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Abstract: Numerical modelling of water flow allows for the prediction of rainwater partitioning into
evaporation, deep drainage, and transpiration for different seasonal crop and soil type scenarios.
We proposed and tested a single indicator for drainage estimation, the soil drainability index (SDI)
based on the near saturated hydraulic conductivity of each layer. We studied rainfall partitioning for
eight soils from Brazil and seven different real and generated weather data under scenarios without
crop and with a permanent grass cover with three rooting depths, using the HYDRUS-1D model. The
SDI showed a good correlation to simulated drainage of the soils. Moreover, well-trained supervised
machine-learning methods, including the linear and stepwise linear models (LM, SWLM), besides
ensemble regression with boosting and bagging algorithm (ENS-LB, ENS-B), support vector machines
(SVMs), and Gaussian process regression (GPR), predicted monthly drainage from bare soil (BS) and
grass covered lands (G) using soil–plant–atmosphere parameters (i.e., SDI, monthly precipitation,
and evapotranspiration or transpiration). The RMSE values for testing data in BS and G were low,
around 1.2 and 1.5 cm month−1 for all methods.

Keywords: evapotranspiration; hydraulic conductivity; HYDRUS-1D; supervised learning models;
subsurface drainage

1. Introduction

An increase of around 70% in food production could provide the required global food demand by
2050 for 9 billion people [1]; however, bottlenecks to increase the efficiency of agriculture should be
mitigated by best management practices. Bottlenecks include the significant loss of water through
evaporation, drainage, and surface runoff, where the last two imply the loss of nutrients too [2].
Drainage is broadly related to soil type, land use (including vegetal cover), and climatic characteristics
(such as rainfall duration and intensity). Soil features are summarized in hydraulic parameters,
including hydraulic conductivity and soil water retention curve. Climates with high temperatures,
atmospheric demand, annual water excess, and rainfall intensity favor these processes. This is the case
for large parts of Brazil with a sub-humid climate and yearly rainfall ranging from 700 to 2100 mm.
Brazil’s position as a large producer of soybean, maize, among others [3], highlights the importance of
in-depth knowledge of soil–plant–atmosphere interaction to raise food production.

Understanding water fluxes, like transpiration, evaporation, and drainage, in cultivated areas
represents an ideal concept regarding the role of cultivation to minimize losses from drainage and
to maximize productive water transpired by plants. Measurement techniques, such as isotopic
determinations, eddy covariance, lysimetric, and sap flow measurements, are used to trace fluxes
in the soil–plant–atmosphere system. Zero flux plane method, single or double rings, and well
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permeameter are also frequently used methods to estimate drainage or ground water recharge [4].
These measurements are valuable but expensive and unavailable in the field-testing cases.

Calibrated and validated computer-based modelling tools can add to the results of these direct
methods. Numerical solutions of the Richards equation, with sink and source terms (e.g., crop
water uptake), can be included in a model algorithm and serve as a robust tool to evaluate the
partitioning of precipitation into evapotranspiration and percolation under various soil and cropping
conditions. HYDRUS-1D [5] is such a model with a good performance in simulating water, solute,
and heat transport in variably saturated media, yielding acceptable predictions of the fate of water
in the soil–plant–atmosphere system. HYDRUS-1D has been widely tested and calibrated and
resulted in successful simulation of soil moisture dynamics [6,7], groundwater recharge [8–10], shallow
groundwater contribution into soil moisture of root zone under various crop types [11–14] and water,
solute and heat transport in soil combined with cropping systems [15–17].

Using machine-learning methods to capture functional relation between input and output can
improve the prediction of soil–plant–atmosphere phenomena with high complexities. These learning
methods, without prior knowledge of physical properties of variables, have been used for simulation
of soil hydraulic parameters, such as water retention data and (near) saturated hydraulic conductivity
prediction [18–20].

Comprehensive studies regarding rainfall partitioning over the soil water balance components in
typical croplands in Brazil are missing, and the objective of this study is to develop an index capable of
predicting the sharing of transpiration, evaporation, and deep drainage fluxes under bare soil and
cropped scenarios in layered soil. The indicator was evaluated for determining this rainfall sharing in
rainfed scenarios for bare soil and grass-vegetated scenarios using real and downscaled generated
daily meteorological data and detailed measured soil hydraulic properties. Finally, various parametric
and nonparametric machine learning methods were compared in order to predict drainage from
the bottom of the soil profile by means of soil–atmosphere–(plant) input variables under bare and
planting conditions.

2. Materials and Methods

2.1. Stochastic Weather Generation

To monitor the effect of various distributions of weather variables, synthetic daily weather
series were generated using the downscaling-based model LARS-WG [21]. The weather generator
utilizes input observed daily weather for a given site to determine parameters, attributing probability
distributions for weather variables as well as correlations between the variables. In contrast to
LARS-WG, Markov chain-based algorithms have limited memory for rare events, which is a vital
parameter in agriculturally-based problems (e.g., the strong effect of long dry days on yield and soil
plant water availability). The simulation of rainfall occurrence is based on distributions of the length
of continuous sequences, or series, of wet and dry days. The amount of precipitation is simulated by
a semi-empirical distribution for each month. Semi-empirical distributions are defined as a histogram
with several intervals. Temperature and radiation are conditioned on the wet/dry status of a day and
cross-correlated [21].

Future climate projections were generated from Coupled Model Intercomparison Project phase
5 (CMIP5) GCMs (General Circulation Models) under both (representative concentration pathway)
RCP4.5 and RCP8.5 projections for 50 years by LARS-WG. RCP 4.5 and 8.5 are long-term scenarios
by raising global emissions of greenhouse gases, short-lived species, and land-use/land-cover cause
radiative forcing pathway leading to 4.5 and 8.5 (W m−2), equivalent to 650 and 1370 ppm CO2 in the
year 2100.
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2.2. Soil, Crop, and Meteorological Data

Required soil hydraulic properties were retrieved from [22] for eight southeast-Brazilian soils,
latitudes around 21◦ S (Figure 1), covering a wide range of textures and soil classes. Retention data were
obtained in undisturbed samples using standard laboratory procedures (tension table and pressure
chamber) for several layers (between 5 and 10 layers covering the range between the surface and
1 m depth). Hydraulic conductivity data were achieved at the same depths from internal drainage
experiments under field conditions. Hydraulic properties were expressed in terms of parameters of
the Van Genuchten equation system [23] (Table 1).
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Figure 1. Geographical position of sampled soils (A to H) and the University of São Paulo weather
station (MS) in Piracicaba (SP), Brazil.

Table 1. Hydraulic parameters of the soils according to the Van Genuchten equation.

Soil Layer (cm) θr θs α (cm−1) n Ks (cm d−1) λ

A
Sandy

Clay Loam

0–20 0.186 0.436 0.0263 2.328 27.18 2.02
20–30 0.179 0.332 0.0275 1.697 25.49 0
30–40 0.202 0.293 0.0070 2.919 42.29 7.17
40–50 0.186 0.350 0.0262 1.523 42.77 0
50–60 0.218 0.333 0.0154 2.570 34.12 0
60–70 0.184 0.303 0.0181 1.869 43.24 0
70–80 0.179 0.408 0.0269 2.754 118.79 1.99

80–100 0.169 0.353 0.0289 1.735 79.29 0

B
Clay

0–30 0.293 0.505 0.0172 1.525 10.43 8.21
30–45 0.272 0.506 0.0169 1.415 11.12 8.82
45–60 0.288 0.469 0.0219 1.397 24.00 5.12
60–75 0.289 0.418 0.0095 1.901 27.25 3.83
75–90 0.255 0.483 0.0201 1.535 75.11 0

90–100 0.270 0.409 0.0092 2.377 97.38 0

C
Sandy

Clay Loam

0–15 0.113 0.469 0.0593 1.608 38.20 −0.36
15–30 0.138 0.362 0.0421 1.759 32.80 1.13
30–45 0.112 0.332 0.0373 1.551 24.00 2.16
45–60 0.144 0.329 0.0392 1.527 17.50 1.30

60–100 0.142 0.351 0.0424 1.487 17.50 1.76
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Table 1. Cont.

Soil Layer (cm) θr θs α (cm−1) n Ks (cm d−1) λ

D
Clay

0–20 0.275 0.463 0.0232 1.389 76.42 3.93
20–40 0.290 0.447 0.0181 1.356 113.85 4.71
40–60 0.287 0.444 0.0136 1.443 120.54 4.98
60–80 0.270 0.506 0.0254 1.590 1352.34 4.96

80–100 0.257 0.513 0.0265 1.583 2014.19 4.97

E
Clay

0–20 0.270 0.487 0.0647 1.925 163.1 3.41
20–30 0.267 0.444 0.0212 2.014 46.62 1.70
30–40 0.263 0.441 0.0223 1.843 53.62 1.25
40–50 0.270 0.489 0.053 1.919 174.25 2.94
50–60 0.262 0.558 0.0468 1.931 225.07 1.09
60–70 0.253 0.439 0.0145 1.717 31.30 0.01
70–80 0.231 0.516 0.0242 1.535 97.42 −0.28

80–100 0.239 0.517 0.0211 1.494 88.55 −0.44

F
Sandy
Loam

0–15 0.086 0.428 0.079 1.360 23.28 −0.47
15–40 0.123 0.370 0.0394 1.452 85.92 8.62
40–65 0.152 0.340 0.0171 1.805 131.52 6.12
65–90 0.132 0.360 0.0168 1.596 152.64 −3.02

90–100 0.117 0.340 0.0131 1.482 102.72 0

G
Sandy

0–10 0.094 0.398 0.0382 3.808 429.89 0
20–30 0.068 0.468 0.0985 1.694 472.85 −1.70
20–30 0.085 0.503 0.0778 1.800 522.89 −0.77
30–40 0.048 0.480 0.0694 2.427 1075.9 0
40–50 0.050 0.453 0.069 2.576 781.20 0
50–60 0.044 0.441 0.0637 2.864 819.26 0
60–70 0.099 0.395 0.0714 4.345 845.33 0
70–80 0.072 0.426 0.0587 3.324 575.35 0
80–90 0.054 0.447 0.0915 2.257 621.58 0

90–100 0.054 0.443 0.0872 2.479 1074.03 0

H
Clay

0–10 0.228 0.326 0.0225 1.656 12.94 0
20–30 0.221 0.361 0.0311 1.457 49.08 0
20–30 0.221 0.356 0.0233 1.668 238.99 8.71
30–40 0.225 0.356 0.0452 1.378 184.30 6.19
40–50 0.248 0.360 0.0213 1.816 106.01 9.69
50–60 0.252 0.324 0.1184 1.364 781.08 0
60–70 0.253 0.390 0.0184 1.545 54.58 4.34
70–80 0.251 0.364 0.0335 1.497 34.61 0
80–90 0.203 0.385 0.0483 1.483 457.82 −3.31

90–100 0.254 0.377 0.0286 2.159 795.70 5.49

Daily meteorological data were obtained for a 38-year period (1978–2017) from the University of São
Paulo weather station in Piracicaba, Brazil (22.703◦ S; 47.624◦ W, Figure 1), representing the sub-tropical
winter-dry climate (Koeppen Cwa) of southeast Brazil. Potential (reference) evapotranspiration
for a hypothetical grass surface was calculated based on the Penman–Monteith (ET0P, mm d−1)
Equation (1) [24]:

ET0P =
0.408∆(Rn −G) + γ 900

Tave+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(1)

or, in cases where wind speed was unavailable, using the Hargreaves (ET0H, mm d−1) equation:

ET0H = 0.0055Rs(17.8 + Tave) (2)

In (1) and (2), Rn and Rs are the net radiation at the crop surface and solar radiation (MJ m−2 d−1);
G represents the soil heat flux density, which is usually ignored in daily calculations (MJ m−2 d−1);



Soil Syst. 2019, 3, 30 5 of 16

T (◦C) and u2 (m s−1) are mean temperature and wind speed at 2 m height, respectively; (es − ea) is
the vapor pressure deficit (kPa); ∆ is the slope of the vapor pressure curve (kPa ◦C−1); and γ is the
psychometric constant, equal to 0.06317 kPa ◦C−1 for the Piracicaba weather station.

2.3. HYDRUS-1D Numerical Modelling

The HYDRUS-1D model numerically simulates the temporal and spatial changes in water content
by the Richards equation:

∂θ
∂t

=
∂
∂z

[
k(h)

∂h
∂z
− k(h)

]
− S(h, z, t) (3)

In this equation, θ is soil water content (cm3 cm−3), t is time (s), z is the vertical space coordinate
(cm), k is the hydraulic conductivity (cm s−1), h represents pressure head (cm), and S is the sink term
(s−1) accounting for the volume of water removed from the soil per unit of time due to crop water
uptake and described by

S(h, z, t) = α(h)Sp = α(h)β(z, t)Tp (4)

where Sp is the potential water uptake rate (s−1) calculated from the potential transpiration rate Tp

(cms−1) distributed over the root zone based on the normalized root density distribution function
β(z,t) (cm−1). 0 ≤ α(h) ≤ 1 is a dimensionless root water uptake stress reduction function proposed
by Feddes et al. (1978), defined by crop dependent parameters described for grass in [25]. Tp is
calculated by

Tp(t) = ET0(1− exp(−kLAI(t))) (5)

where k is an extinction coefficient usually within the range between 0.5–0.75.
The atmospheric boundary condition at the top of the soil surface is supplied to HYDRUS-1D

by the daily variable potential evaporation Ep(t) (6) and precipitation P, besides a minimum and
maximum allowed pressure head at the soil surface (hCritA and hS).

Ep(t) = ET0(t) − Tp(t) = ET0(−exp(−kLAI(t))) (6)

A unit vertical hydraulic gradient or free drainage boundary condition was implemented for the
lower boundary of the 100 cm soil profile, as the groundwater level is very deep in these soils. For all
scenarios, the initial condition was set to −100 cm pressure head in the entire profile. Temporal and
spatial discretization for finite element method of HYDRUS-1D varied significantly to reach the lowest
possible water balance error by the end of each simulation for each soil profile.

Simulations were performed for two standard conditions: bare soil (BS; no crop, no transpiration)
and for grass-covered soil (G). One real set of weather data for 38 years and six generated ones by
LARS-WG for 50 years were used for the top boundary conditions. As reference crop, we simulated
grass with a leaf area index (LAI) equal to 2.88 [24] and with three different rooting depths (30, 60, or
90 cm), referred to as G30, G60, and G90 scenarios. Accordingly, four cropping/rooting scenarios (BS,
G30, G60, G90) together with eight soils and seven weather data sets resulted in 224 different scenarios.

2.4. Soil Drainability Index

An a priori prediction of drainage throughout soil profile properties would be a useful tool for
irrigation and fertilization management, but without experimentation or numerical modelling this is
not an easy task, especially in nonuniform layered soils. In the drainage process, each soil layer has its
own specific impact on water transmission to the bottom of the profile. There are many factors that
could be considered to examine the effect of each layer on the overall drainability, summarized in their
hydraulic properties, such as saturated and unsaturated hydraulic conductivity and corresponding
water contents. Additionally, the thickness of each layer is effective as it represents the flow domain.
Consequently, a conceptual indicator could be defined under some assumptions that would correspond
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to overall drainability of a soil. It would give a general idea about to what extent leaching occurs under
bare soil condition. We call this indicator the soil drainability index (SDI).

Considering a soil with n layers, each with a thickness Li (L) and a water content θi (L3 L−3), it
is reasonable to assume that maximum water storage (θs,iLi) is related to drainability. Furthermore,
the water conducting properties of the layers will affect the rate at which drainage occurs. Hydraulic
conductivity K may vary by orders of magnitude between soil layers, and the relative hydraulic
conductivity (K/Ksat) seems a more plausible alternative. Then, drainability might be correlated to
the sum of products of water storage and relative K for all soil layers. To test this hypothesis, we
considered the soil profile at near saturation (ns in parameter subscripts) with a static value of pressure
head to be evaluated at values of −1 or −3 cm. These small tensions can remove the effect of macropore
flow to a great extent, especially as saturated hydraulic conductivity measurements were performed
on undisturbed samples. In order not to make the drainability increase with increasing soil depth,
the total sum of values was divided by the total depth, resulting in the following expression for the
dimensionless soil drainability index (SDI):

SDI =
(

1∑
Li

) n∑
i=1

(
K(θns)i

Ksi

Liθsi

) (7)

2.5. Supervised Machine Learning

Supervised machine learning aims to map an input to an output based on an example of
input–output pairs, including process uncertainty. Simulation of drainage in 8 soils combined to 7
weather scenarios and 4 cropping scenarios (BS, G30, 60, and 90) will result in 2688 number of monthly
drainage values. Considering drainage related to reference evapotranspiration in bare soil and to
transpiration in the grass scenarios, precipitation, and the SDI of the soil, then the monthly drainage
rate could be predicted through machine learning methods. For this purpose, parametric techniques,
including the linear model (LM) and stepwise linear model (SWLM), in addition to nonparametric
methods, such as support vector machines (SVMs), Gaussian process regression (GPR), and the
ensemble method (ENS), are utilized.

Parametric supervised machine learning optimizes the parameters of an a priori known learning
function (f (.)) in (8) to achieve the best fit to data by minimizing the sum of squared errors (SSE).

y(Xi) = f (Xi) + εi = Bias +
k∑

k=1

XT
ikwk + εi i = 1, 2, . . . , n (8)

where w = (w1, w2, . . . , wk ) is the coefficient vector of parameters to be estimated, XT
ik is the transpose

of the variable vector for k variables, and ε is the error, with zero mean, normally and independently
distributed with constant variance of σ2. f (.), or the learning function is an a priori specified model in
parametric supervised methods [20].

In nonparametric regression, any number of latent functions f (.) in (8) for each pair of data can be
generated and left unspecified, but these functions should be smooth and flexible. It means a particular
subset of random latent functions f = {f 1, . . . , fn} corresponds to input f = {X1, . . . , Xn}. In Gaussian
process regressions, it is a priori assumed that all f (.) own a normal distribution looking like f (X) ~
GP( f ,cov(f )), where f is the mean and cov(f ) is covariance or kernel function.

Therefore, proper selection of kernel or covariance function is an important task since they
determine the sample properties, such as smoothness, length scale, and amplitude, which are drawn
from the GP to give a precise prediction for responses with inputs, which are close to trained data
points in training stage. For example, Equation (9) is a squared exponential kernel function which is
used in this study for GPR named GPR-SE.
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k(
(
xi, x j

)
= σ f

2exp

−1
2

(
xi − x j

)T(
xi − x j

)
σl

2

 (9)

where amplitude σf and the characteristic length scale σl are kernel (hyper) parameters.
A support vector machine (SVM) also maps output from a labelled training input–output dataset.

The input data through kernel functions are projected into a higher dimensional space, called feature
space, to find the output (y = f (x,w) + noise) via f (x,w) = w.ϕ(Xi) + b, where ϕ(Xi) is the projected input
data into feature space, and w and b are weight vector parameter and bias of the searched regression
function, respectively. The support vector regression function can be obtained as:

f (xi) =
n∑

i=1

(
αi − α

∗

i

)
k(xi,x) + b (10)

These Lagrange multipliers (α and α*) are support vectors and different Gaussian, linear, and

second order polynomial kernel functions k(xi,x) = exp(− ||xi−x||2

2σ2 ), k(xi,x) = xix, k(xi,x) = (1 + (xix)
2)

were selected, too, for SVMs.
Algorithms such as bootstrap aggregation (Bagging), proposed by [26], or least squares boosting

(LSboost) are the most commonly used techniques for ensemble learning regressions. Regression
ensembles include many weak learners that predict the output via two algorithms, Bagging or LSboost,
called ENS-B and ENS-L. A detailed explanation regarding machine learning methods used in this
study can be found in [20].

To examine the effect of SDI on simulation of monthly drainage, two scenarios including predictors,
with SDI and without SDI (SDI, no SDI), were performed under the seven weather scenarios by machine
learning algorithms. A total of 70% of data were randomly chosen for training the model and the
remaining unseen data verified the MLTs in the testing stage.

3. Results

3.1. Climatic Data and Calibration of LARS-WG

As wind speed is not a generated weather data by LARS-WG, using the Penman–Monteith
Equation (1) for prediction of ET0P was not feasible, and Equation (2) was used instead to predict
ET0H. However, without calibration of this equation, on average, ET0H is 7.95% ± 3.75% larger than the
ET0P except in August, September, and October, when it is about 1.8% smaller. After calibration, the
coefficient in Equation (2) was needed to change to 0.01266, where ET0H was only 2.9% ± 2.04% greater
than ET0P for the first half of year and for the second half of year ET0P was 5.10% ± 3.52% is larger
than ET0H, as shown in Figure 2a. In general, the RMSE between ET0H and ET0P reduced from 0.60 to
0.54 mm d−1 after calibration. Figure 2b also provided the observed values of monthly maximum and
minimum temperature and solar radiation from 38 years of measured data.

For calibration of LARS-WG, observed data from 1978–2015 were compared to simulated
data by LARS-WG through a baseline climate scenario. Monthly values of rainfall and reference
evapotranspiration calculated using the Hargraves Equation (2), as well as average temperature and
solar radiation are simulated closely to observed values with R2 more than 98% for all cases (Figure 3).

In order to determine if the seasonal wet/dry series and the meteorological variables had a high
probability of belonging to the same distribution as the observed data, the calibration was also verified
by the Kolmogorov–Smirnov (K-S) test close to 0 and p-values close to 1 for all cases (data not shown).
For the assessment of drainage or plant water availability studies, the concept of wet and dry spell
length (WSL or DSL) in weather data played an important role. WSL and DSL were well simulated
with high correlations (Figure 4), showing an excellent ability in proper weather data generation.
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Figure 2. Average monthly reference evapotranspiration (ET0) predicted by the calibrated Hargraves
equation (ET0H) and the Penman–Monteith equation (ET0P), precipitation (P) (a); and maximum and
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Figure 3. Observed meteorological data versus simulated ones by LARS-WG: (a) Rainfall (P) and
evapotranspiration (ET0); (b): radiation (Ra) and average temperature (Tave).
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3.2. Simulations with the Bare Soil Scenario

Figure 5 showed monthly drainage and evaporation with respective standard deviation versus
rainfall evaluated from bare soil (BS) simulations, using the 38 years of meteorological data for all
eight soils (A to H). Higher drainage occurs in the rainy months, October to March. Monthly average
of rainfall (10.6 ± 6 cm) showed larger standard deviation in drier than in rainy months. This was
attributed to drainage and evaporation in bare soil, with standard deviations of about 10% to 20% of
the average value in rainy months versus 20% to 30% in dry months (Figure 5).Soil Syst. 2019, 3, x FOR PEER REVIEW 9 of 16 
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Figure 5. Monthly drainage, evaporation, and rainfall averages and standard deviations for all soils
under the bare soil (BS) scenario.

Regarding soil types, Figure 6 showed the SDI of each soil profile (A–H) calculated by Equation (7),
assuming two different pressure head criteria, −1 and −3 cm. Resulting values were plotted against
the average annual drainage predicted from respective bare soil profiles by the Hydrus simulations.
The average annual precipitation for this 38-year series of weather data resulted in very close or more
than 80 cm per year of drainage in bare soils E, G, A, and B, decreasing to just above 55 cm in soil C.
Standard deviations among years were close to 20 cm for all soils. This allowed for the conclusion that
under this climate, differences in soil hydraulic properties among soils may lead to a variation in bare
soil drainage partitioning of the order of 40% to 70% of the average annual rainfall.
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versus the average annual drainage under the bare soil (BS) scenario.
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Furthermore, Figure 6 showed an excellent correlation between SDI and annual drainage for
both values of hns, with R2 around 0.9. This small change near saturation matric potential is usually
associated with a great difference in hydraulic conductivity, while considering hns equal to zero matric
potential (h0 = hs) results in a very weak correlation (R2 = 0.42) between SDI and annual drainage. This
confirmed a good performance of SDI as a predictor of annual drainage, even though, for soils with
lower SDI, around 0.2, there was a less strong correlation. Considering hns = −3 cm, the correlation
coefficient is slightly higher than for hns =−1 cm (0.93 versus 0.88). Therefore, this near saturation-based
index seems a good indicator of drainability, requiring the knowledge of water content at a fixed
pressure head and the corresponding relative hydraulic conductivity.

From Figure 7 it is obvious that all the machine learning-based models performed better when
SDI is used among predictors. It can be inferred that including SDI in the model was less effective for
SVM-L and SVM-P, showing a drop of 17% and 18% in RMSE, respectively, and an increase of about
4% in R2 compared to the simulations with the same algorithms but without SDI.
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Figure 7. Performance of proposed models including RMSE (a) and R2 (b) for prediction of bare soil
drainage. (LM: linear model, SLM: stepwise linear mode, SVM-L, G & P: support vector machine with
linear, Gaussian and polynomial kernel function, ENS-L&B: ensemble with LS boosting and Bagging
algorithms, GPR-SE: Gaussian process regression with squared exponential kernel function).

The equations for prediction of monthly drainage prediction (D) using LM and SWLM were
brought for both SDI and no-SDI scenarios, as DLM

no−SDI, DSWLM
no−SDI, DLM

SDI, and DSWLM
SDI. There

was no interaction between ET0 and P which made the obtained equation in order to predict monthly
drainage for SWLM to be the same as for LM in no-SDI scenarios. However, introducing SDI formed
interactions with P and ET0 to improve the model performance, as this better performance was also
clear in Figure 7, where RMSE lessened from 1.427 for Equation (11) to 1.148 and 1.137 cm month−1 for
(12) and (13), respectively. These Equations (11)–(13) are as follows:

DLM
no−SDI = DSWLM

no−SDI = 1.808 + 0.676P− 0.277ET0 (11)

DLM
SDI = −1.793 + 0.671P− 0.259ET0 + 13.847SDI (12)

DSWLM
SDI = 1.249 + 0.366P− 0.355ET0 + 5.828SDI + 0.010P× ET0 + 0.739P× SDI (13)

Ensemble regression ENS-LB gave the best fit in SDI and no SDI scenarios. In the model with SDI
as the third predictor, R2 of 0.983 and an RMSE of 0.492 cm month−1 are obtained in the testing stage,
which means prediction of drainage is much more reliable in drier months with monthly drainage
between 2 to 5 cm. This was expected, since the incorporation of weak learners in an ensemble method
makes estimations less likely to be biased [27].

Considering bagging and boosting algorithms in this study which are based on decision tree
learners, the SDI parameter could enhance the decision-making capability of the ensemble model,
especially when there was a strong relation between drainage and SDI, as shown in Figure 6. Superiority
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of ENS-LB compared to ENS-B was due to the fact that, at every step, the ensemble fitted a new learner
to the difference between the observed drainage and the aggregated prediction of all learners grown
previously. Among kernel-based algorithms, including SVMs and GPR, the latter showed better results
with an R2 of 0.946 and RMSE of 0.899 cm month−1 for the model with SDI. However, in no-SDI, this
accuracy decreased by 0.062 in R2 and 0.421 cm month−1 in RMSE. SVM-G with an RMSE of 1.100 cm
month−1 was slightly better than other SVMs for prediction of annual drainage, again where SDI was
considered as an input.

3.3. Simulations with Grass-Covered Lands (Pasture)

The presence of a vegetation covers reduced bottom drainage due to root water uptake, but
the intensity of this drainage reduction dependent on the hydraulic properties of soil layers and
rooting depth and distribution. To illustrate this, Figure 8 showed monthly average drainage and
evapotranspiration from soils covered with grass with three rooting depths (30, 60, and 90 cm; scenarios
G30, G60, and G90) together with the values (drainage and evaporation) for BS. Comparing BS to the
grass scenarios, monthly drainage was reduced by 30% to 50% with G30, G60, and G90 scenarios.
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Figure 8. Monthly average of drainage and evapotranspiration using real climatic data for eight soils
under BS (bare soil), G30, G60, and G90 (Grass with 30, 60 and 90 cm rooting depth) scenarios.

Figure 8 also gave the details and comparisons of evapotranspiration (ET) due to climatic
conditions under all grass types simulations and evaporation from bare soil. ET increased from G30 to
G60 to G90, but the increase between G30 and G60 was higher than between G60 and G90. This showed
that increasing rooting depth beyond a certain depth lead to a very modest increase in transpiration, as
also confirmed by the data in Table 2. This depth then corresponded to an available water content
capable of maintaining potential transpiration for most of the occurring weather conditions.

Table 2. Monthly averages (and, between brackets, standard deviations) of actual transpiration (Ta),
drainage (D), and evaporation (Ev), all in cm month−1, for G30, G60, and G90 scenarios in the wet
(October to March) and dry seasons (April to September).

Scenario Ta D Ev
Season Wet Dry Wet Dry Wet Dry

G30 7.2 (±0.9) 3.2 (±1.0) 6.6 (±3.0) 1.7 (±1.0) 1.7 (±1.2) 0.7 (±0.25)
G60 7.8 (±0.95) 3.6 (±1.2) 5.7 (±1.0) 1.3 (±0.9) 1.85 (±1.3) 0.75 (±0.23)
G90 8.1 (±1.0) 3.9 (±1.2) 5.3 (±3.0) 1.1 (±0.8) 1.9 (±1.35) 0.8 (±0.23)
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Seasonally speaking, actual transpiration in rainy months was just above twice that of dry months
because of the higher amount of available water in the root zone. Averaging between G30, G60, and
G90, 5.6 (±2.4) cm month−1 of transpiration results from 7.7 (±0.9) cm (corresponding to 68% of total
Ta) transpiration in rainy months and 3.6 (±1.1) cm (32%) in the dry months, from April to September.
The seasonal dependency of transpiration demonstrated the typical response to atmospheric demand
and soil moisture supply on grass. Higher rainfall amounts returned to the atmosphere at maximum
rates by evapotranspiration. In dry months with a higher vapor pressure deficit, atmospheric demand
increased but transpiration was less due to limiting soil water supply.

Overall, predicted evapotranspiration for these scenarios ranged from 761 and 844 to 886 mm y−1

(standard deviations around 35 mm y−1) for G30, G60, and G90. The observed reduction of
evapotranspiration when rooting depth is shallower allows one to understand the effect of conversion of
deeply rooted crops to shallow rooted ones or land cover change as results, for example, from deforestation.

The ratio of actual to potential ET for different grass scenarios as in Figure 9 showed that rainfed
crops were under frequent drought stress, even in the wetter months, and irrigation could improve
crop yield and, subsequently, water use efficiency. The use of a fixed and constant LAI of 2.88 resulted
in equal potential evapotranspiration predictions for G30, G60, and G90, and increasing the rooting
depth from 30 to 60 cm allowed increasing ETa by about 10%. In the case of endoalic soils, common in
Precambrian surfaces under a tropical humid climate, an increase of rooting depth can be sometimes
accomplished by increasing soil pH using chalk, thus decreasing soluble aluminum contents.
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Figure 9. Ratio of actual to potential evapotranspiration for three grass scenarios; average monthly
values from all soils.

Similar to the procedure for the prediction of drainage from a bare soil profile, drainage prediction
from grass covered lands (G30, G60, and G90) was performed by machine learning methods, replacing
ET0 by the actual transpiration of grass (Tp), obtained by simulation with the Richards equation under
different atmospheric boundary conditions. The values of RMSE and R2 for all algorithms were shown
in Figure 10. In the bare soil scenario, there was no trace of soil effect if SDI was not considered and the
system would be only plant atmosphere; however, in the grass-based scenarios, Hydrus obtains plant
transpiration through numerical simulation, recalling Equation (5), where the hydraulic parameters
of the soil affected the value of Tp in different times and different soils. In this way, SDI addition
can be the soil representative in the grass scenario besides Tp and the system even without SDI is
soil–plant–atmosphere. Therefore, for machine learning methods, the introduction of SDI to predict
drainage for grass-based scenarios should not be the same as it was for bare soil.
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Figure 10. Performance of proposed models including RMSE (a) and R2 (b) for prediction of
grass-covered soil drainage.

Plant participation intensively affected the accuracy of parametric models, where RMSE of LM
and SWLM on testing data increased by 20.7% and 21.21% in the model with SDI. These models were
shown in Equations (14), (15), (16), and (17), respectively, for models with and without SDI.

DLM
no−SDI = −0.560 + 0.564P− 0.343Tp (14)

DswLM
no−SDI = 314 + 0.438P− 0.483Tp + 0.01P× Tp (15)

DLM
SDI = −1.233 + 0.5641P− 0.335Tp + 2.651SDI (16)

DSWLM
SDI = −0.356 + 0.433P− 0.478Tp + 2.709SDI + 0.017P× Tp (17)

As already mentioned, SDI engagement in the model did not make a significant difference in
better prediction of drainage, as was clear from the comparison of Figures 7 and 10, except for ENS-BL.
For this algorithm, RMSE of predicted and observed values for the testing dataset decreased from 0.629
to 0.448 cm month−1.

4. Discussion

In the present work a new index to approximate annual drainage from a layered soil under no
cropping was proposed. To the best of our knowledge there is no study focusing on simple methods to
estimate drainage in tropical soils and only a few studies are available for measurement of drainage
flux. The main hypothesis was to relate the drainage under atmospheric boundary conditions with
hydraulic properties of the soil. This link was made by the soil drainabilty index (SDI) composed
of near saturated (e.g., at −1 and −3 cm) and saturated hydraulic conductivities beside saturated
water content of every single layer. The index requires fewer parameters to estimate annual drainage
compared to typical modelling and experimental methods. However, the SDI concept needs more
verification through experimental data, not easily available for most scenarios.

We found that any prediction of rainfall dependent problems will be less precise in the drier
months. The eight analyzed soil types drained 56.5% (±9%) of monthly rainfall if left bare, whereas
the remaining portion of the water budget was lost via evaporation. Thus, 40% to 70% of the average
annual rainfall could be lost due to bottom drainage from bare soils, similar to the results reported
in [28], where drainage could be 35% of precipitation in bare soils with a clayey texture. In a modelling
study [29], authors showed 65% of precipitation during 1961–1990 to be drained from a bare Cambisol
as well.

Deep drainage may be a water saving measure in groundwater irrigation; nevertheless, it accounts
for non-productive loss of water in deep groundwater scenarios, common in most soils in Brazil. Under
these conditions, higher drainage results in lower transpiration and reduced biomass production.
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Intensive fertilization may pose a serious risk of groundwater contamination because of drainage
and leaching.

Moreover, having a single soil hydraulic related parameter, such as SDI, representing the soil
profile’s role in water flow, could be used as a single predictor, besides atmospheric and plant related
parameters, to predict fluxes such as drainage. SDI engagement ameliorated the performance of
parametric machine learning models (linear and stepwise models) by about 20% in terms of RMSE;
though RMSE of 0.492 cm month−1 proved the robust method of ensemble for prediction of drainage
with SDI.

Simulated bottom drainage for grass-covered scenarios with rooting depths of 30, 60, and 90 cm
was 501 ± 40.3, 420 ± 31.5, and 382 ± 30.8 mm y−1, respectively, within the range between 145–703 mm
y−1 reported for recharge rate data in grass cultivated lands in [29]. Referring to land use change in
Brazil, one could consider the effect of a change from native vegetation with more than 90 cm root
depth, such as the savannah, to a shallower rooted grass for grazing purposes, resulting in a 25%
increase in drainage and a more non-productive loss of water according to our simulations. There is,
on average, a 40% reduction in monthly drainage due to plantation.

Comparing the simulated ET of 3.2 ± 0.4 mm d−1 for rainy months and 1.4 ± 0.45 mm d−1 for dry
months for all grass covered scenarios, regardless of root depth, to measured values, good agreement
is found. Using remote sensing techniques, Andrade et al. (2014) [30] measured evapotranspiration
in grass cover areas of Brazil to be less than 1.5 mm d−1 between May and October. Feltrin et al.,
(2017) [31] used lysimeters and recorded 2.95 mm d−1 of evapotranspiration in a grass covered location
in Rio Grande do Sul State, Brazil. The value of 2.25–2.43 mm d−1 was reported from a macroscale
analysis for Mato Grosso State, Brazil [32].

Considering a leaf area index (LAI) between 0.4 and 1.1 resulted in a measured ET of 2.6 ± 0.9 mm
d−1 for grass cultivated in the cerrado biome of central Brazil [33]. However, a LAI of 3.2 (close to our
assumption of LAI 2.88) for an ungrazed Brachiaria pasture in central Brazil increased calculated ET
to 3.4 mm d−1 [34]. A high infiltration rate of very sandy soils with grass cultivation in the study by
Nóbrega et al., (2017) [35] resulted in 1.19 ± 0.52 mm d−1 and 2.15 ± 0.58 mm d−1 evapotranspiration
in the cerrado. The reported value of evapotranspiration for wet months in our study is within the
comprehensive finding of 3–4 mm d−1, as reported in [36], for grass cultivation in a tropical condition.
We did not observe significant improvement in prediction of drainage by incorporation of the SDI
factor in machine learning models, although it was expected because the Tp factor carries the role of
soil profile behavior, hence SDI does not seem to be influential.

5. Conclusions

A soil drainability index (SDI) is defined in order to predict the annual drainage from bare
soils and grass cultivated soil. Fewer parameters are required to estimate annual drainage based
on SDI compared to typical modelling and experimental methods. When SDI is used as a predictor
for monthly drainage from bare soils using machine-learning models, performance of these models
improved significantly. The introduction of SDI for drainage prediction from planted soils enhanced the
robustness of models, but less than bare soil. Among machine learning methods, ensemble regression
with least squares boosting aggregation algorithm predicted monthly drainage better than Gaussian
process regression and support vector machines. The RMSE values for testing data in bare soil scenarios
were low, around 1.2 cm month−1. In grass-cropped scenarios, the accuracy of the models was lower,
with RMSE up to about 1.5 cm month−1, probably due to errors associated to the prediction of actual
crop transpiration.
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