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Abstract: Precise soil moisture prediction is important for water management and logistics of on-
farm operations. However, soil moisture is affected by various soil, crop, and meteorological factors,
and it is difficult to establish ideal mathematical models for moisture prediction. We investigated
various machine learning techniques for predicting soil moisture in the Red River Valley of the
North (RRVN). Specifically, the evaluated machine learning techniques included classification and
regression trees (CART), random forest regression (RFR), boosted regression trees (BRT), multiple
linear regression (MLR), support vector regression (SVR), and artificial neural networks (ANN). The
objective of this study was to determine the effectiveness of these machine learning techniques and
evaluate the importance of predictor variables. The RFR and BRT algorithms performed the best,
with mean absolute errors (MAE) of <0.040 m3 m−3 and root mean square errors (RMSE) of 0.045
and 0.048 m3 m−3, respectively. Similarly, RFR, SVR, and BRT showed high correlations (r2 of 0.72,
0.65 and 0.67 respectively) between predicted and measured soil moisture. The CART, RFR, and BRT
models showed that soil moisture at nearby weather stations had the highest relative influence on
moisture prediction, followed by 4-day cumulative rainfall and PET, subsequently followed by bulk
density and Ksat.

Keywords: random forest regression; accumulated local effects; variable importance

1. Introduction

Soil moisture has a strong influence on the distribution of water between various
components of the hydrological cycle in agricultural fields. It helps in understanding
the hydrology and climatic conditions that have high spatial and temporal variability.
Precise measurement and/or prediction of soil moisture provides insights into expected
infiltration and runoff generation during rainfall events and the management of water for
agricultural purposes [1]. In agricultural fields, soil moisture affects key farm activities
from crop selection to timing of tilling, planting, fertilizer application, and harvesting due
to infiltration, evaporation, runoff, heat, and gas fluxes [2,3]. Soil moisture prediction
across large spatial scales is difficult due to the heterogeneity in soil texture, crop type,
and crop residue cover. Point measurements that include gravimetric methods and in-situ
electromagnetic sensors are accurate but have limited spatial extent and require significant
time and labor [4]. Remote sensing tools have been used recently to predict surface soil
moisture, but efficiency and models applicable to multiple landscapes are still under
study [5].

In practice, farmers typically rely on heuristic approaches with weather station data
(e.g., rainfall, evapotranspiration, temperature) to predict (or extrapolate) conditions in
their crop fields. More accurate and optimal computational approaches need to explicitly
consider various factors such as crop type, soil texture, saturated hydraulic conductivity,
and residue content affecting the soil moisture in these crop fields.
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Soil moisture is often predicted using information collected from nearby weather
stations and variables from soil and crops using one of three empirical, regression, and
machine learning methods [6]. These methods include forecasting models such as empirical
formulas [7], water balance approach, dynamic soil water models [8], time series models [9],
and neural network models [10]. Statistical models include regression techniques to
develop geospatial functions from in-situ measurements of target and predictor variables.
The advantage of traditional models is that they are typically fast to derive and do not
require many inputs [11]. However, the disadvantage of traditional models is the need
for an abundance of ground measurements that could be time-consuming and expensive.
Moreover, traditional modeling approaches follow strict statistical assumptions and data
requirements that frequently utilize linear and additive modeling approaches that are not
consistent with natural processes [12].

Recently, the use of machine learning techniques has gained attention because they
can overcome some of the limitations of traditional and physics-based models. Ali et al.
(2015) [11] suggested machine learning models provide the benefit to understand and
estimate complex non-linear mapping of the data distributed without any prior knowledge.
In addition to that, this also helps to combine various sources that are poorly defined and
have unknown probability functions. However, machine learning algorithms provide no
information on how they have established relationships between different variables and
require a large number of data points used for training. The machine learning technique
is rapidly growing in predictive modeling to identify complex data structures that are
often non-linear, and generating accurate predictive models [13,14]. Machine learning
models have greater power for resolving and establishing complex relations (nonlinear,
nonmonotonic, multimodal relationships common with landscape and ecological appli-
cations) as they are not restricted to traditional assumptions about data characteristics.
There are numerous machine learning algorithms, such as classification and regression
trees (CART), random forest regression (RFR) [15], support vector regression (SVR) [16,17],
multiple linear regression modeling, boosted regression tree (BRT), artificial neural net-
works (ANN) [18], etc. that are used for predictions. In the hydrology domain, neural
networks [19], vector machines [20], and polynomial regression [21] have been applied in
soil moisture prediction using historical soil moisture datasets.

For example, Matei et al. (2017) [22] used different machine learning models (SVR,
NN, LR, RFR, etc.) for real-time soil moisture prediction in the Transylvanian Depression in
Romania. They used data (soil temperature, air temperature, precipitation) from a nearby
weather station and crop and soil information from nearby agricultural fields. Machine
learning-based models (e.g., an RFR) achieve better performance when compared with the
physics-based Richards equation model in predicting soil matric potential in the root zone [23].
Yoon et al. (2011) [24] used ANN to model the water table dynamics of various agricultural
systems. The random forest model was found to be superior to the ANN model when
predicting lake water levels with fewer parameters and less training time [25]. Alternatively,
Gill et al. (2006) [1] used SVM to predict soil moisture using meteorological data, field data,
and crop data. The SVM employs structural risk minimization instead of the traditional risk
minimization, which formulates quadratic optimization to ensure a global optimum. The SVM
model is sparse and not affected by dimensionality. Support vector regression is less prone to
overfitting the regression function and will generate precise predictions because it uses the
generalization error bound (ε)-insensitive loss function and structural risk optimization [26].

There are research gaps for using these machine learning methods in landscapes
with frigid soil classifications, underlain by very poorly drained geological material, and
having a diversity of production agriculture crop species. The research presented here
aids in filling in these gaps. The goal of this study was to determine the performance of
the abovementioned machine learning models for predicting soil moisture in crop fields
throughout the Red River Valley of the North by using weather station observations and
field characteristics of nearby areas under crop management. The objectives of this study
were to (i) investigate the effectiveness of different machine learning tools in soil moisture
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prediction, and (ii) determine the important predictor variables affecting field soil moisture
content using machine learning tools.

2. Methods
2.1. Study Site and Weather Station

This study was conducted along the Red River Valley of the North (RRVN) in North
Dakota and Minnesota (Figure 1). The RRVN is a glaciolacustrine lakebed formed by
ancient Lake Agassiz, which existed for more than 4000 years. The topography is minimal
(1 m per 5 km), and Mollisols and Vertisols are the dominant soil orders, with soil texture
ranging from clay to loamy sand. The parent material for RRVN is poorly drained and
consists of gray, slickensided, flat clays of Brenna/Argusville formation that are overlain
by the tan-buff, laminated silty clays of the Sherack formation. The major crops cultivated
in this area includes corn, soybean, wheat, sugarbeet, barley, canola, and potato. The
annual mean temperature is 4 ◦C, and temperatures typically vary from −16 ◦C to 29 ◦C,
whereas 30-year mean annual rainfall and snowfall are 60 cm and 125 cm, respectively [27].
Summers are long and warm, winters are frigid, snowy, and windy, and the skies are partly
cloudy year-round.
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There are 117 weather stations in the North Dakota Agricultural Weather Network
(NDAWN) in North Dakota (83), Minnesota (28) and Montana (6), which report 32 weather
parameters (e.g., air temperature, rainfall, wind direction, soil moisture). Our study area
covered a total of 25 weather stations, of which 15 are located across eight counties in
North Dakota and 10 across seven counties in Minnesota (Figure 1). Weather station data
and measurements from nearby agricultural fields of the study area were collected during
the cropping season from June to September 2019. Soil moisture was measured around
the weather stations and in nearby crop fields in 16-day intervals. The distance between
crop fields and the weather stations was measured in meters. The distance measures were
classified into six different classes (0–100 m, 100–200 m, 200–400 m, 400–800 m, 800–1200 m
and 1200–2000 m). The crop fields under study were within the range of 2000 m from the
nearest weather station for the entire study area in the RRVN.

2.2. Soil Moisture Measurement

Soil moisture from each field and weather station was measured using the gravimetric
method. Soil samples were collected from fields using Uhland cores. Composite soil
samples were collected from 3 different locations in individual fields using sampling cores
of dimensions 6 cm × 8 cm at 0 to 6 cm depth, and GPS coordinates were recorded. Wet
soil samples collected from the fields were weighed and then oven-dried at 105 ◦C for 48 h.
Gravimetric water content was determined using soil sample dry weight and the amount
of water lost during drying. Volumetric water content (VWC) of soil was calculated by
multiplying gravimetric water content (m3 m−3) by bulk density (g cm−3) [28].

2.3. Crop Types in Study Area

This study covered all types of crops grown in this area, such as soybean (24 plots),
wheat (18 plots), corn (16 plots), sugarbeet (6 plots), dry beans (5 plots), oats (2 plots), barley
(1 plot), potato (1 plot), canola (1 plot), and alfalfa (1 plot). Soil samples for measurements
of bulk density and moisture content were collected after the germination of the crops
starting from the first week of June 2019. Soil samples were collected in 16-day intervals,
and growth stages of each crop were recorded using the standards developed by the United
States Department of Agriculture [29].

2.4. Residue Cover, Soil Texture, and Saturated Hydraulic Conductivity

Antecedent characteristics such as residue cover, soil texture, and saturated hydraulic
conductivity (Ksat) were determined for each location from where soil samples were
collected. Residue cover was determined using the rope method along 8 transects per
sample site (i.e., residue presence at 100 points along 15 m oriented 45◦ to plant rows) [30].
Crop residues were then pooled and classified as percentages in 3 different categories
(<10%, 20–30%, and 50–60% residue cover) for analysis. Soil texture for this experiment
was determined for each soil sample using the pipette method described by Gee and Bauder
(1986) [31]. Ksat (inch hr−1) was estimated using Rosetta neural network pedotransfer
function in Hydrus-1D that uses input data on sand, silt, clay percent, bulk density (g cm−3),
and water content at 33 and 1500 kPa suctions (cm3 cm−3) [32,33]. Pressure plate apparatus
were used to determine water content at 33 and 1500 kPa suctions [34].

2.5. Rainfall and Potential Evapotranspiration

Rainfall and potential evapotranspiration data recorded by each weather station
were downloaded from the North Dakota Agricultural Weather Network (NDAWN)
(https://ndawn.ndsu.nodak.edu/, accessed on 1 October 2020). Rainfall was measured
hourly at a 1-meter height above soil surface using TE525 tipping bucket rain gauges (Texas
Electronics TR-525I, Dallas, TX, USA) at each NDAWN weather station. Each gauge mea-
sures rainfall in 0.254-mm increments. Potential evapotranspiration (PET) is the estimate
of the maximum daily crop water loss when water is readily available. It is calculated with
the Penman equation [35] that use soil radiation, dew point temperature, and wind speed

https://ndawn.ndsu.nodak.edu/
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and air temperature. The 4-day cumulative rainfall measure showed higher correlation
(r = 0.8) with field soil moisture in a study conducted in 3 European countries [36]. In
this study, we used 4-day cumulative rainfall and PET to predict soil moisture. The 4-day
cumulative rainfall and PET were calculated by adding up the preceding 4 days of values
for rainfall and PET in mm.

2.6. Machine Learning Algorithms
2.6.1. Classification and Regression Trees (CART)

CART is a tree-based regression model and rule-based procedure that creates a binary
tree using binary recursive partitioning (BRP) to yield the maximum reduction in the
variability of the response variable [37]. The BRP is a nonparametric nonlinear technique
that splits the data into subsets based on available independent factors, which means it
divides nodes into yes/no answers as predictor values. Regression trees are generated for
continuous data and classification trees for categorical data [38].

Suppose input variables are x1, x2, . . . . xn and output variable is y for training dataset
in the space D with n input variables and m input samples. Let D = {(x11, x12, . . . . x1n, y1),
(x21, x22, . . . . x2n, y1), (xm1, xm2, . . . . xmn, ym)}. The CART model splits D into a certain
number of subspaces using BRP. Each recursive process attempts to select several splitting
variables and splitting points from the current space S (parent node) to divide the space
into two inhomogeneous subspaces S1 and S2. Every subspace has an estimated value ŷ
determined by fitting using the least square method; the optimal splitting variable j and
splitting point s are finally selected to ensure that the binary division has the minimum
residual variance [39].

2.6.2. Random Forest Regression (RFR)

Random forest regression was developed by Breiman (2001) [40] and is relatively
simple to train, tune, and apply. This technique is developed as average over the many
individual decision tree-based models that are built on the bootstrapped training sample.
Each training sample considers a small group of predictor variables at every split that
maintains decorrelation among the variables and splits [41]. The RFR improves predictive
accuracy by generating large numbers of decision trees that classify a case using each tree
in the new forest and deciding a final predicted outcome by combining the results across
all the trees. Each tree is built using a deterministic algorithm by selecting a random set of
variables and a random sample from the training dataset (i.e., the calibration dataset). The
RFR uses 3 parameters, (1) the number of regression trees grown based on the bootstrap
sample of the observation (e.g., hundreds or thousands of trees), (2) the number of different
predictors tested at each node (e.g., one third of the total number of variables) and (3) the
minimal size of the terminal nodes of the trees (e.g., 1).

2.6.3. Boosted Regression Trees (BRT)

Friedman (2002) [42] defined BRT as a decision tree model that is improved by the
gradient boosting algorithm, which constructs an additive regression model that fits in
chronological order based on a simple base learner function to current pseudo-residuals at
each iteration. The pseudo-residuals are defined as the slope of the loss function that is
being minimized. Due to the use of pseudo-residuals, simple base learner function, and
iteration at each level, this model has performed better compared to other machine learning
models [43,44]. Due to their ability to perform better with complicated data, BRT models
are popular and attractive among data scientists [45]. However, the data used for training
sets are compiled from different sources, making the model susceptible to certain types of
inconsistencies [40,41].

The BRT helps in partitioning influences of the independent (predictor) variables
on the dependent variable (soil moisture for this study). This combination of regression
trees with the boosting algorithm has been used by ecologists to explore the relationship
between ecological processes and predictors [46]. The BRT handles predictor variables
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with different data types, distributions, and completeness (i.e., level of missing values) [47].
The fitting of the BRT model is controlled by different factors, such as the learning rate that
determines the contribution of each tree to the growing model, the tree complexity that
controls the level of interactions in BRT, the bagging fractions that set the proportion of
observations used in selecting variables, and the cross validation that specifies the number
of times to randomly divide the data for model fitting and validation [48].

2.6.4. Multiple Linear Regression (MLR)

Multiple linear regression is an extension of simple linear regression used to predict
an outcome variable based on multiple distinct predictor variables. With ‘n’ number of
predictor variables (x), the predictions of y are expressed by the following equation.

y = b0 + b1X1 + b2X2 . . . . . . . . . bnxn (1)

The b values are called the regression weights (beta coefficients). The measures of
association between the predictor variable and the outcome ‘bi’ can be interpreted as the
average effect on y of a unit increase in xi, holding all other predictors constant.

2.6.5. Support Vector Regression (SVR)

Support vector regression uses a support vector machine (SVM) to solve regression
problems [49,50]. SVM learning simplifies a maximal margin classifier to map the input
variables into a high dimensional space using a fixed mapping kernel function. To overcome
local minima problems created due to the use of few parameters while tuning the training
dataset, SVR uses a radial basis kernel function by constructing the hyperplanes that
can be used for regression. Yang et al. (2009) [51] found radial basis functions powerful
because they are simple and reliable and deal with complex dimensional space and margin
separation factors.

The SVR involves the use of a subset of data points that are based on a predefined error
margin to fit a regression model between dependent variable and explanatory variables.
Those subsets of data points are called support vectors. Let us suppose, there are given
samples X = {

→
x 1,
→
x 2, . . . . . . ,

→
x i} and corresponding target values Y = {y1, y2, . . . . . . , yi}, yi

∈ R. The goal of SVR is to find the function f(x) that has at most standard deviation from
the obtained target yi for all training data and is meanwhile as flat as possible.

2.6.6. Artificial Neural Network (ANN)

Artificial neural networks are a powerful computing tool constructed through many
simple interconnected elements called neurons with unique capability of recognizing
underlying relationships with input and output events. An ANN consist of input, hidden,
and output layers arranged in a discrete manner [52]. A collection of neurons arranged
in the dimensional array is called a layer, where each layer includes 1 or more individual
nodes. The number of input variables necessary for predicting the desired output variables
determines the number of input nodes. The complexity of modeling is dependent upon
the optimum number of hidden nodes and hidden layers (i.e., larger numbers of hidden
layers result in a larger, more complex model) [53].

These ANN models mimic human learning ability by learning from a training dataset.
They are robust to noisy data and a powerful tool to approximate multivariate non-linear
relations among the variables [54]. ANN is a powerful tool that can approximate all types
of non-linear mapping. These models have been used for input-output correlations of
non-linear processes in water resources and hydrology [55].

2.7. Machine Learning Procedures

The machine learning procedures were performed using the R environment soft-
ware [56]. The caTools R package was used to handle training and testing of the dataset,
and the Metrics package was used to calculate RMSE and MAE for all models.
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Karatzolou et al. (2004) [57] suggested the use of the kernlab R-package along with
eps-regression SVM type, radial kernel, cost value of 1, gamma value of 0.04167, and
epsilon value of 0.1 to execute the SVR function for analysis. Liaw and Wiener (2015) [58]
have used the randomForest R-package to implement a random forest regression model,
and as values for ntree, mtry, and nodesize, used 1000, 4 and 1, respectively.

The BRT algorithm was implemented using the gbm R package and CART algorithm
using the rpart R package. Similarly, the neuralnet package [59] was used for the ANN
algorithm, which depends on two other packages, grid and MASS [60]. The metrics R
package is used in supervised machine learning, and it implements metrics for regression,
classification, and information retrieval problems. The iml R-package is used for predictor
variable importance and accumulated local effects plots. The above-mentioned R packages
were used to execute the respective machine learning models for this study to predict field
soil moisture.

The entire dataset was divided 70–30%, with 70% of the data used as a training set
and 30% used for testing (i.e., validation). The testing set was used to evaluate final trained
models. All training sets had samples from all 7 sampling dates throughout the study
period.

2.8. Statistical Analysis
2.8.1. Model Performance

The model was developed based on the training dataset, and the performance of the
model was evaluated based on the testing dataset, also known as validation. Mean absolute
error (MAE), root mean square error (RMSE), and coefficient of determination (r2) were
used as tools to measure the performance of different models, and were determined as
follows:

MAE =
1
N ∑N

i = 1|yi − ŷi| (2)

RMSE =

√
∑N

i = 1(yi − ŷi)
2

N
(3)

r2 = 1− ∑N
i = 1(yi − ŷi)

2

∑N
i = 1(yi − y)2 (4)

where N, y, ŷ, y denotes the number of observations, measured values, predicted values,
and mean of measured values, respectively. Scatter plots and box plots were used to show
relationships between the observed and predicted soil moisture for different machine
learning models.

The soil moisture (VWC) of a crop field was set as the dependent variable, whereas
predictor variables were VWC of the weather station, bulk density, and Ksat of crop field
and weather station, crop type, distance from crop field to weather station, sand, silt, and
clay percentages in crop field soil, residue cover, 4-day cumulative rainfall, and PET.

2.8.2. Variable Importance

Each predictor variable has an impact on the model generated by the machine learning
algorithm; the statistical significance can be measured using the variable importance. RFR
algorithms calculate variable importance internally in the form of increases in the RMSE,
whereas BRT determines variable importance as a percentage. On the other hand, the
CART model derives the variable importance as the relative contribution of the predictor
variable to field soil moisture.

Loss of mean absolute error (MAE) can characterize the influence of the predictor
variable in the generated model and shows the level of effect if not considered in the
prediction model. This loss of MAE was implemented using the iml R-package and showed
5th and 95th percentiles of the loss of MAE due to the particular model.
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2.8.3. Effect of Predictor Variables

Apley and Zhu (2020) [61] and Greenwell (2017) [62] have proposed the concept
of accumulated local effects (ALE) plots to establish relationships between the predictor
variables and generated output. ALE plots are used to study the relationship between the
outcome of machine learning models and predictor variables. Machine learning algorithms
can use many variables in prediction models, but few variables have huge impacts when
compared to others. In this study, the top 4 predictor variables were selected based on
variable importance, and ALE plots were created using the iml R-package. ALE plots
construct unbiased plots even when the variables under study are correlated [59]. ALE
values in the plot showed the effect of a variable on the outcome at certain values when
compared to the average prediction, and center values indicate the mean effect as zero.
Molnar (2019) [63] gave an example of ALE estimate of-2; when variable interest had a
value of 3, then it could be understood that the prediction was lowered by 2 compared to
the average prediction.

3. Results and Discussion
3.1. Model Performance

Machine learning algorithms tested for performance based on the MAE, RMSE, and
r2 are presented in Table 1. The best performance was observed under the RFR and BRT
models and had MAE values of less than 4%. The RMSE of the predicted soil moisture used
five different machine learning algorithm ranges from 0.045 to 0.085 m3 m−3. The RFR
model outperformed the other models based on the lowest RMSE value of 0.045 m3 m−3

and higher r2 value of 0.72. After RFR model, SVR and BRT performed well based on the
RMSE (0.050 m3 m−3, 0.048 m3 m−3), MAE (0.039 m3 m−3, 0.037 m3 m−3) and r2 (0.65,
0.67) values, respectively.

Table 1. Comparison of the machine learning algorithms for soil moisture prediction using coefficient
of determination (r2), root mean squared error (RMSE), and mean absolute error (MAE). Algorithms
included classification and regression trees (CART), multiple linear regression (MLR), random forest
regression (RFR), support vector regression (SVR), boosted regression trees (BRT), and artificial
neural networks (ANN).

Algorithms r2 RMSE MAE

CART 0.57 0.056 0.045
MLR 0.52 0.059 0.046
RFR 0.72 0.045 0.034
SVR 0.65 0.050 0.039
BRT 0.67 0.048 0.037

ANN 0.53 0.085 0.068

The soil moisture estimates from different models for testing phase are shown in
Figure 2. The RFR, BRT, and SVR models performed reasonably well in capturing the
soil moisture prediction in the scatter plot diagrams. The RFR model could capture the
extremes (low and high values) in soil moisture content depicted by most of the sample
points lying on and around the bisector line. There were few sample points that were
positioned far away from the bisector line representing poor estimates (too high or too
low). The soil moisture estimates for the BRT and SVR models showed they can depict soil
moisture prediction with slope values of 0.69 and 0.65, respectively. However, MLR and
ANN models showed poorer performance (0.58, 0.53) in terms of spread along the bisector
line for the test data.
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Figure 2. Scatter plots showing observed versus predicted volumetric water content (m3 m−3) during the testing phase along
with regression coefficient (r2) and root mean square error (RMSE) for 6 different machine learning models. Algorithms
included classification and regression trees (CART), multiple linear regression (MLR), random forest regression (RFR),
support vector regression (SVR), boosted regression trees (BRT), and artificial neural networks (ANN).

Box plots depicting the median and percentiles (5th, 25th, 75th and 95th) of the testing
dataset for both the measured and predicted soil moisture are shown in Figure 3. The
solid horizontal line inside each box shows the median value; boxes represent the 25th and
75th percentile (interquartile range) values, whereas the whiskers extend from 5th to 95th
percentile values. The dashed line inside each box represents the mean of the measured
data for the testing phase. The RFR model, compared to other machine learning algorithm,
showed that the mean of the measured soil moisture was represented by the median of the
estimated soil moisture. The RFR model used contributions from all of the soil and climate
variables (Figure 4), thereby yielding better predictions compared to the other models.
The distribution of the soil moisture data for this study was better related by when using
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random forest trees compared to other models. RFR followed by SVR and BRT models
were able to capture the relationship between the soil moisture in each field with VWC as
recorded for each pertinent weather station, rainfall, PET, crop, and soil factors with lower
RMSE and MAE.
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Figure 4. Variable importance for 3 tree-based model types: (a). classification and regression trees (CART), calculated as the
relative influence (%); (b). random forest regression (RFR), calculated as the increase in mean squared error (MSE) (%); and
(c). boosted regression trees (BRT), calculated as the relative influence (%). Out of 13 predictor variables, the first 8 represent
field, and remaining 5 represent station variables. As the calculation of variable importance differs among CART, RFR and
BRT, only the ranking of the variables can be compared, not the absolute values.

The RMSE, r2 and MAE values for the six different machine learning models showed
RFR, SVR, and BRT had RMSE of less than 0.05 m3 m−3 and satisfactory r2 values (0.65–
0.67), whereas the remaining three models had RMSE higher than 0.05 m3 m−3 and r2

values lower than 0.60. This showed RFR as the best model compared to the other machine
learning models due to powerful averaging capacity of all the random trees generated
by the model based on the number of parameters used to predict soil moisture [22]. The
results for scatter (Figure 2) and box plots (Figure 3) indicated that the difference in soil
moisture estimates could be due to the cumulative effect of soil and crop types and change
in micro-climate variables (i.e., rainfall and PET). The scatter plot for the CART model
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showed strange trendlines because it followed only one tree and not the combinations;
these data were categorized based on the sampling dates where they were highly correlated.
The multiple number of trees addressed the issue similarly to the RFR model. Similarly, in
the artificial neural network (ANN) the categorical data for texture, crop type was created
the upper limit of moisture value. The relatively high accuracy of RFR and BRT models is
consistent with other studies that find ensemble decision-based regression models perform
better than many other machine learning models [64], particularly in terrain and soil spatial
predictions [65–69]. The scatter plots and box plots showed that CART, MLR, and ANN
models did not capture the extreme values in the prediction of soil moisture as well as the
RFR, BRT, and SVR models. Results showed that machine learning models such as the
RFR, BRT, and SVR outperformed the ANN, MLR, and CART models, possibly due to the
carefully selected parameter optimization algorithms used to train the models. Superiority
of RFR and SVR over other models has also been reported in various studies [1,70–74].
The SVR model provides an appropriate choice of kernels that allow non-separable data
in original space to become separable in the feature space. This subsequently helps to
obtain non-linear algorithms from algorithms previously restricted to handling linearly
separable datasets [75,76]. Similar results for SVR model performance over other machine
learning models was also observed by Karandish and Simunek (2016) [75] in soil water
content predictions under water stress conditions; Pal and Mather (2003) [77] for land
cover classification; and Gill et al. (2006) [1] for soil moisture prediction in Southwestern
Oklahoma. The CART model performed better than the MLR with the formation of a
binary tree using binary recursive partitioning that yields the maximum reduction in the
variability of the response variable [37]. Successful soil moisture estimation using the
CART model has also been reported by Han et al. (2018) [78] in China.

3.2. Importance of Predictor Variables

The importance of predictor variables was determined for the three tree-based machine
learning models. The variable importance for the CART, RFR, and BRT models was
separated based on the weather station variables (5) and crop field variables (8) (Figure 4).
The CART and BRT models measure variable importance (as a percentage) by the relative
contribution of each variable to the output (crop field soil moisture). However, the RFR
measures variable importance based on the percent increase in root mean square error
(RMSE) after removing a particular variable and compared with the previous value. The
higher the percent increase in RMSE, the more important the variable was for soil moisture
prediction.

All three models showed soil moisture at each weather station to have a high relative
influence on the moisture prediction for nearby fields. This was followed by the 4-day
cumulative rainfall and PET as the next most important variables. For the CART model, the
weather station VWC, 4-day cumulative rainfall, and 4-day PET had 29%, 20%, and 21%
relative importance, respectively, in predicting field soil moisture, followed by the weather
station’s bulk density (8%), the crop field’s Ksat (6%), and the weather station’s Ksat (4%).
Similarly, the BRT model showed that the weather station VWC, 4-day cumulative rainfall,
and 4-day PET had the highest influence at 32%, 32%, and 16%, respectively. This was
followed by the crop field’s clay content and Ksat, which both contributed 4%. Among the
CART and BRT models, the weather station VWC, rainfall, and PET were the dominant
variables for predicting nearby crop field soil moisture. For the RFR model, the 4-day
cumulative rainfall, 4-day PET, weather station VWC, and crop field’s Ksat had 43%, 40%,
39%, and 38% increases in RMSE, respectively, when they were left out of the model,
indicating their relative importance. The soil sand, silt, and clay contents had 29%, 30%,
and 34% increases in RMSE, respectively, while the remaining variables ranged from 23%
to 28%.

Another way to evaluate variable importance is by the loss of MAE, which is presented
in Figure 5. Similar to the previous measures of variable importance, all models showed
weather station VWC, 4-day cumulative rainfall, and PET as the variables with highest
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importance, followed by the silt and clay content from the crop fields. The range of loss in
MAE was highest in the RFR model (1.6–2.5) as compared to the other models (1.2–1.6).
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absolute error (MAE) along with 5th to 95th percentile values. Algorithms included classification and regression trees
(CART), multiple linear regression (MLR), random forest regression (RFR), support vector regression (SVR), and boosted
regression trees (BRT).

These findings are in accordance with Araya et al. (2020) [69], where precipitation was
one of the top four important variables for moisture prediction in a grassland catchment
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area of California, and with Revermann et al. (2016) [79], where precipitation-related
variables had the high influence on the soil moisture. This is expected since rainfall and
evapotranspiration have a direct influence on the soil moisture [80–82]. Our study also
revealed that Ksat of both the nearby crop field and at the weather stations were the next
most influential variables for predicting soil moisture. This is due to Ksat being a governing
property for water flows in the soil [83] and its well-known high spatial variability [84].
Additionally, soil particle sizes in the crop fields are an important variable since these
govern pore sizes and their ability to retain water in the field [85,86]. Other variables in
this study (i.e., residue cover, crop type, and distance from station) showed little influence
on the ability to accurately predict soil moisture by these machine learning models, which
corroborates studies by Aarya et al. (2020) [69], Kravchenko et al. (2011) [87], and McIsaac
et al. (2010) [88].

3.3. Accumulated Local Effect of Predictor Variables

The ALEs of predictor variables on predicting soil moisture with the various machine
learning algorithms were evaluated graphically (Figure 6). The variables previously de-
termined to have a high relative influence (i.e., importance) were graphed; these included
the weather station’s VWC, 4-day cumulative rainfall, 4-day cumulative PET, and Ksat.
The ALE plots show that predicted soil moisture generally increased with higher values
of weather station VWC. The CART model showed stationary ALE values except for a
sharp increase at 0.25 m3 m−3 in the weather station VWC. This sharp increase in ALE was
likely due to the single tree structure of the CART model. In contrast, the RFR model (an
ensemble of thousands of trees) showed a gradual sigmoidal increase in ALE values with
increasing station VWC values. This same general trend was observed in the BRT and SVR
models.

The ALE for predicting the crop field VWC also increased with the 4-day cumulative
rainfall (Figure 6). All four models showed a similar trend with the steepness of the ALE
slope tending to dissipate with higher weather station VWC and a tendency for the ALE to
flatten between 10–25 mm of cumulative rainfall. For the 4-day cumulative PET, the ALE
was generally stationary until 23 mm of PET, after which the ALE decreased as the PET
increased. The only exceptions were slight irregularities in the ALE near 25 mm of PET.
This showed that cumulative PET less than 23 mm had no effect on the moisture prediction,
whereas above that (23 mm), it had an inverse effect on the predicted soil moisture. In
this study, the ALE plots showed that station Ksat had minimal effect on the predicted
soil moisture. Although there was a slight decrease in predicted soil moisture between
1.5–1.7-inch h−1 in the RFR and BRT models, the other models showed only stationary AEL
values at zero.

Overall, the cumulative rainfall, PET, and weather station VWC were the most im-
portant predictor variables for soil moisture prediction in nearby crop fields, which also
contained dynamic local effects. For instance, there were particular points for each of
the predictor variables (i.e., 0.25 m3 m−3 for the weather station VWC, 10 mm for the
cumulative rainfall, and 23 mm for PET) that led to large changes in crop field soil moisture
prediction accuracy. In Aarya et al. (2020) [69], similar dynamics were observed among
predictor variables (topography, curvature, and flow accumulation) on soil moisture esti-
mates using ALE plots for a BRT model. Similarly, other studies have shown the significant
effect of cumulative rainfall and PET on predicting soil moisture—for example, Entekhabi
and Rodriguez-Iturbe (1994) [89], Pan et al. (2003) [90], and Brocca et al. (2013) [36].
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Figure 6. Accumulated local effect plots for (A) Station VWC, (B) 4-day cumulative rainfall (CR), (C) 4-day cumulative
potential evapotranspiration (PET) and (D) weather station saturated hydraulic conductivity (Station Ksat) under 4 machine
algorithms 1. Classification and regression trees (CART), 2. Random forest regression (RFR), 3. Boosted regression trees
(BRT), and 4. Support vector regression (SVR) for model training datasets.

4. Conclusions

Machine learning algorithms can be used effectively in predicting field soil mois-
ture. These algorithms are based on different principles (regression trees, kernels, and
regression) and result in different levels of effectiveness in prediction. Successful soil
moisture prediction involves establishing the effect of each variable on the output (variable
importance). The RFR, BRT, and SVR predictions performed better than the remaining
algorithms based on high correlations and low RMSE and MAE during model validation
using an independently derived dataset. The weather station variables (station soil mois-
ture, 4-day cumulative rainfall, and PET) were relatively more influential than the soil and
crop variables for predicting field soil moisture in the nearby plots.

In summary, the following conclusions can be drawn from this study:

• RFR, BET, and SVR outperformed other models in soil moisture prediction based on
the r2, RMSE, and MAE values.

• RFR showed the highest r2 (0.72), and lowest MAE (0.034 m3 m−3) and RMSE (0.045 m3

m−3).
• RFR, CART, and BRT showed that weather station soil moisture, 4-day cumulative

rainfall, and PET had a strong influence compared to soil and crop factors on predicting
soil moisture in nearby crop fields.

This study will be useful for further investigations into incorporating large weather
stations, soil, and crop information to predict soil moisture in agricultural fields. The
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selection of key variables and proper machine learning models will help in improving
accurate soil moisture prediction.
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