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Abstract: The investigation of magic numbers for nuclei in the hyperheavy region (Z > 120) is
an interesting topic. The neutron magic number N = 350 is carefully validated by the deformed
relativistic Hartree-Bogoliubov theory in continuum (DRHBc), via analysing even-even nuclei around
N = 350 of the Z = 136 isotopes in detail. Nuclei with Z = 136 and 340 ≤ N ≤ 360 are all found to
be spherical in their ground states. A big drop of the two-neutron separation energy S2n is observed
from N = 350 to N = 352 in the isotopic chain of Z = 136, and a peak of the two-neutron gap δ2n

appears at N = 350. There exists a big shell gap above N = 350 around the spherical regions of
single-neutron levels for nucleus with (Z = 136, N = 350). These evidences from the DRHBc theory
support N = 350 to be a neutron magic number in the hyperheavy region.

Keywords: relativistic density functional theory; deformed relativistic Hartree-Bogoliubov theory in
continuum; magic number; hyperheavy nuclei

1. Introduction

The investigation of superheavy elements remains one of the most important topics of
nuclear physics and chemistry. The element with the largest proton number Z observed
so far is Og with Z = 118 [1]. The limit of the existence of atomic nuclei is a longstanding
issue for both experimental and theoretical nuclear physicists, and has important impacts
on physics and chemistry. The nuclei with Z > 120 are usually called hyperheavy nu-
clei [2]. The studies of hyperheavy nuclei can enhance our understanding of exotic nuclear
structures and enable the delving into the limits of charge and mass of atomic nuclei.

Nuclear liquid drop model (LDM) [3] can help us obtain a quick understanding
of the hyperheavy nuclei, which suggests the importance of the competition between
Coulomb energies and surface effects in the hyperheavy region. However, due to the lack
of quantum shell effect, the predictions given by the LDM are pretty rough. Quantum shell
effect, which corresponds to a non-uniformity distribution of the individual single-particle
energies, is very important for finite nuclear systems. It can produce a significant energy
gap in the single-particle energy spectrum near the Fermi level for some nuclei. Such
gaps would provide additional binding energies and enhance nuclear stability. These
nuclei with additional stability are the so-called “magic nuclei”, and the corresponding
proton or neutron numbers are called “magic numbers”. Experimentally, the confirmed
neutron magic numbers are 8, 20, 28, 50, 82, 126, and the confirmed proton magic numbers
are 8, 20, 28, 50, 82.
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Due to the additional stability, magic nuclei have drawn a lot of attention [4,5]. Naïvely,
if one assumes the potential for nucleons within an atomic nucleus is a harmonic oscillator
potential, the obtained magic numbers will be 2, 8, 20, 40, 70, 112, 168, 240, ..., which disagree
with experiments. If one further takes into account the spin-orbital coupling, the predicted
magic numbers are 2, 8, 20, 28, 50, 82, 126, 184, 258, 350, ..., which correctly reproduce the
experimental magic numbers for N ≤ 126 and Z ≤ 82. However, due to the limit of
experimental information, the large predicted magic numbers, such as 258 and 350, are
difficult to be validated in the foreseeable future. For hyperheavy nuclei with Z > 120,
the neutron numbers of which can reach to N ≈ 350, and it will be interesting to use a
microscopic and self-consistent model to theoretically justify the predicted neutron magic
number 350.

Nuclear stability is usually described by the binding energy or equivalently nuclear
mass. Nuclear mass is important for both nuclear physics [6,7] and astrophysics [8–11].
Experimentally, the masses of about 2500 nuclear masses have been measured to date [12].
Theoretically, many nuclear models [13–24] and machine-learning approaches [25–36] are
developed to predict nuclear masses. Among these models, the deformed relativistic
Hartree-Bogoliubov theory in continuum (DRHBc) [37,38] simultaneously treats the defor-
mation degrees of freedom, pairing correlations, and continuum effects properly, which
are important for the descriptions of weakly bound exotic nuclei. The DRHBc theory
has been successfully applied in studying many nuclear phenomena [39–56]. In order to
provide a unified and microscopic description for the whole nuclear landscape, the DRHBc
Mass Table Collaboration [57] was established, aiming at establishing a nuclear mass table
based on the DRHBc theory with the density functional PC-PK1 [58]. The even-even [22]
and even-odd [24] parts of the DRHBc mass table have been established recently. The
Collaboration is now working on odd-Z nuclei and hyperheavy nuclei with 120 < Z ≤ 136.
Taking this opportunity, one can validate the neutron magic number N = 350 with the
DRHBc theory. In this work, the DRHBc theory is employed to study the even nuclei of
Z = 136 isotopes around N = 350 to validate the possible neutron magic number N = 350.
To our knowledge, there is currently no literature that employs modern nuclear model
to study the neutron magic number N = 350. In Section 2, the theoretical framework is
introduced. The numerical details are introduced in Section 3. The Results and discussions
are presented in Section 4. Finally, a summary is given in Section 5.

2. Theoretical Framework

The details of the DRHBc theory with meson-exchange and point-coupling density
functionals can be found in Refs. [38,59], respectively. In the following we briefly present
its formalism.

Treating self-consistently the mean fields and pairing correlations, the relativistic
Hartree Bogoliubov (RHB) equations for the nucleons read [60](

hD − λτ ∆
−∆∗ −h∗D + λτ

)(
Uk
Vk

)
= Ek

(
Uk
Vk

)
. (1)

To describe properly the possible large spatial extension of exotic nuclei, the RHB
equations are solved in a Dirac Woods-Saxon basis, in which the radial wave functions
have a proper asymptotic behavior for large r [61]. In Equation (1), λτ is the Fermi energy
(τ = n/p for neutrons or protons), Ek and (Uk, Vk)

T the quasiparticle energy and wave
function, and hD the Dirac Hamiltonian,

hD(r) = α · p + V(r) + β[M + S(r)], (2)

with the scalar S(r) and vector V(r) potentials. The pairing potential ∆ reads

∆(r1, r2) = Vpp(r1, r2)κ(r1, r2), (3)

with a density-dependent force of zero range,
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Vpp(r1, r2) = V0
1
2
(1 − Pσ)δ(r1 − r2)

(
1 − ρ(r1)

ρsat

)
, (4)

and the pairing tensor κ [62]. For axially deformed nuclei, the potentials and densities are
expanded in terms of the Legendre polynomials,

f (r) = ∑
λ

fλ(r)Pλ(cos θ), λ = 0, 2, 4, · · · , (5)

where λ is restricted to be even numbers due to spatial reflection symmetry.

3. Numerical Details

In Equation (4), the pairing strength V0 = −325 MeV fm3, the saturation density
ρsat = 0.152 fm−3, and a pairing window of 100 MeV are adopted. The energy cutoff E+

cut
= 300 MeV and the angular momentum cutoff Jmax = 23/2 h̄ are adopted for the Dirac
Woods-Saxon basis. In Equation (5), the Legendre expansion is truncated at λmax = 10 [63].
The calculations are carried out with the relativistic density functional PC-PK1 [58]. These
numerical details are the same as the calculations of nuclei with 100 ≤ Z ≤ 120 in the
global DRHBc mass table calculations over the nuclear chart [22,24,59], and have also been
examined to be proper for the studies in this work.

4. Results and Discussions

Evolution of the potential energy curves (PECs) of Z = 136 isotopes with 340 ≤ N ≤ 360
is presented in Figure 1. Note that the Z = 136 element has temporary systematic IUPAC name
and symbol as Untrihexium and Uth respectively [64]. One can see the similar behaviours
of these PECs, where the total energy increases monotonously with the increasing absolute
value of β2 in the range that |β2| < 0.3, indicating that these nuclei are spherical in their
ground states. Note that the cutoff of angular momentum has been examined in Ref. [65],
which suggests Jmax = 31/2 h̄ in the calculation of the hyperheavy nuclei (121 ≤ Z ≤ 136)
with quadruple deformation |β2| > 0.3. The spherical ground states of these nuclei can be
interpreted as a clue that N = 350 (or other adjacent neutron numbers) is a neutron magic
number, since atomic nuclei prefer to be spherical around the magic ones. Note that the nuclei
that are analyzed in the present work all have spherical ground states, which might lead one
to consider Z = 136 as a potential magic number. However, we have checked the nuclei that
are not close to N = 350 in Z = 136 isotopic chain, most of which are not spherical ones. We
have also checked the single-proton levels around the Fermi level of 486Uth , and there is not
a significant gap above Z = 136. Instead, there is a significant gap above Z = 138, which may
suggest 138 to be a proton magic number. However, this is out of the scope of the present
paper, which could be an interesting topic for the future work.
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Figure 1. Evolution of the potential energy curves (PECs) of Uth (Z = 136) isotopes with 340 ≤ N ≤ 360.
For clarity reasons, the curves have been scaled to the energy of β2 = 0 and have been shifted upward
by 5 MeV per decreasing two neutrons.
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In order to pin down which neutron number is the magic one, the two-neutron
separation energies S2n and Fermi energies λn for these Uth isotopes are presented in
Figure 2. One can see that the two-neutron separation energies S2n evolve slowly with the
increasing of neutron number from N = 340 to N = 350 and from N = 352 to N = 360.
However, there is a big drop in the S2n from N = 350 to N = 352. This indicates that there
is a big shell gap at N = 350, which is a strong evidence for a magic number. There is
also a big jump in the Fermi energies λn from N = 350 to N = 352, which leads to the
same conclusion. Two-neutron gap δ2n = S2n(N, Z)− S2n(N + 2, Z) is also a very good
signature of magic numbers. As can be clearly seen in Figure 2, a peak of δ2n appears at
N = 350.
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Figure 2. Two-neutron separation energies S2n, two-neutron gaps δ2n, and Fermi energies λn for the
Uth (Z = 136) isotopes with 340 ≤ N ≤ 360. The bound nuclei predicted by the DRHBc theory are
denoted by filled circles, while the unbound nuclei are denoted by empty circles. The blue dashed
line displays S2n = 0, δ2n = 0, and λn = 0.

Neutron magic nuclei are typically more stable than their next neutron-rich neighbors,
while the neutron-richer nuclei next to the magic nuclei are much more likely to emit extra
neutrons outside the shells. One can also see in Figure 2 that the S2n of nuclei N ≥ 352 are
smaller than zero, which means that these nuclei are unstable against neutron emission.
The corresponding Fermi energies for these nuclei are larger than 0, which also refers to
the unstable characters. Therefore, the neutron drip-line nucleus of Uth isotopic chain
locates at N = 350. Note that the Coulomb repulsion will be very large in superheavy
and hyperheavy nuclei, and tends to prevent the nuclear binding. The reason why such a
hyperheavy nucleus 486Uth still can be bound is due to strong shell effect. The shell effect
is a hallmark characteristic in the atomic nucleus as a quantum system, providing extra
binding that can overcome Coulomb repulsion and makes the nucleus bound.

In order to confirm the neutron magic number, the single-neutron levels around the
Fermi level should be carefully checked. Figure 3 shows the single-neutron levels around
the Fermi level of 486Uth in the canonical basis obtained from constraint calculations. One
can find a big gap above N = 350 around the spherical regions, i.e., −0.05 < β2 < 0.05.
This strongly supports N = 350 as a neutron magic number.
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Figure 3. Single-neutron levels around the Fermi level of 486Uth in the canonical basis obtained
from constraint calculations with the DRHBc theory. The occupation probability of each orbital is
represented with different colors. The Fermi level λn is displayed by the green dashed line.

Figure 4 provides single-neutron and single-proton levels around the Fermi levels for
the spherical ground state of 486Uth, and the corresponding spherical quantum numbers
are labeled. As can be seen, the big gap of N = 350 appears between the level 4d3/2 and
1I17/2. In the future works, it would be interesting to check the model dependence of
neutron magic number N = 350, as well as the related levels, among different methods and
different functionals employed.
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Figure 4. Single-neutron and single-proton levels around the Fermi levels for the spherical ground
state of 486Uth in the canonical basis obtained with the DRHBc theory. The occupation probability of
each orbital is represented with different colors. The Fermi levels λn, λp are displayed by the green
dashed lines. The spherical quantum numbers are given for corresponding levels.

5. Summary

The investigation of magic numbers of hyperheavy nuclei is an interesting topic. The
neutron number N = 350 is predicted to be a magic number by the naïve analysis based
on harmonic oscillator potential with spin-orbital coupling. In this work, the predicted
neutron magic number N = 350 is validated with the DRHBc theory by studying the Uth
(Z = 136) isotopes around N = 350. It is found that the Uth isotopes with 340 ≤ N ≤ 360
are all spherical in their ground states. A big drop of the S2n appears from N = 350 to
N = 352, and a peak of δ2n is observed at N = 350. By taking 486Uth as an example, in
the single-neutron levels, there exists a big shell gap above N = 350 around the spherical
regions, i.e., −0.05 < β2 < 0.05. These evidences from DRHBc theory all support N = 350
to be a neutron magic number in the hyperheavy region.
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Note that we presently focus on Z = 136 isotopic chain as an example, and a more
rigorous validation of neutron magic number should be examined also for other isotopic
chains. The preliminary results of other isotopic chains in the hyperheavy region from the
DRHBc theory also support N = 350 to be a neutron magic number. A more comprehensive
investigation could be carried out in the future to analyze all the results of hyperheavy
nuclei. In that case, one could have a more rigorous validation of neutron magic number
N = 350 and also other possible neutron and proton magic numbers in the hyperheavy
region. Considering that the present calculations with the DRHBc theory assume nuclei to
be axial symmetry and base on the PC-PK1 functional, it would be interesting to investigate
the evolution of shell gaps with triaxial deformation or with octupole deformation, to
validate whether the triaxial or octupole deformations can challenge the spherical minima
of these nuclei. It would also be interesting to check the functional dependence of neutron
magic number N = 350.
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