molecules and determined an upper limit on the number density to ensure
the physicality of the system (Tκ > 0).

We employed Gibbs’s free energy to explore the system’s phase structure. By plotting
isobars on the G − T plane, we found that the system can exhibit no phase transition, a
first-order phase transition, or a second-order phase transition for P > Pc, P < Pc, and
P = Pc, respectively. When P < Pc, we observe the existence of small and large stable
BH states and intermediate unstable BH states. The small stable BHs undergo a van der
Waals-like first-order phase transition to transform into large stable BHs. We also confirmed
this phase transition through the behavior of the isothermal compressibility. Furthermore,
we analyzed thermodynamic quantities such as specific heat and isothermal quantities near
the critical point, which exhibit divergences at critical points. We calculated the critical
exponents and found that the system discussed in this article strongly resembles a van der
Waals fluid. Notably, only two critical exponents are independent, as presented using the
Griffiths, Rushbrooke, and Widom equalities given by Equations (83) and (84).
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