Influence of Blood Glycemia Levels in Refraction, Binocular Vision and Accommodation: A Case Report
Abstract
:1. Introduction
2. Case Presentation Section
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Diabetes Association Professional Practice Committee; ElSayed, N.A.; Aleppo, G.; Bannuru, R.R.; Bruemmer, D.; Collins, B.S.; Ekhlaspour, L.; Gaglia, J.L.; Hilliard, M.E.; Johnson, E.L.; et al. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47, S20–S42. [Google Scholar]
- Global Report on Diabetes. World Health Organization. Available online: https://www.who.int/health-topics/diabetes#tab=tab_1 (accessed on 11 February 2024).
- Bastaki, S. Diabetes mellitus and its treatment. Dubai Diabetes Endocrinol. J. 2005, 13, 111–134. [Google Scholar] [CrossRef]
- Kaštelan, S.; Gverović-Antunica, A.; Pelčić, G.; Gotovac, M.; Marković, I.; Kasun, B. Refractive changes associated with diabetes mellitus. Semin. Ophthalmol. 2018, 33, 838–845. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-Y.; Luo, G.-C.; Guo, J.; Liang, Z. Effects of glycemic control on refraction in diabetic patients. Int. J. Ophthalmol. 2010, 3, 158. [Google Scholar]
- Wiemer, N.G.M.; Eekhoff, E.M.W.; Simsek, S.; Heine, R.J.; Ringens, P.J.; Polak, B.C.P.; Dubbelman, M. Refractive properties of the healthy human eye during acute hyperglycemia. Graefe’s Arch. Clin. Exp. Ophthalmol. 2008, 246, 993–998. [Google Scholar] [CrossRef] [PubMed]
- Adnan, A.; Efron, N.; Mathur, A.; Edwards, K.; Pritchard, N.; Suheimat, M.; Atchison, D.A. Amplitude of accommodation in type 1 diabetes. Investig. Ophthalmol. Vis. Sci. 2014, 55, 7014–7018. [Google Scholar] [CrossRef] [PubMed]
- Kovalenko, V.V. Diabetes mellitus and the state of ocular accommodation in schoolchildren. Probl. Endokrinol. 1978, 24, 17–19. [Google Scholar]
- Abbott. FreeStyle LibreLink. Available online: www.freestylelibre.es/libre/productos/librelink.htm (accessed on 11 February 2024).
- Sonmez, B.; Bozkurt, B.; Atmaca, A.; Irkec, M.; Orhan, M.; Aslan, U. Effect of glycemic control on refractive changes in diabetic patients with hyperglycemia. Cornea 2005, 24, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, F.; Sone, H.; Nonoyama, T.; Hommura, S. Refractive changes in diabetic patients during intensive glycaemic control. Br. J. Ophthalmol. 2000, 84, 1097. [Google Scholar] [CrossRef] [PubMed]
- Giusti, C. Transient hyperopic refractive changes in newly diganosed juvenile diabetes. Swiss Med. Wkly. 2003, 133, 200–205. [Google Scholar] [CrossRef]
- Lin, S.-F.; Lin, P.-K.; Chang, F.-L.; Tsai, R.-K. Transient hyperopia after intensive treatment of hyperglycemia in newly diagnosed diabetes. Ophthalmologica 2009, 223, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Abokyi, S.; Ilechie, A.; Asaam, K.A.; Ntodie, M. Fasting plasma sugar: A predictor of accommodative function in diabetes. Curr. Eye Res. 2016, 41, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Abokyi, S.; Ayerakwah, P.A.; Abu, S.L.; Abu, E.K. Controlled blood sugar improves the eye’s accommodative ability in type-1 diabetes. Eye 2021, 35, 1198–1204. [Google Scholar] [CrossRef] [PubMed]
- Silva-Viguera, M.-C.; Bautista-Llamas, M.-J. Accommodative disorders in non-presbyopic subjects with type 1 diabetes without retinopathy: A comparative, cross-sectional study. Ophthalmic Physiol. Opt. 2023, 43, 954–963. [Google Scholar] [CrossRef] [PubMed]
- Hussaindeen, J.R.; Murali, A. Accommodative Insufficiency: Prevalence, Impact and Treatment Options. Clin. Optom. 2020, 12, 135–149. [Google Scholar] [CrossRef] [PubMed]
Pre | Post | p Value | ||
---|---|---|---|---|
Sphere (D *) | RE | −1.25 ± 0.39 [−1.75, −0.75] | −0.85 ± 0.26 [−1.50, −0.50] | p = 0.016 |
LE | −1.50 ± 0.35 [−1.50, −0.50] | −1.22 ± 0.21 [−1.75, −1.00] | p = 0.051 | |
Cylinder (D) | RE | −1.17 ± 1.35 [−1.00, −0.50] | −0.62 ± 1.31 [−0.75, −0.50] | p = 0.217 |
LE | −0.85 ± 0.17 [−1.00, −0.50] | −0.80 ± 0.15 [−1.00, −0.50] | p = 0.511 | |
BI far (Δ **) | B † | 10.30 ± 2.66 [7.00, 16.00] | 9.10 ± 2.13 [7.00, 14.00] | p = 0.281 |
r ‡ | 6.60 ± 1.57 [4.00, 9.00] | 6.00 ± 2.21 [4.00, 10.00] | p = 0.494 | |
BI near (Δ) | B | 18.10 ± 2.84 [12.00, 20.00] | 19.80 ± 3.15 [16.00,25.00] | p = 0.222 |
r | 9.10 ± 6.96 [0.00, 18.00] | 10.70 ± 6.14 [0.00, 17.00] | p = 0.593 | |
BO far (Δ) | B | 16.40 ± 3.92 [11.00, 20.00] | 16.10 ± 4.25 [11.00, 22.00] | p = 0.872 |
r | 6.20 ± 2.57 [2.00, 10.00] | 8.20 ± 3.32 [2.00, 12.00] | p = 0.150 | |
BO near (Δ) | B | 18.50 ± 7.24 [9.00, 13.00] | 17.30 ± 4.59 [11.00, 24.00] | p = 0.664 |
r | 10.70 ± 10.04 [4.00, 24.00] | 7.90 ± 6.96 [4.00, 16.00] | p = 0.478 | |
NPC (cm) | Break | 6.30 ± 0.67 [5.00, 7.00] | 6.20 ± 0.63 [5.00, 7.00] | p = 0.736 |
r | 7.20 ± 0.78 [6.00, 8.00] | 7.30 ± 0.67 [6.00, 8.00] | p = 0.764 | |
AF (cpm) | RE | 2.75 ± 3.67 [0.00–9.00] | 6.90 ± 3.51 [0.00–11.00] | p = 0.019 |
LE | 3.90 ± 4.04 [0.00–10.00] | 7.80 ± 3.22 [2.00–11.00] | p = 0.028 | |
AA (D) | RE | 9.85 ± 2.37 [6.75, 12.50] | 11.35 ± 1.44 [8.50, 13.75] | p = 0.016 |
LE | 9.85 ± 12.02 [7.25, 13.00] | 12.02 ± 1.21 [9.25, 13.00] | p = 0.019 | |
MEM (D) | RE | 0.50 ± 0.24 [0.00, 0.75] | 0.32 ± 0.12 [0.25, 0.50] | p = 0.051 |
LE | 0.47 ± 0.22 [0.25, 0.75] | 0.35 ± 0.13 [0.25, 0.50] | p = 0.137 | |
Phoria (Δ) | Near # | 1.60 ± 0.52 [1.00–2.00] | 2.20 ± 0.78 [1.00–2.00] | p = 0.059 |
Far | 1.50 ± 0.53 [1.00–2.00] | 1.50 ± 0.53 [1.00–4.00] | p > 0.100 | |
Glucose (mg/dL) | 176.10 ± 97.34 [52.00, 310.00] | 106.30 ± 23.66 [61.00, 147.00] | p = 0.041 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Argilés, M.; Sala-Oller, J.; Sunyer-Grau, B.; Rovira-Gay, C.; Pérez-Mañá, L. Influence of Blood Glycemia Levels in Refraction, Binocular Vision and Accommodation: A Case Report. Reports 2024, 7, 22. https://doi.org/10.3390/reports7020022
Argilés M, Sala-Oller J, Sunyer-Grau B, Rovira-Gay C, Pérez-Mañá L. Influence of Blood Glycemia Levels in Refraction, Binocular Vision and Accommodation: A Case Report. Reports. 2024; 7(2):22. https://doi.org/10.3390/reports7020022
Chicago/Turabian StyleArgilés, Marc, Jessica Sala-Oller, Bernat Sunyer-Grau, Cristina Rovira-Gay, and Luis Pérez-Mañá. 2024. "Influence of Blood Glycemia Levels in Refraction, Binocular Vision and Accommodation: A Case Report" Reports 7, no. 2: 22. https://doi.org/10.3390/reports7020022
APA StyleArgilés, M., Sala-Oller, J., Sunyer-Grau, B., Rovira-Gay, C., & Pérez-Mañá, L. (2024). Influence of Blood Glycemia Levels in Refraction, Binocular Vision and Accommodation: A Case Report. Reports, 7(2), 22. https://doi.org/10.3390/reports7020022