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Abstract: In the present paper, we study both classical and quantum Hénon–Heiles systems. In
particular, we make a comparison between the classical and quantum trajectories of integrable and
nonintegrable Hénon–Heiles Hamiltonians. From a classical standpoint, we study both theoretically
and numerically the form of invariant curves in the Poincaré surfaces of section for several values of
the coupling parameter in the integrable case and compare them with those in the nonintegrable case.
Then, we examine the corresponding Bohmian trajectories, and we find that they are chaotic in both
cases, but with chaos emerging at different times.
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1. Introduction

A fundamental problem in Quantum Mechanics (QM) concerns the existence of chaotic
behaviour in the quantum regime. A classical dynamical system exhibits chaos when it
has a bounded phase space and its trajectories are highly sensitive to the initial conditions.
However, Standard Quantum Mechanics (SQM) does not predict trajectories for quan-
tum particles. Thus, chaos cannot be defined in the same way as in Classical Mechanics
(CM), and most works following SQM rely on studying the quantum properties of the
integrable and chaotic classical counterparts. According to the Bohigas–Giannoni–Schmit
conjecture [1], the differences between the adjacent eigenvalues of a quantum system
corresponding to an integrable classical system follow a Poisson distribution, while the
differences between the adjacent eigenvalues of a quantum system corresponding to a
nonintegrable classical system follow a Wigner distribution [2–5]. This has been established
numerically in various cases. However, this rule may not apply to all cases.

Quantum chaos has been studied in various physical systems: (a) in classically
driven chaotic systems, a representative class being the ionized hydrogen atoms inside
microwave fields [6,7], (b) in kicked quantum chaotic systems [8], (c) in Bose–Einstein
condensates [9–12], (d) in materials where relativistic quantum transport phenomena take
place [13,14], (e) in nuclear systems [15], etc.

Bohmian Quantum Mechanics (BQM) is an alternative interpretation of QM that
predicts deterministic trajectories for quantum particles, governed by a set of first-order-in-
time differential equations, the Bohmian equations [16–19]:

mi
dxi
dt

= h̄Im
(
∇Ψ
Ψ

)
. (1)

where Ψ is the usual wavefunction that satisfies the Schrödinger equation

− h̄2

2mi
∇2Ψ + VΨ = ih̄

∂Ψ
∂t

. (2)
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BQM is a nonlocal, trajectory-based quantum theory that predicts the same experimen-
tal results as Standard QM, provided that the Bohmian particles are distributed according to
Born’s rule, P = |Ψ|2. The nature and observability of Bohmian trajectories have attracted
much interest in the past from both theoretical and experimental standpoints.

In fact, much work has been carried out in recent years on applications of Standard
and Bohmian Quantum Mechanics in experimental setups. For example, very important
experimental work was performed by Kocsis et al. [20], Braverman and Simon [21] and
Foo et al. [22] after the theoretical work of Wiseman on ‘weak measurements’ [23].

The nonlinear nature of the Bohmian equations (Equation (1)) enables the study of
chaotic phenomena at the quantum level using the framework of classical dynamical
systems theory, where chaos is characterized by high sensitivity to initial conditions in
a bounded phase space. Thus, Bohmian chaos is an open field of research in quantum
foundations and has been studied by many authors [24–31]. For a review of our work,
see [32], while for an interesting study on the relation between classical chaos and Bohmian
Mechanics, see [33].

From the early days of BQM, it was understood that chaos emerges when a Bohmian
particle comes close to a nodal point of Ψ (the point where Ψ = 0). However, as was
shown in [34–36], in the frame of reference of a moving nodal point N, there is a second
stagnant point X of the Bohmian flow that is unstable, the so-called ‘X-point’. N and X
form a nodal point/X-point complex (NPXPC). Whenever a Bohmian trajectory comes
close to an NPXPC, it gets scattered by point X, and the local Lyapunov exponent (the
so-called ‘stretching number’) experiences a positive shift [34,35]. The cumulative result of
many such close encounters between the trajectory and the NPXPCs is the saturation of the
Lyapunov exponent at a positive value, indicating chaos. The NPXPC mechanism describes
all the major spikes in the time series of the Lyapunov exponent. However, later, we found
that the stagnant points of the Bohmian flow in the inertial frame of reference, the ‘Y-points’,
also produce chaos, but their contribution is, in general, weak [37]. The combined study
of X-points and Y-points accounts for the profile of the Lyapunov exponent of a typical
Bohmian trajectory. Trajectories that stay away from the X- and Y-points are ordered (thus,
their Lyapunov exponent is zero).

To date, most works on Bohmian chaos have focused on systems of noninteracting
quantum harmonic oscillators in two dimensions [38]. It is remarkable that, even in the
absence of interaction terms in a classical integrable system, its Bohmian counterpart has
both chaotic and ordered trajectories. In order to observe Bohmian chaos, one needs, in
general, noncommensurable frequencies and an entangled state of the system [26,28,39–41].

Thus, a typical Bohmian system has both ordered and chaotic trajectories, like a
classical Hamiltonian system. But Bohmian chaos emerges in a different way than classical
Hamiltonian chaos, which is produced by the overlapping of the asymptotic curves of its
unstable periodic trajectories [42,43].

In the present paper, we compare, in detail, the ordered and chaotic trajectories of
two representative classical systems, one integrable and one nonintegrable, and of the
corresponding quantum analogues. As representative systems, we have chosen two cases
of interacting oscillators with coordinates x and y and with equal angular frequencies along
the x- and y-coordinates (ωx = ωy = 1), described by the Hénon–Heiles Hamiltonians

H =
1
2
(x2 + y2 + ẋ2 + ẏ2) + ϵ

(
xy2 ± x3

3

)
. (3)

The corresponding velocities are ẋ and ẏ, while ϵ is the coupling strength parameter.
When the sign of x3

3 is negative, we have the original Hénon–Heiles system, which is
nonintegrable. Conversely, the positive sign refers to a case where a second integral of
motion exists and the system is integrable [44].

The Hénon–Heiles Hamiltonian has been one of the most well-studied systems in
the theory of classical chaos due to its simple form and its high complexity as regards
the corresponding trajectories [45–48]. Thus, it has been used as a standard system for
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studying the signatures of classical chaos in the physical properties of the corresponding
quantum systems. Moreover, several variations of the Hénon–Heiles model have been
used extensively in the field of chemical physics in order to understand vibrational modes
in molecular systems [49–51]. However, only a few works have been conducted from a
Bohmian standpoint [52–54].

The structure of the present paper is the following: In Section 2.1, we discuss the
classically integrable quantum Hénon–Heiles system. We find the invariant curves of
the trajectories of the classical system. This system, of course, has no chaos. But, in the
corresponding quantum system (Section 2.2), most trajectories are chaotic (except if ϵ = 0),
although their chaotic behaviour becomes apparent only after a rather long time. Then, we
find the eigenvalues of the chaotic system, the differences between successive eigenvalues
and the statistics of these differences. These statistics can be approximated by a Poisson
distribution (and not a Wigner distribution).

In Section 3, we perform the same work for the nonintegrable Hénon–Heiles system.
In this case, there is both order and chaos in the classical system (Section 3.1). Then,
in Section 3.2, we study the corresponding Bohmian system. We calculate its eigenvalues
and their differences. The statistics of these differences are again approximated by a Poisson
distribution and not by a Wigner distribution. Finally, we find the remarkable result that
the times needed for chaos to emerge are much shorter in the Bohmian case corresponding
to the integrable classical system than in the nonintegrable system.

In Section 4, we make a comparison between the two cases and draw our conclusions.

2. Integrable Hénon–Heiles Hamiltonian
2.1. Classical Case

The integrable classical Hénon–Heiles Hamiltonian system is described by the following
Hamiltonian:

H =
1
2
(ẋ2 + ẏ2 + x2 + y2) + ϵ

(
xy2 +

x3

3

)
= E. (4)

It differs from the usual Hénon–Heiles Hamiltonian only in the sign of the cubic term
(+ instead of −). The corresponding second integral of motion is [44]

Q = ẋẏ + xy + ϵ

(
yx2 +

y3

3

)
= K. (5)

The invariant curves for y = 0 are given by

ẋẏ = K, (6)

and hence, ẏ = K/ẋ, and Equation (5) gives

f ≡ ẋ4 +

(
x2 + 2

ϵx3

3
− 2E

)
ẋ2 + K2 = 0. (7)

Its solution is

ẋ2 =
1
2

2E − x2 − 2
ϵx3

3
±

√(
2E − x2 − 2ϵx3

3

)2

− 4K2

. (8)

In the numerical examples, we set E = 1, and for any given ϵ, we have invariant
curves for various values of K (Figure 1a–d). If we fix a different value of E, then we find
similar results.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1. (a–d): Invariant curves for different values of the interaction term ϵ in the integrable
case for E = 1. The different colours correspond to various values of the second integral K. In all
cases, y = 0. (a) ϵ = 0, (b) ϵ = 0.3, (c) ϵ = 0.41 and (d) ϵ = 0.8. The red dots correspond to the
periodic orbits, stable or unstable. Then, we show the main types of non-escaping classical orbits with
(e) x(0) = 0.1, y(0) = 0.2, ẋ(0) = −0.2768, ẏ(0) = −1.3678, ϵ = 0.3, K = 0.4; (f) x(0) = 0.1, y(0) =
0.2, ẋ(0) = 0.3097, ẏ(0) = −1.3607, ϵ = 0.3, K = −0.4; (g) x(0) = 0.1, y(0) = 0.2, ẋ(0) = ẏ(0) =

0.9874, ϵ = 0.01, K = 0.995; and (h) ϵ = 0, x(0) = 0.1, y(0) = 0.2, ẋ(0) = ẏ(0) = 0.9874, K = 0.9949
(blue) and ϵ = 0, x(0) = y(0) = 0, ẋ(0) = ẏ(0) = 1, K = 1 (red).
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The outermost invariant curve (for E = 1 and K = 0) is given by

ẋ2 = 2 − x2 − 2ϵx3

3
. (9)

We also have the solution ẋ2 = 0.
For ϵ = 0, the outermost invariant curve is a circle ẋ2 + x2 = 2 and the axis ẋ = 0.

Inside this circle, we have invariant curves above and below the axis ẋ = 0. For K > 0, the
invariant curves are

ẋ2 =
1
2

(
2 − x2 ±

√
(2 − x2)2 − 4K2

)
. (10)

For x = 0 and ϵ = 0, we have the maxima and minima ẋ2, with ẋ2 = 1 ±
√

1 − K2. As
ϵ increases from ϵ = 0 (Figure 1a), the circle is distorted, and we also have a second set of
invariant curves on the left that go to minus infinity (Figure 1b). If

∂ f
∂x

=
∂ f
∂ẋ

= 0, (11)

then we have periodic trajectories. For E = 1, we find

∂ f
∂ẋ = 2ẋ

[
2ẋ2 + x2 + 2ϵx3

3 − 2
]
= 0, (12)

∂ f
∂x = 2ẋ2[x + ϵx2] = 0. (13)

One solution is
x = 0, ẋ2 = 1. (14)

This gives two stable periodic trajectories at the centres above and below the origin
with K = 1. The invariant curves for K between 0 and 1 surround the unstable points x = 0,
ẋ = ± 1.

There are also escapes along the y-axis. In Figure 1a,b, such orbits appear close to the
points (x = 0, ẋ± = 1) when ϵ > 1

2
√

3
≃ 0.289.

Another solution is
x = −1

ϵ
, ẋ2 = 1 − 1

6ϵ2 . (15)

This gives two unstable trajectories above and below the x-axis with K = 1 − 1
6ϵ2 , which

exist when ϵ ≥ 1√
6
. The value ϵ = ϵesc = 1√

6
is the escape perturbation. The invariant

curves with K between 0 and 1 − 1
6ϵ2 extend to minus infinity close to the x = 0 axis and,

above the upper periodic point or below the lower invariant point, surround (from the
right) the stable periodic points. The invariant curves with K between 1 − 1

6ϵ2 and 1 form
loops around the stable periodic points.

As ϵ increases from ϵ = 0, the second set of invariant curves approaches the main set
(around (0,0)), and for ϵ = 1√

6
≃ 0.408, the outermost invariant curves reach each other at a

singular point ẋ = 0, x = −2.449.
For ϵ = 0.8, we have two unstable trajectories at x = −2 and x = ± 1

3 (Figure 1d). For
K > 1, there are invariant curves only at the left of x = − 1

ϵ . The corresponding trajectories
are, in general, Lissajous figures with axes parallel to the diagonals x = ±y (Figure 1e,f).

Theoretically, the boundaries of these figures are given by eliminating ẋ and ẏ from
Equations (4) and (5) of the integrals of motion H and Q and the relation [55]

J =
∂Q
∂ẋ

ẏ − ∂Q
∂ẏ

ẋ = 0. (16)

This relation gives
ẏ2 − ẋ2 = 0 → ẋ = ±ẏ. (17)
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Introducing these values into Equations (2) and (3), we find, for E = 1,

ẋ2 = 1 − 1
2
(x2 + y2)− ϵ

(
xy2 +

x3

3

)
= ±

[
K − xy − ϵ

(
x2y +

y3

3

)]
. (18)

This equation for x, y can be written in the form

(x ∓ y)2 +
2ϵ

3
(x ∓ y)3 = 2 ∓ 2K. (19)

The solutions give two straight lines parallel to the diagonal x = y at distances
depending on (1 − K) and two straight lines parallel to the diagonal x = −y depending on
the value of (1 + K). Thus, in general, the Lissajous figures are elongated (Figure 1g). In
the particular case of ϵ = 0, all the trajectories are periodic, forming ovals or, in the limiting
cases 1 ∓ K = 0, straight lines (Figure 1h).

2.2. Quantum Case

The Schrödinger Equation (2) with V = V0 + Vp = 1
2 (x2 + y2) + ϵ(xy2 ± x3/3) is not

analytically solvable. However, we can follow the standard procedure [56] of the direct
diagonalization of the perturbed Hamiltonian, exploiting the fact that the unperturbed
system is analytically solvable, and thus, its eigenstates for a complete basis {|Φl⟩} in the
Hilbert space. The eigenstates are |Φ1⟩ = |0⟩x ⊗ |0⟩y ≡ |00⟩, |Φ2⟩ = |01⟩, |Φ3⟩ = |10⟩, Φ4 =
|02⟩ . . . where |0⟩, |1⟩ . . . correspond to the energy eigenstates of the two quantum harmonic
oscillators in the x- or y-direction. Following this procedure, the Hamiltonian operator in
the basis Φl⟩ becomes a matrix, whose arbitrary element is written as

Hi,j =
∫ ∞

−∞

∫ ∞

−∞
Φ†

i (H0 + V)Φjdxdy. (20)

The diagonalization of the Hamiltonian matrix of the perturbed system gives the
corresponding eigenvalues and eigenvectors. Then, it is straightforward to calculate the
spacings between energy levels.

The eigenvectors of the perturbed system can then be written as linear combinations
of the eigenstates of the unperturbed system, i.e.,

|Φ̃r⟩ = ∑
l

clr|Φl⟩. (21)

Thus, an initial wavefunction |Ψ0⟩ = |Ψ(t = 0)⟩ leads to

|Ψ(t)⟩ = ∑
r

exp(−iẼrt/h̄)⟨Φ̃r|Ψ0⟩|Φ̃r⟩ = ∑
l,l′ ,r

c∗l′rclr exp(−i/h̄Ẽrt)⟨Φl′ |Ψ0⟩|Φl⟩. (22)

We start with a wavefunction that has, in the position representation, the form

Ψ0 = aΨ0,0 + bΨ1,0 + cΨ1,1, (23)

where Ψm,n ≡ Ψm(x)Ψn(y) and Ψm(x), Ψn(y) are the 1-D energy eigenstates of the oscilla-
tors [56] in x- and y-coordinates, respectively, i.e.,

Ψm,n(x, y, t) =
y

∏
q=x

Nq exp

(
−

ωqq2

2h̄

)
exp

(
− i

h̄
Est
)

Hs

(√
Mqωq

h̄
q

)
, (24)
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and we set a = b = c = 1/
√

3 (thus, a2 + b2 + c2 = 1). Moreover, s = m, n are integers
for x and y, while Hs represents Hermite polynomials of order s. Nq is the normalization

constant Nq =
(Mqωq)

1
4

πh̄
√

2ss!
, and the energy corresponding to the term Ψm,n is

Em,n = Em + En =

(
1
2
+ m

)
h̄ωx +

(
1
2
+ n

)
h̄ωy. (25)

We work with ωx = ωy = Mx = My = h̄ = 1.
The wavefunction (23) is the most well-studied in the field of Bohmian chaos [39],

since it has the simplest form that can exhibit chaos [28].
We note that, due to the common frequencies, the unperturbed problem has a degen-

eracy: i.e., for a given value n = nx + ny, there are n + 1 states with equal energies. This
degeneracy is lifted by the term ϵ(xy2 + x3/3). The number of states |Φl⟩ is truncated at
a high level depending on ϵ. The first 45 eigenvalues for ϵ = 0.05 are given in Figure 2a.
The differences between the successive eigenvalues with the same sum n = nx + ny are
very small (the same level), while those between successive levels are large (Figure 2b). In
this case (ϵ = 0.05), it is sufficient to take N up to N = 45 because the coefficients of the
higher-order terms are very small. However, for larger values of the interaction parameter
ϵ, we need a much larger number of energy levels in our truncation.

For example, in the case of ϵ = 0.2, it is sufficient to take a much larger number
N = 136 (Figure 2). If we calculate the differences between the successive energy levels of
a given truncation, then we can count how many times we find a value s in our ensemble.
Such a histogram is given in Figure 2c. There, we see that the distribution of the energy
gaps is similar to a Poisson distribution (see also the Conclusions Section) of the form

f (s) ∝ exp(−s), (26)

where f is the proportion of the distances s between adjacent energy levels.

(a) (b) (c)

Figure 2. (a) The distributions of the first 45 and (b) of the first 136 energy levels in the integrable
case when ϵ = 0.2. (c) A histogram of the (135) successive energy gaps of value s.

Since the initial wavefunction for ωx = ωy = 1 gives E0,0 = 1, E1,0 = 2, E1,1 = 3, the
total energy is ⟨E⟩ = a2E0,0 + b2E1,0 + c2E1,1 = 2, and thus, the average energy is Eav = 2.
For ϵ > 0, the average energy is larger than 2 and increases with ϵ (see the last section).

The Bohmian trajectories in this case are, in general, chaotic. This is due to the fact
that the trajectories approach the moving nodal points and are deviated by their nearby
X-points according to the NPXPC mechanism [34,35].

This fact, however, is not obvious. In a previous paper [57], we considered the resonant
case of a two-qubit system of the unperturbed 2d harmonic oscillator, where we have, in
general, infinite nodal points along a straight line. In that paper, we found that when the
frequencies ωx, ωy of the unperturbed potential V = 1

2 (ω
2
xx2 + ω2

yy2) are commensurable,
then all the corresponding Bohmian trajectories are periodic. In particular, when ωx = ωy,
there are no nodal points at all (the analytical formulae for the positions of the nodal points
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have a denominator sin[(ωx − ωy)t] that becomes zero at ωx = ωy; i.e., the nodal points
are at infinity.

In the present case, we have the same resonance ωx = ωy = 1. However, in the
quantum Hénon–Heiles problem, the positions of the nodal points have no specific form in
the configuration space due to the anisotropy in the x- and y-coordinates. Specifically, the
nodal points enter the central region of the support of the wavefunction in a complex way
and scatter the incoming Bohmian trajectories.

In Figure 3a, we calculate a Bohmian trajectory up to t = 4π for ϵ = 0.05. If this
trajectory were periodic, it would return to its initial point after every ∆t = 2π. This does
not happen in the present case. Therefore, the trajectory is not periodic. The same trajectory
was then integrated (for ϵ = 0.05) up to t = 2π × 103. This is chaotic (Figure 3b), as was
verified by calculating the Lyapunov characteristic number. Its corresponding ‘colour plot’,
which shows the number of times a trajectory passes through every bin of area 0.05× 0.05 in
the configuration space up to t = 2π × 105, is shown in Figure 3c. We see that the Bohmian
trajectories are very different from the classical trajectories. They approach some nodal
points from time to time, and they become chaotic in the long run. In fact, they require
some time to exhibit their chaotic character, with the amount of time depending on the
value of the perturbation parameter ϵ.

(a) (b)

(c) (d)

Figure 3. (a) A Bohmian trajectory (x(0) = 0, y(0) = 0.75) for ϵ = 0.05 up to a) t = 4π and
(b) t = 103 × 2π. In (c), we give the long limit distribution of the points of this trajectory up to
t = 105 × 2π. It is a chaotic-ergodic trajectory. Finally, in (d), we show the time needed for about
98% of the trajectories, produced by 5 × 103 Born-distributed initial conditions, to show their chaotic
character for various values of ϵ (integrable case).

The manifestation of chaoticity occurs when the Bohmian trajectories cover practically
all available support of the wavefunction [58,59]. Specifically, Bohmian particles, after the
approach of a nodal point, change their apparently ordered form and extend to larger dis-
tances, showing their chaotic character. The transition time ttr required for most trajectories
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(about 98% in an ensemble of 5 × 103 Born-distributed initial conditions) to show their
chaotic character is given for some values of ϵ in Figure 3d.

If the perturbation ϵ is large, the time of manifestation of chaoticity is short, but as
ϵ decreases, this time increases and becomes very large for small ϵ, tending to infinity
as ϵ → 0. This behaviour is similar to that already observed for noncommensurable
frequencies [60].

3. Nonintegrable Hénon–Heiles Hamiltonian
3.1. Classical Case

The nonintegrable Hénon–Heiles Hamiltonian is

H = H0 + ϵH1 =
1
2
(ẋ2 + ẏ2 + x2 + y2) + ϵ

(
xy2 − x3

3

)
= E, (27)

which has both ordered and chaotic trajectories.
Hénon and Heiles [45,46] gave Poincaré surfaces of section for ϵ = 1 and various

values of energy E. Here, however, we will fix E = 1 (as in Section 2) and give surfaces of
section (y = 0, ẏ > 0) for various values of ϵ that are characteristic of the onset of chaos,
as well as the introduction of escapes to infinity (Figure 4a–f). For small values of ϵ, chaos
is insignificant, but beyond ϵ = 0.3, chaos increases and becomes dominant (Figure 4b–d).
Furthermore, there is a second set of invariant curves on the right that extend to + infinity.
As ϵ increases, this set approaches the central set of invariant curves, and for ϵcrit = 0.4, it
joins it. The value ϵ = ϵcrit = 0.408 is the escape perturbation. With larger ϵ, most trajecto-
ries escape to infinity. However, there remain some small islands of stability (Figure 4f).

In Figure 4a,b, we see two main islands of stability around two stable points on the
x-axis that belong to stable periodic trajectories. Between them, there is an unstable periodic
orbit and chaos, as seen around it for ϵ ≥ 0.3 (Figure 4b). But, in Figure 4c,d, we see many
more islands of stability and, between them, unstable points and some small regions of
chaos. The stable points on the left and on the right of Figure 4a–c have become unstable
in Figure 4d. In Figure 4d,f, several chaotic regions overlap, and chaos becomes important.

In Figure 4e, we see that beyond the right limit of Figure 4d, there is one more set of
invariant curves that extend to ∞. As ϵ increases further to ϵ = 0.409, this set joins the
outermost invariant curve around the centre, and most chaotic trajectories escape to infinity
on the right (Figure 4f).

The proportion of chaotic trajectories as a function of ϵ is given in Figure 4g. For small ϵ,
this gives the chaotic area divided by the total area of the surface of section. We see that
chaos is insignificant for ϵ up to ϵ = 0.3, but then it increases abruptly and reaches 92%
at the escape perturbation. Beyond the escape perturbation, there remain some islands of
stability that decrease gradually as ϵ increases.

The forms of the classical trajectories are shown in Figure 5. There are trajectories
forming rings around the stable periodic trajectories of Figure 4 on the right and on the
left of the origin (Figure 5a,b), trajectories around the stable trajectory at x = 0 and
ẋ > 0 (Figure 5c) (and a similar trajectory for ẋ < 0), as well as many chaotic trajectories,
like the one shown in Figure 5d. There are also small regions of trajectories around stable
periodic trajectories of higher periods.

These trajectories are very different from those of the integrable classical case (Figure 1e–h),
except for the trajectories in Figure 5c above and below the centre of Figure 4c, which are
similar to the elongated Lissajous curve of Figure 1g.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4. Poincaré surfaces of section y = 0, ẏ > 0 of the classical nonintegrable system for a fixed
value of energy E = 1 and for certain characteristic values of the coupling constant ϵ that show the
emergence of chaos and the introduction of escapes to infinity. (a) ϵ = 0.05, (b) ϵ = 0.3, (c) ϵ = 0.35.
(d,e) refer to the same perturbation ϵ = 0.4, while (f) refers to ϵ = 0.409. The region of escaping
trajectories is coloured yellow. In (g), we show the proportion of chaotic orbits in the Poincaré surface
of section as a function of ϵ.
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(a) (b)

(c) (d)

Figure 5. Four trajectories around the Poincaré surface of section corresponding to ϵ = 0.35 and E = 1:
(a) x(0) = 0.8, y(0) = 0, ẋ(0) = 0, ẏ(0) = 1.2163; (b) x(0) = −1, y(0) = 0, ẋ(0) = 0, ẏ(0) = 0.8756;
(c) x(0) = 0, y(0) = 0, ẋ(0) = 0.75, ẏ(0) = 1.19896; and (d) x(0) = −0.1, y(0) = 0, ẋ(0) = 0,
ẏ(0) = 1.41059. The last one is chaotic.

3.2. Quantum Case

The Bohmian quantum analogue of the nonintegrable Hénon–Heiles system is very
similar to the corresponding integrable case for the same value of energy E = 1. We work
with the same wavefunction as in the integrable case. The corresponding average energies
Eav for increasing values of ϵ are shown in the Conclusions Section.

In Figure 6a, we show the eigenvalues of this case, which are very similar to those
of the integrable case in Figure 2a,b. Figure 6b gives the distribution of the differences
between adjacent eigenvalues, which is similar to that in Figure 2c for the integrable case.

(a) (b)

Figure 6. (a) The distribution of the first 136 energy levels in the nonintegrable case when ϵ = 0.2.
(b) A histogram of the (135) successive energy gaps of value s.
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Figure 7 shows a chaotic Bohmian trajectory for ϵ = 0.05 and times (a) t = 4π and
(b) t = 2π × 103. Figure 7c is the colour plot of this trajectory for a long time (t = 2π × 105).
These trajectories are similar to those of the integrable case (Figure 3a–c). Finally, Figure 7d gives
the time needed for the trajectories of different ϵ to show their chaotic character, and this is
to be compared with Figure 3d. The chaotic character time is larger for smaller ϵ and tends
to infinity as ϵ → 0. However, the times for the establishment of chaoticity are much larger
in the nonintegrable case.

(a) (b)

(c) (d)

Figure 7. (a) The Bohmian trajectory of the same initial condition as in Figure 3 for ϵ = 0.05: (a) up to
t = 4π (in the inset, we show a zoomed-in view of part of the trajectory in Figure 7a, where we see
that it is not periodic), (b) up to time t = 103 × 2π and (c) the colour plot of the long limit distribution
of its points for t = 2π × 105. It is a chaotic-ergodic trajectory (x(0) = 0, y(0) = 0.75). (d) The times
needed for about 98% of the trajectories, produced by 5 × 103 Born-distributed initial conditions, to
show their chaotic character for various values of ϵ (nonintegrable case).

4. Conclusions

In this paper, we studied the classically integrable and nonintegrable Hénon–Heiles
systems from both classical and Bohmian quantum perspectives.

(A) In the Bohmian approach, the integrable and nonintegrable systems are similar in
several ways:

1. The distributions of the eigenvalues of both integrable and nonintegrable systems are
very similar (Figure 8a).

2. The energy differences s between successive eigenvalues are similar. In Figure 8b, we com-
pare the distributions of s in the integrable and nonintegrable cases (Figures 2c and 6b).
In both cases, we have a Poisson distribution of the form P(s̄) ∝ exp(−s̄), where
s̄ = s/sav (sav is the average s) is the normalized gap between successive energy
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levels. Notably, the Wigner function is not computable in the nonintegrable case of
the Hénon–Heiles system, contrary to the common belief that the distribution of the
differences ∆E between adjacent eigenvalues has a Wigner form when the classical
system is chaotic (while it has a Poissonian form in the integrable cases). In fact, we
find the same behaviour even for ϵ = 0.35, where the classical system has a significant
amount of chaos (Figure 4c). However, further work is needed in order to find whether
this unexpected result is also valid in other cases with more complex Hamiltonians.

3. In Figure 8c, we compare the average energies of the two systems for the same values
of ϵ. The average energies start at Eav = 2 for ϵ = 0 and increase as ϵ increases.
However, the increase is much slower in the nonintegrable case. The reason seems to
be the following: the perturbation of the integrable case ϵ(xy2 + x3/3) is much larger
than the perturbation ϵ(xy2 − x3/3) of the nonintegrable case for the same ϵ.

4. The Bohmian trajectories are, in general, chaotic if ϵ ̸= 0 in both integrable and noninte-
grable cases. The chaotic character of the trajectories takes more time to be established
as the perturbation parameter decreases (Figure 8d). This time tends to infinity when
ϵ → 0. However, the times for the same ϵ are larger in the nonintegrable case.

5. The colour plots (Figures 3c and 7c) are similar.

Therefore, the Bohmian effects in both cases are similar, but stronger in the integrable case.

(a) (b)

(c) (d)

Figure 8. (a) The distribution of the energy levels of the integrable (blue) and nonintegrable (red)
cases and (b) the probability of finding certain values for the spacings between successive energy
levels when ϵ = 0.2. The solid lines are Poisson functions fitting the two observed distributions
(dashed lines). We observe that the Poisson functions are very similar to each other. (c) The average
energy up to t = 10,000 as a function of ϵ. A larger ϵ leads to a larger ⟨E⟩. (d) The critical time
when the majority of trajectories (about 98% in a realization of Born’s rule distribution containing
5 × 103 initial conditions) exhibit chaos as a function of ϵ. It is remarkable that in the integrable case
(blue curve), Bohmian chaos emerges faster than in the nonintegrable case (red curve).
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(B) In the classical approach, we calculate the invariant curves for various values of ϵ.

1. In the integrable case, the invariant curves form closed loops above and below the
origin around two stable points. But, with ϵ above an escape value ϵcrit, the invariant
curves starting close to the x-axis escape to the left, to minus infinity, also surrounding
the closed invariant curves above or below the origin (0, 0). In the nonintegrable case,
there are closed invariant curves on the left and on the right of the origin, but there
are also islands of stability that are symmetric with respect to the x-axis. If ϵ is larger
than the escape value ϵesc, most trajectories (but not all) escape to the right to infinity.

2. However, the main difference between the two systems is the appearance of chaos
in the nonintegrable case. The proportion of chaotic trajectories is very small up
to a critical value ϵcr, and for larger ϵ, it increases abruptly. Beyond the escape
perturbation ϵesc, there are only some small islands of stability that decrease gradually
as ϵ increases further.

3. In the integrable cases, the non-escaping classical trajectories are, in general, Lissajous
figures with axes parallel to the diagonals y = ±x. In the limiting case ϵ = 0,
the trajectories are closed loops or straight lines. The classical trajectories in the
nonintegrable Hénon–Heiles case are either ordered, surrounding, in every case, a
stable periodic trajectory, or chaotic. For example, there are trajectories forming rings
around the stable points with y = 0 and ẋ = 0. But, if ϵ is larger than the escape
perturbation ϵcrit, most classical trajectories escape to infinity.

Our main conclusion is that the Bohmian trajectories are chaotic, in general, in both
the integrable and nonintegrable cases. These results are important for the field of Bohmian
chaos, which has been mainly developed by studying entangled wavefunctions of two
noninteracting quantum harmonic oscillators. There, it was found that both ordered and
chaotic trajectories coexist. However, as with the case ϵxy2 that we studied in [60], we find
that the interaction leads to the dominance of chaotic Bohmian trajectories in the course of
time. Thus, it is reasonable to expect that chaos is dominant in more general Hamiltonians.

The study of closed quantum systems with interacting parts is an important and
necessary step before moving to the much more complicated, but also realistic, case of
open quantum systems, where the environmental interaction induces new effects, such as
decoherence and dissipation [61–63].
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