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Abstract: A novel total ensemble (TE) algorithm was developed and compared with random forest
optimization (RFO), gradient boosted machines (GBM), partial least squares (PLS), Cubist and
Bayesian additive regression tree (BART) algorithms to predict numerous soil health indicators in
soils with diverse climate-smart land uses at different soil depths. The study investigated how
land-use practices affect several soil health indicators. Good predictions using the ensemble method
were obtained for total carbon (R2 = 0.87; RMSE = 0.39; RPIQ = 1.36 and RPD = 1.51), total nitrogen
(R2 = 0.82; RMSE = 0.03; RPIQ = 2.00 and RPD = 1.60), and exchangeable bases, m3. Cu, m3. Fe, m3.
B, m3. Mn, exchangeable Na, Ca (R2 > 0.70). The performances of algorithms were in order of
TE > Cubist > BART > PLS > GBM > RFO. Soil properties differed significantly among land uses and
between soil depths. In Kenya, however, soil pH was not significant, except at depths of 45–100 cm,
while the Fe levels in Tanzanian grassland were significantly high at all depths. Ugandan agroforestry
had a substantially high concentration of ExCa at 0–15 cm. The total ensemble method showed
better predictions as compared to other algorithms. Climate-smart land-use practices to preserve soil
quality can be adopted for sustainable food production systems.

Keywords: algorithms; climate-smart; soil quality; land use

1. Introduction

In sub-Saharan Africa, 62% of the rural population depends on agriculture as the main
source of their livelihoods, and hence there is a close link between agriculture and soil
health [1]. Agricultural sustainability necessitates a good understanding of soil character-
istics which can inform farmers in making farming decisions and improve the practices
that enhance soil quality [1,2]. Both the physical and chemical properties of soil have been
used extensively to monitor soil health characteristics [3,4]; while these properties are
important for farm productivity, they vary within fields and with land-use types [2,5]. If
these soil properties are well-characterized, they should serve as indicators of soil health
and be easy to measure using standardized methods [2]. The measurement of these soil
health indicators faces significant technological difficulties due to the large number of
properties involved [6]. Convectional analytical techniques such as wet chemical analysis
have always been used for this purpose; however, these wet methods are time-consuming
and expensive, prompting a need for a robust alternative method. Several authors have
suggested near-infrared reflectance spectroscopy (12,500–4000 cm−1; 800–2500 nm) as an
alternative technique to wet chemical analysis [6–9]. Near-infrared absorption bands are
overtones and combinations of fundamental vibrations of XH bonding, where X can be
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carbon, nitrogen, oxygen, or sulfur [10]. Near-infrared spectroscopy has the advantage
of being rapid, non-destructive, inexpensive, precise, and can be used to estimate water-
bearing minerals, such as clay minerals and organic matter, carbon and nitrogen, and cation
exchange capacity [3], as well as micro-nutrients and exchangeable cations in soil sam-
ples [1,7,11]. Additionally, the technique has been applied in precision soil management
as well as regular soil analysis [12]. Soriano-Disla et al. [8] reviewed soil spectroscopic
models and published and listed several soil properties that could be determined by near-
infrared spectroscopy; these properties include soil water content, clay, sand, soil organic
carbon (SOC), CEC, exchangeable Ca and Mg, total N and pH. These spectroscopic models
used different spectral preprocessing techniques such as wavelength range selection, the
scatter correction method, mean normalization, baseline offset, and derivatives [9,13,14]
to increase the robustness and predictability of the models. Additionally, modeling the
relationship between near-infrared spectra with soil properties requires several multivari-
ate procedures such as principal components regression, partial least squares regression
(PLSR), stepwise multiple linear regression (SMLR), Fourier regression, locally weighted
regression (LWR), and artificial neural networks. None of these multivariate procedures
have gained widespread adoption since a model that works well for one application may
be unsuitable for another. The search for an optimum algorithm for a specific NIR-based
application is difficult since no single algorithm always performs well in any domain [15].
Fortunately, the growing ‘ensemble’ concept has prompted a fundamental shift in people’s
thinking [16]; rather than attempting to construct a single superb model, numerous simple
models are used in tandem [15].

Ensemble modeling uses many PLS models with and without spectral preprocessing
for prediction and combines several prediction models in order to improve the accuracy
of weak models. Further, creating an ensemble entails two steps: (1) creating various
models and (2) combining their estimates [17]. Ensembles are constructed using techniques
such as Bayesian model averaging, boosting [18] and bagging [19]. The Bayesian model
averages estimates from different models, weighted by their posterior evidence, while
bagging bootstraps the training dataset and averages the estimates. Boosting builds models
iteratively by varying case weights and employs the weighted sum of the sequence of model
estimates [17]. The total ensemble algorithm technique has been little studied in situations
that are common for calibration and prediction in chemistry [20]. This technique has
gained increasing attention for the multivariate calibration of NIR spectra, by combining
the results of multiple individual models to produce a single prediction [21]. The output of
the total ensemble algorithm is computed by averaging the predicted values computed
by its constituent learners [22]. The method’s key assumption is that multiple models will
detect and encode more features of the relationship between independent and dependent
variables than a single model [23]. To obtain a good ensemble, it is generally believed that
the member models should be as accurate and diverse as possible [24].

In this study, a new approach involving total ensemble modeling of NIR spectra was
used to predict numerous soil health indicators from diverse climate-smart land uses at
different soil depths. We compared the prediction accuracy and performance of the total
ensemble method with other five machine learning algorithms: random forest optimization
(RFO), gradient boosted machines (GBM), partial least squares (PLS), Bayesian additive
regression trees (BART) and Cubist. Further, we used the predicted dataset to assess how
land-use practices impact on selected soil health indicators.

2. Materials and Methods
2.1. Soil Samples and Types

A total of 315 samples were collected using soil coring auger at three depths, 0–15 cm,
15–45 cm, and 45–100 cm, from six climate-smart land-use types: agroforestry, community
forest, cropland with soil and water conservation (SWC), crop land without SWC, grassland
and control. These land-use types are in East African Climate-Smart Villages (CSV) in
Lushoto (Tanzania), Hoima (Uganda), Nyando and Wote (Kenya). Collected soil samples
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were oven-dried at 105 ◦C and then finely ground to powder and passed through a 2 mm
sieve. The soil types in Lushoto are Regosols, Lithic Leptosols, Cutanic Acrisols and
Ferralic Cambisols [25], while in Hoima the soil types are Vertisols, which have 30% or
more clay [26]. Nyando and Wote soil types are both fluviatile and lacustrine in origin and
vary from colluviums to alluvium and lacustrine clays [27].

2.2. NIR Spectroscopy and Reference Laboratory Analysis

The finely ground soil samples were loaded into a glass Petri dish and then scanned
in reflectance mode using a high-intensity contact probe attached to Fourier Transform
Infrared Multi-Purpose Analyzer (FTIR MPA) from 8000 to 4000 cm−1, 1250–2500 nm,
at World Agroforestry Centre (ICRAF) in Nairobi, Kenya. For method validation, all
the samples scanned using the NIR spectroscopy technique were taken for conventional
methods for wet chemistry analysis. Selected physical and chemical properties such as
pH, extractable P, K, Ca, Mg, Na, Mn, Fe, Cu, Zn, B, Mo, S, and Al, exchangeable bases
(ExBas) (sum of Mehlich exch Ca, Mg, K, Na), exchangeable acidity (ExAc) and electrical
conductivity (Ecd), as well as total N and C, were analyzed.

2.3. NIR Ensemble Modeling Using Spectroscopic Data

Ensemble modeling, unlike traditional single modeling methods, establishes many
“weak” models then aggregates the predict results of each “weak” model through weighted
average methods. In this study, we used regression modeling of the total ensemble al-
gorithm plus other five machine learning algorithms, random forest optimization (RFO),
gradient boosted machines (GBM), partial least squares (PLS), Bayesian additive regres-
sion trees (BART) and Cubist, to model the physical and chemical characteristics of soil.
Using these modeling techniques, the processed spectral data were linked to laboratory-
measured soil property data. RFO trains each tree separately using random sampling
of the data, while GBM is a hybrid method that incorporates both boosting and bagging
approaches [28]. BART is a nonparametric Bayesian regression method that employs
dimensionally adaptable random basis elements to make inferences and estimate an un-
known regression function [29], while the Cubist model includes boosting with training
committees (typically more than one), which is comparable to the approach of “boosting”
by generating a sequence of trees with successively adjusted weights [30].

2.4. Model Validation

To evaluate the accuracy of models, the coefficient of determination (R2), root mean
square error (RMSE), the ratio of performance to deviation RPD and ratio of performance
to interquartile distance (RPIQ) were used. Calibration models having an R2 > 0.91 are
considered to be excellent, those with an R2 between 0.82 and 0.90 are good, while an
R2 between 0.66 and 0.81 indicates satisfactory predictions [8]. RPD was calculated as
the fraction of the standard deviation (SD) and the RMSEP (RPD = SD/RMSEP) [31],
while RPIQ was calculated as a fraction of the interquartile range of the data (Q3–Q1)
and the RMSEP (RPIQ = IQR/RMSEP) [32,33]. RPIQ > 1.03 indicates good predictions,
0.77–1.03 indicates reasonable prediction and <0.77 indicates non-reliable predictions. RPIQ
is inversely related to R2, and so was used in isolation to rank prediction performance.
Larger values of RPIQ and smaller RMSE indicate better model performance [32].

2.5. Statistical Analysis

The reference ensemble method available in the R system for statistical computing
version 3.1.0 via the “caretEnsemble” add-on package [34] was used as a modeling tool.
Principal component analysis (PCA) was used to visualize the variability of soil spectral
signatures in the whole dataset and to identify properties explaining the greatest variability
in order to select the best indicators affecting soil health. Significant differences between
land-use practices were tested by analysis of variance (ANOVA). Tukey’s honest signif-
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icance difference (HSD) tested the mean separation when analysis showed statistically
significant differences (p < 0.05).

3. Results
3.1. Soil Properties across the Study Sites and Spectral Datasets

The laboratory-measured soil properties across the six land-use types as used for cali-
bration are presented in Table 1. pH values range from slightly acidic to basic (4.43 to 9.08),
while the average pH was 6.44 ± 1.34; this average suggests that the fields do not need
lime to bring the pH to favorable levels. The total nitrogen and total carbon contents varied
from 0.02% to 0.83% and 0.30–11.86%, respectively. The coefficients of variation (CV) were
greater than 10% for all the elements analyzed (Table 1).

Table 1. Summary statistics for laboratory soil properties measured as potential indicators of soil health.

Soil Property N Min. Median Max. Mean ± SD Range IQR Skewness CV% Kurtosis

Total Nitrogen 315 0.02 0.11 0.83 0.13 ± 0.10 0.27 0.06 0.33 71.30 0.64
Total Carbon 315 0.30 1.46 11.86 1.79 ± 1.32 3.44 0.53 2.59 73.41 9.34

Sand 315 0.54 3.29 17.80 4.56 ± 3.71 17 2 1.91 81.36 3.49
Silt 315 1.68 6.22 56.39 9.67 ± 8.68 55 10 31.32 89.69 14.81

Clay 315 31.71 88.94 96.22 85.85 ± 10.72 65 10 −2.81 12.48 11.34
pH 315 4.43 6.35 9.08 6.44 ± 1.34 4.65 2.09 0.27 14.97 −0.83

m3.Al 315 456.00 951.00 2700.00 1006.97 ± 323.30 1274.00 479.00 0.45 32.11 −0.55
m3.B 315 0.00 0.65 4.18 0.77 ± 0.64 2.05 0.88 0.89 82.38 −0.26

m3.Cu 315 0.00 3.07 16.00 3.47 ± 2.63 7.34 2.08 1.25 75.76 1.44
m3.Fe 315 23.90 92.10 436.00 107.55 ± 66.52 238.10 31.10 2.30 61.85 8.20
m3.Mn 315 0.00 214.00 660.00 215.29 ± 155.74 390 186.40 0.07 72.34 −1.15
m3.P 315 0.00 1.91 166.00 6.98 ± 18.96 85.40 6.52 4.70 271.56 26.77
m3.S 315 0.00 3.29 226.00 9.24 ± 22.76 151.00 17.58 2.49 246.35 5.61

m3.Zn 315 0.00 1.01 32.30 2.14 ± 3.42 14.00 1.10 4.80 159.97 24.96
PSI 315 0.98 116.00 655.00 137.08 ± 87.23 332.00 132.05 0.87 63.64 −0.27

ExNa 315 0.00 0.05 11.70 0.66 ± 1.60 10.82 3.02 2.03 240.48 4.03
ExCa 315 0.31 8.60 44.05 12.46 ± 10.67 43.49 23.51 1.05 85.65 −0.49
ExMg 315 0.07 3.17 9.83 3.26 ± 1.77 6.50 1.82 1.10 54.36 0.09
ExK 315 0.00 0.28 5.17 0.72 ± 0.87 3.25 1.49 1.10 119.62 0.16

ExBas 315 0.49 12.25 58.26 17.11 ± 13.56 56.77 30.42 1.03 79.24 −0.58
ECd 315 0.01 0.05 0.77 0.08 ± 0.09 0.76 0.17 1.93 108.76 3.84
ExAc 315 0.00 0.00 8.75 0.27 ± 0.94 4.87 0.249 3.00 344.63 9.02

m3. = Mehlich 3 extractable; PSI = Phosphorus sorption index; ExNa = Exchangeable Na; ExCa = Exchangeable Ca; ExMg = Exchange-
able Mg; ExK = Exchangeable K; ExBas = Exchangeable bases (sum of Mehlich exch Ca, Mg, K, Na); Ecd = Electrical conductivity;
ExAc = Exchangeable Acidity; IQR = Interquartile Range; SD = standard deviation.

The PCA similarity maps of PC1 and PC2 made using the raw spectra show a cluster-
ing of soil samples among the spectra from various sampling counties in Kenya, Uganda
and Tanzania (Figure 1). Further, there is a clear overlap of various spectra from sampling
sites in Uganda. The clustering of soil samples could explain the effect of geographical
origin of soil samples on NIR spectroscopy analysis when assessing both physical and
chemical soil properties. Soil samples from the Mbuzii area in Tanzania were grouped away
from Yamba soils samples using PC1, indicating that the largest contribution to variance
in soil characteristics from Tanzania could be from these two regions from which the soil
samples were taken. Although the Kenyan soil samples could not be discriminated using
PC1, the samples were grouped separately according to the sampling site in PC2. There
was no distinguishable variation profile amongst soil samples from Uganda to discriminate
different sampling sites (Figure 1). These findings show that the primary sources of spectral
variance are differences in soil types and that PCA may be used to distinguish sites but not
land-use type.
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3.2. Exploratory Analysis of Soils Near-Infrared Spectra

The spectra of all soils were similar in shape, with strong absorbance’s around
5200 cm−1 and three distinct absorption peaks (at roughly 7060 cm−1, 5200 cm−1, and
4520 cm−1) (Figure 2). The NIR raw spectral signature of scanned soil samples ranged from
8000 cm−1 to 4000 cm−1 regions. The NIR spectra reveal details of diverse soil constituents,
including organic and inorganic components [2]. The band near 7060 cm−1 is caused by
the overlapping of the first overtone of the O-H stretching vibration associated with water
and hydroxyl groups in clay [2]. The band near 5200 cm−1 is related to the H-O-H bend
and O-H stretch combination bands in water, while the band at around 4520 cm−1, usually
associated with clay minerals, results from metal–OH bending plus O-H stretching. Based
on the recorded NIR spectra, the identified spectral regions and the vibrational groups
are relevant in the generation of calibration models, the overtones of O-H and H-O-H
stretch vibrations of free water, and the overtones and combinations of O-H stretching and
metal-OH bends in the clay lattice, and are related to the well-defined absorption patterns
in soil reflectance across the NIR [35]. NIR spectra with this shape have been recorded for
a variety of soils [36,37].
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3.3. Comparison of Machine Learning Algorithms for Prediction of Soil Properties

The descriptive regression statistics of the predicted vs. measured soil properties
using total ensemble, random forest optimization, gradient boosted machines, partial least
squares, Bayesian additive regression trees and Cubist methods are provided in Table 2
and the scatterplots of the predicted vs. measured soil properties from different models
are illustrated in Figures 3 and 4. A good prediction was made for total carbon using the
ensemble prediction (R2 of 0.87; RMSE = 0.39; RPIQ = 1.36 and RPD = 1.51) and Cubist
prediction (R2 of 0.86; RMSE = 0.42; RPIQ = 1.26 and RPD = 1.40). Total nitrogen was also
well-predicted using the total ensemble algorithm (R2 of 0.82; RMSE = 0.03; RPIQ = 2.00 and
RPD = 1.60) and Bayesian additive regression trees (R2 of 0.78; RMSE = 0.04; RPIQ = 1.50
and RPD = 1.20). Carbon and nitrogen are two important constituents in soil organic matter,
and their levels are highly connected [38]. Considering the classification by Zhao et al. [39]
in terms of strong (R2 > 0.70), moderate (0.5 < R2 < 0.7), weak (0.3 < R2 < 0.5) and very
weak (R2 < 0.3) prediction models, the total ensemble prediction method made: strong
predictions (R2 > 0.70) for exchangeable bases (sum of Mehlich exch Ca, Mg, K, Na), Mehlich
3 extractable Cu, Mehlich 3 extractable Fe, Mehlich 3 extractable B, Mehlich 3 extractable
Mn, exchangeable Na and exchangeable Ca; moderate predictions (0.5 < R2 < 0.7) for
Mehlich 3 extractable Al, pH, the phosphorus sorption index (PSI) and exchangeable
acidity (ExAc); weak predictions (0.3 < R2 < 0.5) for Mehlich 3 extractable Zn, Mehlich 3
extractable P, and electrical conductivity(Ecd); and a very weak (R2 < 0.3) prediction for
Mehlich 3 extractable S (Table 2). The results show that total ensemble method consistently
performs better than random forest optimization, gradient boosted machines, partial least
squares, Bayesian additive regression trees and Cubist (lowest RMSE and highest RPIQ).

BART and Cubist made strong to moderate predictions, although cubist outperformed
BART for total carbon (R2 of 0.86; RMSE = 0.42; RPIQ = 1.26 and RPD = 1.40), pH (R2

of 0.65; RMSE = 0.52; RPIQ = 4.02 and RPD = 2.58), Mehlich 3 extractable Al (R2 of
0.56; RMSE = 185.55; RPIQ = 2.58 and RPD = 1.79), Mehlich 3 extractable B (R2 of 0.71;
RMSE = 0.34; RPIQ = 2.59 and RPD = 1.69), exchangeable Mg (R2 of 0.66; RMSE = 1.01;
RPIQ = 1.80 and RPD = 1.76), exchangeable bases (R2 of 0.84; RMSE = 4.65; RPIQ = 6.54
and RPD = 3.94), Mehlich 3 extractable Fe (R2 of 0.69; RMSE = 32.01; RPIQ = 0.97 and
RPD = 1.248) and Mehlich 3 extractable P (R2 of 0.41; RMSE = 16.79; RPIQ = 0.39 and
RPD = 0.78) (Table 2). Exchangeable Ca and Mg have also been poorly predicted by other
researchers [40,41], while EC and exchangeable Ca, Mg, K, and Na were poorly predicted
with an RPD value < 1.3 by Pirie et al. [42]. Mehlich 3 extractable P, Mehlich 3 extractable Zn
and electrical conductivity could not be predicted accurately with either model. Shepherd
and Walsh [40] showed reasonable predictions for exchangeable Ca, Mg, and organic C in
soils using NIR spectroscopy (R2 = 0.78–0.88), while Udelhoven et al. [43] were unable to
obtain suitable predictions for organic C, plant accessible N, K, and P on land-scape scaled
experiment using NIR spectroscopy.
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Table 2. Comparison of prediction accuracy from six machine learning algorithms using soil NIR spectra.

Soil Property Method R2 RMSE RPIQ RPD Soil Property Method R2 RMSE RPIQ RPD

Total Carbon RFO 0.83 0.46 1.15 1.28 m3.Cu RFO 0.68 1.30 1.60 1.38
GBM 0.75 0.59 0.90 1.00 GBM 0.59 1.51 1.38 1.19
PLS 0.78 0.55 0.96 1.07 PLS 0.34 2.09 1.00 0.86

BART 0.82 0.52 1.02 1.13 BART 0.72 1.22 1.70 1.47
CUBIST 0.86 0.42 1.26 1.40 CUBIST 0.69 1.27 1.64 1.41

ENS 0.87 0.39 1.36 1.51 ENS 0.73 1.2 1.73 1.50

Total Nitrogen RFO 0.75 0.04 1.50 1.20 m3.Fe RFO 0.63 34.96 0.89 1.14
GBM 0.76 0.04 1.50 1.20 GBM 0.45 42.55 0.73 0.93
PLS 0.72 0.04 1.50 1.20 PLS 0.53 40.98 0.76 0.97

BART 0.78 0.04 1.50 1.20 BART 0.54 39.80 0.78 1.00
CUBIST 0.67 0.05 1.20 0.96 CUBIST 0.69 32.01 0.97 1.24

ENS 0.82 0.03 2.00 1.60 ENS 0.73 29.67 1.05 1.34

pH RFO 0.56 0.58 3.60 2.31 m3.Mn RFO 0.65 103.36 1.80 1.12
GBM 0.56 0.60 3.48 2.23 GBM 0.49 125.62 1.48 0.92
PLS 0.46 0.66 3.17 2.03 PLS 0.21 212.83 0.88 0.54

BART 0.57 0.58 3.60 2.31 BART 0.72 92.26 2.02 1.25
CUBIST 0.65 0.52 4.02 2.58 CUBIST 0.70 99.43 1.87 1.16

ENS 0.66 0.51 4.10 2.63 ENS 0.75 85.30 2.19 1.35

m3.Al RFO 0.49 201.58 2.38 1.65 m3.P RFO 0.26 18.65 0.35 0.70
GBM 0.41 212.01 2.26 1.56 GBM 0.17 19.66 0.33 0.67
PLS 0.62 169.48 2.83 1.96 PLS 0.05 26.78 0.24 0.49

BART 0.53 190.96 2.51 1.74 BART 0.16 19.84 0.33 0.66
CUBIST 0.56 185.55 2.58 1.79 CUBIST 0.41 16.79 0.39 0.78

ENS 0.68 157.12 3.05 2.11 ENS 0.41 16.58 0.39 0.79

m3.B RFO 0.61 0.39 2.26 1.47 m3.S RFO 0.03 15.5 1.13 2.23
GBM 0.65 0.39 2.26 1.47 GBM 0.01 13.12 1.34 2.63
PLS 0.52 0.48 1.83 1.19 PLS 0.11 12.68 1.39 2.73

BART 0.62 0.38 2.32 1.51 BART 0.00 14.08 1.25 2.46
CUBIST 0.71 0.34 2.59 1.69 CUBIST 0.02 12.94 1.36 2.67

ENS 0.73 0.32 2.75 1.79 ENS 0.14 11.73 1.50 2.95
m3.Zn RFO 0.33 2.59 0.42 0.86 ExNa RFO 0.74 0.58 5.21 4.34

GBM 0.40 2.50 0.44 0.89 GBM 0.57 0.74 4.08 3.40
PLS 0.27 2.84 0.39 0.79 PLS 0.23 1.09 2.77 2.31

BART 0.44 2.49 0.44 0.90 BART 0.72 0.6 5.03 4.19
CUBIST 0.40 2.45 0.45 0.91 CUBIST 0.75 0.57 5.30 4.41

ENS 0.49 2.24 0.49 1.00 ENS 0.81 0.50 6.04 5.03

PSI RFO 0.32 63.64 2.07 1.46 ExCa RFO 0.81 3.91 6.01 3.57
GBM 0.38 60.69 2.18 1.53 GBM 0.79 4.29 5.48 3.25
PLS 0.44 57.96 2.28 1.60 PLS 0.59 7.03 3.34 1.99

BART 0.37 63.32 2.09 1.46 BART 0.80 3.97 5.92 3.52
CUBIST 0.37 61.38 2.15 1.51 CUBIST 0.85 3.51 6.70 3.98

ENS 0.52 52.61 2.51 1.76 ENS 0.85 3.47 6.78 4.02

ExMg RFO 0.55 1.14 1.60 1.56 ExK RFO 0.40 0.66 2.26 1.38
GBM 0.50 1.22 1.49 1.46 GBM 0.33 0.71 2.10 1.28
PLS 0.20 1.83 0.99 0.97 PLS 0.22 0.81 1.84 1.12

BART 0.54 1.14 1.60 1.56 BART 0.47 0.62 2.40 1.47
CUBIST 0.66 1.01 1.80 1.76 CUBIST 0.48 0.62 2.40 1.47

ENS 0.67 0.96 1.90 1.85 ENS 0.51 0.60 2.48 1.52

ExBas RFO 0.80 5.14 5.92 3.56 ECd RFO 0.36 0.06 2.83 2.71
GBM 0.77 5.74 5.30 3.19 GBM 0.37 0.05 3.40 3.25
PLS 0.59 8.86 3.43 2.07 PLS 0.30 0.05 3.40 3.25

BART 0.79 5.25 5.79 3.49 BART 0.23 0.07 2.43 2.32
CUBIST 0.84 4.66 6.53 3.93 CUBIST 0.35 0.06 2.83 2.71

ENS 0.84 4.65 6.54 3.94 ENS 0.40 0.05 3.40 1.38

ExAc RFO 0.28 0.67 0.37 1.52
GBM 0.28 0.68 0.37 1.50
PLS 0.43 0.77 0.32 1.32

BART 0.38 0.66 0.38 1.54
CUBIST 0.34 0.64 0.39 1.59

ENS 0.52 0.55 0.45 1.85

RFO = Random Forest Optimization; GBM = Gradient boosted machines; PLS = Partial least squares; BART = Bayesian additive regression
trees; RPIQ = IQ/RMSE; RPD = SD/SEP.
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3.4. Soil Health Indicators of Different Land Uses as Predicted by Total Ensemble Algorithm

Soil properties in Kenya, Tanzania and Uganda differed significantly among land-
use types and between soil depths (Table 3). In Kenya, the effect of land use at 0–15 cm
soil depth was significant for TN, TC, Mn, P, Zn, PSI, exchangeable Na, K and electrical
conductivity; soils collected from community forest (CF) at 0–15 cm and 15–45 cm soil
depth had significantly higher TN and TC than the control. Soil pH, which is a measure
of the soil acidity and alkalinity of soil with different land uses, was only significant at
45–100 cm depth (p < 0.05). The soil pH values of grassland (8.08 ± 0.59) and the control
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(8.48 ± 0.30) were significantly higher than for cropland with soil and water conservation
(CLSWC) (6.19 ± 0.65), community forest (6.416.94 ± 1.69) and agroforestry (6.41 ± 0.76;
p < 0.05) (Table 3). The soils used for different land uses in Kenya are therefore suitable for
agricultural activities (pH range of 6.62–7.46). Extremes in acidity or alkalinity of soil pH
alter the available nutrients, resulting in imbalanced element uptake in plants [44]. Certain
elements are more or less available at low soil acidic pH values (<5.5 units), thus resulting
in nutrient constrains and unavailability in soils [45]. Maximum P availability occurs at soil
pH range of 6.5–7.0; however, severe limitations with respect to P at 0–10 cm depth were
observed in grassland (2.96 + 0.75 mg kg−1), cropland without soil and water conservation
(5.58 + 2.35 mg kg−1) and community forest (5.50 + 3.02 mg kg−1) as compared to the
critical value of 8.5 mg kg−1 suggested for most crops [46]. The effect of land use and
soil depth was non-significant for exchangeable Ca and exchangeable Mg at 0–15 cm,
15–45 cm and 45–100 cm, respectively. At 0–15 cm soil depth, cropland with soil and water
conservation (CLSWC) had significantly high ExK (2.55 ± 0.57 cmolc kg−1), compared to
agroforestry (1.24 ± 0.47 cmolc kg−1), and cropland without soil and water conservation
(0.92 ± 0.53 cmolc kg−1).

In Tanzania, the effect of land use on topsoil (0–15 cm) was significant for TN, TC, Mn,
Al, Zn, PSI, exchangeable Ca, Mg, exbases and electrical conductivity (Table 3). TN was
significantly high (p < 0.05) for the control (0.83 ± 0.03 %) than for cropland with soil and
water conservation (0.18 ± 0.03 %) and other land uses at 0–15 cm soil depth. Soils from the
community forest in Tanzania at 0–15 cm, 15–45 cm and 45–100 cm had significantly higher
Fe contents than any other land use type, while community forest soils, collected at 0–15 cm
and 15–45 cm soil depths had significantly higher Mn content than any other land-use type
(p < 0.05; Table 3). Although Mn toxicity is ideal in acidic soils, soil pH across different
land uses was not significant and ranged from 5.99 ± 0.46 to 6.47 ± 0.48, indicating that
land uses have no significant effect on pH in Tanzania. Land use and soil depth were
non-significant for exchangeable K and exchangeable Na, but remained significant for
exchangeable Ca, exchangeable Mg at 0–15 cm, and 15–45 cm and 45–100 cm soil depths.
Exchangeable K and exchangeable Ca in the soil also depends on the composition of parent
rock materials [45].

In Uganda, land use and soil depth were significant for TN, TC, Mn, P, Zn, PSI,
exchangeable Na and exchangeable K (Table 3). TN and TC were significantly high at
the surface soil (0–15 cm) for five land use types compared to the control. Soil pH at the
surface soil across different land uses were significant, with more acidic soils observed for
the control (5.31 ± 0.59) and grasslands (5.79 ± 0.52). The highest soil pH (6.89 ± 0. 72)
and the lowest soil pH (5.31 ± 0.59) were recorded for agroforestry and control land uses,
respectively. Lower pH values for soils collected from grassland and the control could be as
result of basic cation depletion in these soils. However, at 0–15 cm, 15–45 cm and 45–100 cm
soil depths, soils from grassland recorded significantly higher Mn contents than the control
(Table 3). The decline in soil pH across grassland could be due to encroachment into the
grassland to create land for grazing and agricultural activities. Land use and soil depth did
not affect exchangeable K and exchangeable Na, which could be a result of the removal
of vegetation cover due to human and livestock interference [47]. A significantly high
concentration of exchangeable Ca (18.21 ± 7.51 cmol/kg soil) for surface soils (0–15 cm)
under agroforestry land use as compared to the control was probably due to decomposing
litter that change the relative quantities of exchangeable base (Ca, Mg) and acid (Al, Fe)
cations in soil [45]. Agroforestry through practices such as litter incorporation and manure
application has been suggested to improve soil carbon sequestration [48].
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Table 3. Soil quality indicators in different land uses in three countries at different depths as predicted by the ensemble algorithm on NIR spectra.

Country Depth
(cm) Land Use (n) TN

%
T C
%

pH
Units

Al
mg kg−1

Cu
mg kg−1

Fe
mg kg−1

Mn
mg kg−1

P
mg kg−1

Zn
mg kg−1

PSI
Units

ExNa
cmolc kg−1

ExCa
cmolc kg−1

ExMg
cmolc kg−1

ExK
cmolc kg−1

ExBas
cmolc kg−1

ECd
cmolc kg−1

KENYA 0–15 AF(6) 0.15 ± 0.06 ab 2.14 ± 0.89 ab 6.72 ± 0.89 a 676.33 ± 205.70 a 1.66 ± 0.99 a 168.4 ± 80.65 a 338.67 ± 75.46 a 61.74 ± 61.97 ab 8.71 ± 11.57 ab 61.66 ± 56.70 b 0.06 ± 0.05 b 18.34 ± 12.80 a 3.67 ± 1.62 a 1.24 ± 0.47 bc 23.31 ± 14.69 a 0.84 ± 0.05 b

CF(6) 0.24 ± 0.16 a 3.88 ± 2.82 a 7.09 ± 0.73 a 818.83 ± 153.70 a 2.86 ± 2.02 a 153.00 ± 52.00 a 269.50 ± 56.87 ab 5.50 ± 3.02 b 4.73 ± 3.91 ab 136.00 ± 17.75 a 1.08 ± 1.36 b 28.78 ± 79.44 a 5.97 ± 0.80 a 2.03 ± 0.71 ab 37.85 ± 9.72 a 0.22 ± 0.14 ab

CLSWC(6) 0.23 ± 0.05 ab 3.22 ± 0.62 ab 7.04 ± 0.73 a 843.83 ± 103.34 a 4.33 ± 0.29 a 145.00 ± 12.31 a 269.50 ± 56.87 ab 68.95 ± 53.30 a 12.97 ± 7.01 ab 89.55 ± 30.15 ab 0.04 ± 0.03 b 18.69 ± 6.06 a 4.33 ± 0.72 a 2.55 ± 0.57 a 25.62 ± 6.72 a 0.12 ± 0.05 ab

CLNSWC(6) 0.13 ± 0.06 ab 1.78 ± 0.78 ab 6.62 ± 0.89 a 778.67 ± 48.32 a 2.13 ± 1.38 a 221.67 ± 78.57 a 301.00 ± 81.19 b 5.58 ± 2.35 b 2.33 ± 0.58 b 64.02 ± 32.80 ab 0.67 ± 0.26 b 17.32 ± 9.62 a 3.09 ± 1.92 a 0.92 ± 0.53 c 21.98 ± 12.11 a 0.06 ± 0.02 ab

GL(6) 0.14 ± 0.06 ab 2.11 ± 0.47 ab 6.93 ± 1.08 a 765.00 ± 73.52 a 2.60 ± 1.86 a 217.88 ± 130.59 a 169.97 ± 75.45 ab 2.96 ± 0.75 b 1.71 ± 0.44 b 99.05 ± 20.06 ab 1.04 ± 0.38 b 22.92 ± 15.52 a 3.33 ± 2.17 a 1.59 ± 0.26 c 28.22 ± 18.34 a 0.76 ± 0.03 b

C(6) 0.09 ± 0.02 b 1.27 ± 0.41 b 7.46 ± 0.89 a 804.17 ± 132.09 a 2.25 ± 1.68 a 145.40 ± 62.75 a 254.33 ± 91.44 ab 56.27 ± 6.32 b 1.16 ± 0.28 b 99.88 ± 24.82 ab 3.52 ± 2.22 a 21.91 ± 10.71 a 3.98 ± 2.06 a 1.54 ± 0.78 bc 34.52 ± 10.45 a 0.26 ± 0.17 a

15–45 AF(6) 0.10 ± 0.02 ab 1.49 ± 0.42 ab 6.70 ± 0.99 a 789.67 ± 172.60 ab 1.79 ± 1.50 a 189.17 ± 101.92 a 255.17 ± 107.79 a 13.91 ± 11.28 a 2.99 ± 2.78 a 95.08 ± 46.17 ab 0.19 ± 0.17 b 15.37 ± 5.48 a 4.09 ± 1.24 a 1.43 ± 0.81 abc 21.07 ± 7.12 a 0.08 ± 0.06 b

CF(6) 0.10 ± 0.04 ab 1.67 ± 0.60 ab 6.82 ± 1.53 a 941.17 ± 342.97 ab 2.83 ± 2.21 a 170.03 ± 92.27 a 301.17 ± 61.11 a 3.00 ± 3.01 a 2.35 ± 1.22 a 149.45 ± 50.47 a 1.73 ± 2.02 b 23.23 ± 15.02 a 4.79 ± 0.83 a 1.32 ± 0.58 abc 31.07 ± 17.57 a 0.12 ± 1.10 ab

CLSWC(6) 0.15 ± 0.04 a 2.04 ± 0.65 a 6.55 ± 0.59 a 999.67 ± 198.04 a 4.07 ± 4.17 a 124.35 ± 35.66 a 191.60 ± 90.40 b 17.72 ± 30.79 a 4.33 ± 4.78 a 128.52 ± 42.29 ab 0.08 ± 0.05 b 13.70 ± 3.65 a 5.01 ± 1.85 a 1.86 ± 0.58 ab 20.66 ± 5.07 a 0.06 ± 0.02 b

CLNSWC(6) 0.10 ± 0.05 ab 1.54 ± 0.61 ab 6.94 ± 0.85 a 694.67 ± 89.00 ab 2.00 ± 1.64 a 166.50 ± 34.64 a 105.85 ± 61.54 ab 2.37 ± 1.59 a 2.94 ± 1.95 a 68.67 ± 46.99 b 1.49 ± 1.13 b 18.15 ± 12.27 a 3.20 ± 2.44 a 0.88 ± 0.46 bc 23.71 ± 16.11 a 0.12 ± 0.10 ab

GL(6) 0.07 ± 0.03 b 1.23 ± 0.17 ab 7.33 ± 1.13 a 605.50 ± 38.40 b 2.82 ± 2.52 a 153.03 ± 83.50 a 175.27 ± 98.26 ab 2.48 ± 1.58 a 4.78 ± 1.75 a 78.78 ± 27.82 ab 1.89 ± 1.43 b 23.48 ± 15.32 a 3.32 ± 2.64 ab 1.77 ± 0.35 c 29.46 ± 23.72 a 0.12 ± 0.07 ab

C(6) 0.07 ± 0.01 b 1.07 ± 0.59 b 8.03 ± 0.60 a 774.17 ± 153.54 ab 2.73 ± 1.40 a 92.47 ± 925.57 a 265.50 ± 77.56 ab 12.24 ± 8.91 a 2.24 ± 1.16 a 83.65 ± 19.92 ab 4.64 ± 2.41 a 30.50 ± 6.07 a 4.37 ± 2.00 a 1.97 ± 0.58 a 41.47 ± 8.38 a 0.25 ± 0.09 a

45–100 AF(6) 0.05 ± 0.01 a 0.74 ± 0.23 a 6.41 ± 0.76 cd 863.17 ± 316.21 ab 1.57 ± 1.64 a 163.83 ± 47.49 a 221.00 ± 41.69 a 15.52 ± 15.63 a 1.30 ± 0.75 a 111.23 ± 84.40 ab 0.29 ± 0.30 b 11.21 ± 6.80 b 3.67 ± 1.38 a 1.77 ± 0.74 ab 16.94 ± 7.98 b 0.06 ± 0.05 b

CF(6) 0.07 ± 0.04 a 1.27 ± 0.62 a 6.94 ± 1.69 bcd 928.50 ± 362.77 ab 2.83 ± 2.07 a 153.90 ± 89.84 ab 304.17 ± 114.36 a 3.92 ± 4.61 a 1.63 ± 0.78 a 132.88 ± 60.88 ab 2.28 ± 2.28 b 23.40 ± 15.27 ab 4.48 ± 0.91 b 1.16 ± 0.26 b 31.31 ± 18.35 ab 0.12 ± 0.11 ab

CLSWC(6) 0.09 ± 0.03 a 1.37 ± 0.67 a 6.19 ± 0.65 d 1124.33 ± 151.24 cd 3.08 ± 3.63 a 112.43 ± 20.22 abc 132.82 ± 40.16 a 2.28 ± 2.79 a 0.66 ± 0.33 a 165.23 ± 69.74 a 0.14 ± 0.13 b 10.24 ± 4.38 b 5.54 ± 2.49 a 1.28 ± 0.51 ab 17.20 ± 6.50 b 0.07 ± 0.08 b

CLNSWC(6) 0.06 ± 0.01 a 1.02 ± 0.28 a 7.91 ± 0.48 abc 689.33 ± 157.26 b 2.38 ± 1.84 a 83.00 ± 23.44 bc 155.10 ± 146.93 a 5.71 ± 4.44 a 0.78 ± 0.27 a 63.40 ± 17.81 b 2.78 ± 1.59 ab 28.71 ± 9.43 a 4.82 ± 1.53 a 1.90 ± 0.61 ab 38.21 ± 11.82 a 0.21 ± 0.13 ab

GL(6) 0.05 ± 0.01 a 0.88 ± 0.10 a 8.08 ± 0.59 ab 731.671 ± 203.55 ab 2.89 ± 2.44 a 80.00 ± 29.26 bc 190.98 ± 168.07 a 3.33 ± 1.97 a 0.85 ± 0.28 a 94.23 ± 34.45 ab 3.21 ± 1.52 ab 30.58 ± 9.84 a 4.92 ± 0.96 a 1.91 ± 0.75 ab 40.62 ± 11.14 a 0.17 ± 0.07 ab

C(6) 0.06 ± 0.06 a 0.78 ± 0.28 a 8.48 ± 0.30 a 684.67 ± 186.27 b 2.89 ± 1.87 a 61.20 ± 3.44 c 250.00 ± 18.68 a 26.22 ± 29.61 a 3.50 ± 5.15 a 79.27 ± 7.05 ab 5.36 ± 2.90 a 38.14 ± 6.29 a 4.48 ± 1.71 a 2.32 ± 0.74 a 50.30 ± 7.06 a 0.31 ± 0.17 a

Tanzania 0–15 AF(6) 0.21 ± 0.04 b 2.64 ± 0.48 a 6.40 ± 0.25 a 908.38 ± 25.28 ab 7.44 ± 5.56 a 62.35 ± 10.23 b 306.33 ± 98.08 ab 2.39 ± 1.75 a 7.32 ± 2.79 a 121.67 ± 28.20 a 0.02 ± 0.01 a 10.56 ± 3.17 a 3.27 ± 0.12 ab 0.27 ± 0.18 a 14.11 ± 3.15 a 0.07 ± 0.01 a

CF(3) 0.24 ± 0.05 b 2.76 ± 0.50 a 6.42 ± 0.22 a 832.67 ± 44.74 b 7.40 ± 1.23 a 157.33 ± 41.31 a 348.67 ± 87.27 a 2.53 ± 0.97 a 7.24 ± 1.65 a 94.47 ± 17.59 a 0.02 ± 0.00 a 11.92 ± 3.17 a 3.88 ± 065 a 0.13 ± 0.05 a 15.95 ± 3.86 a 0.09 ± 0.02 a

CLSWC(6) 0.18 ± 0.03 b 2.23 ± 0.33 a 5.99 ± 0.46 a 995.17 ± 89.56 a 5.97 ± 3.07 a 78.00 ± 18.57 b 129.55 ± 97.35 b 5.80 ± 3.11 a 2.98 ± 2.40 ab 97.05 ± 6.71 a 0.02 ± 0.03 a 7.89 ± 2.49 ab 2.52 ± 0.92 ab 0.17 ± 0.14 a 10.61 ± 3.42 ab 0.04 ± 0.01 a

CLNSWC(6) 0.22 ± 0.05 b 2.61 ± 0.61 a 6.47 ± 0.48 a 937.33 ± 86.31 ab 8.32 ± 4.70 a 81.40 ± 37.31 b 279.17 ± 124.67 ab 15.74 ± 22.08 a 5.85 ± 1.96 a 96.78 ± 30.02 a 0.02 ± 0.01 a 10.53 ± 3.48 a 3.30 ± 1.18 ab 0.31 ± 0.39 a 14.15 ± 5.00 a 0.08 ± 0.03 a

GL(6) 0.21 ± 0.05 b 2.59 ± 0.43 a 6.10 ± 0.42 a 963.33 ± 764.66 a 6.46 ± 3.72 a 73.32 ± 18.43 b 159.37 ± 129.13 ab 4.49 ± 2.62 a 3.82 ± 3.27 ab 101.33 ± 14.60 a 0.01 ± 0.01 a 8.68 ± 3.21 ab 3.00 ± 0.50 ab 0.13 ± 0.09 a 11.82 ± 3.42 ab 0.06 ± 0.01 ab

C(6) 0.83 ± 0.03 a 0.93 ± 0.23 b 6.28 ± 0.52 a 930.50 ± 64.20 ab 4.05 ± 2.01 a 60.28 ± 13.19 b 160.05 ± 113.86 ab 0.44 ± 0.49 a 0.47 ± 3.27 b 135.02 ± 39.39 a 0.02 ± 0.01 a 4.77 ± 1.90 b 2.05 ± 1.00 b 0.08 ± 0.10 a 9.92 ± 2.71 b 0.03 ± 0.00 c

15–45 AF(6) 0.14 ± 0.05 ab 1.62 ± 0.64 ab 6.59 ± 0.34 a 879.50 ± 43.22 a 6.46 ± 5.34 a 53.97 ± 11.77 b 194.90 ± 127.46 ab 0.93 ± 1.08 ab 3.35 ± 3.31 a 133.92 ± 27.43 a 0.03 ± 0.03 a 8.23 ± 3.88 a 2.79 ± 0.66 ab 0.07 ± 0.05 a 11.11 ± 4.52 a 0.05 ± 0.01 a

CF(3) 0.13 ± 0.01 ab 1.41 ± 0.11 ab 6.37 ± 0.12 a 844.00 ± 10.82 a 4.64 ± 0.07 a 116.67 ± 9.50 a 392.00 ± 124.90 a 0.00 ± 0.00 b 3.21 ± 1.35 a 107.67 ± 5.69 a 0.03 ± 0.00 a 7.97 ± 0.80 a 3.96 ± 0.22 a 0.08 ± 0.01 a 12.04 ± 1.00 a 0.05 ± 0.01 a

CLSWC(6) 0.12 ± 0.05 ab 1.42 ± 0.62 ab 6.18 ± 0.52 a 949.83 ± 96.80 a 4.46 ± 1.83 a 54.52 ± 17.50 b 48.97 ± 30.32 b 1.42 ± 1.81 ab 0.56 ± 0.45 aa 115.00 ± 12.55 a 0.04 ± 0.04 a 6.63 ± 2.36 a 2.39 ± 0.95 ab 0.05 ± 0.02 a 9.11 ± 3.27 a 0.04 ± 0.02 a

CLNSWC(6) 0.14 ± 0.05 ab 1.60 ± 0.55 ab 6.38 ± 0.40 a 916.67 ± 90.96 a 5.48 ± 2.34 a 58.82 ± 11.23 b 185.50 ± 127.83 ab 2.75 ± 3.11 ab 1.93 ± 1.43 a 107.27 ± 35.80 a 0.02 ± 0.01 a 7.52 ± 2.92 a 2.10 ± 0.59 b 0.08 ± 0.08 a 9.72 ± 3.51 a 0.04 ± 0.01 a

GL(6) 0.20 ± 0.04 a 2.43 ± 0.60 a 5.98 ± 0.48 a 981.83 ± 91.02 a 5.94 ± 3.57 a 77.03 ± 16.88 b 134.30 ± 114.82 b 3.63 ± 2.22 a 2.79 ± 3.54 a 104.40 ± 25.07 a 0.02 ± 0.03 a 8.40 ± 2.56 a 2.28 ± 0.86 b 0.07 ± 0.06 a 10.77 ± 3.37 a 0.05 ± 0.01 a

C(6) 0.06 ± 0.03 b 0.75 ± 0.28 b 6.27 ± 0.71 a 962.50 ± 100.41 a 3.45 ± 2.21 a 57.98 ± 32.52 b 110.69 ± 120.97 b 0.21 ± 0.34 ab 0.16 ± 0.28 a 141.88 ± 53.08 a 0.04 ± 0.02 a 4.29 ± 2.11 a 1.99 ± 1.16 b 0.02 ± 0.02 a 6.33 ± 3.00 a 0.03 ± 0.01 a

45–100 AF(6) 0.05 ± 0.01 b 0.71 ± 0.24 ab 6.49 ± 0.59 a 877.17 ± 106.93 a 2.65 ± 1.14 a 42.85 ± 20.11 b 35.22 ± 43.35 b 0.05 ± 0.12 a 0.22 ± 0.27 a 143.93 ± 41.59 a 0.04 ± 0.01 a 4.99 ± 2.17 a 2.06 ± 0.75 ab 0.03 ± 0.03 a 7.11 ± 2.76 a 0.03 ± 0.01 a

CF(3) 0.07 ± 0.01 ab 0.69 ± 0.08 ab 6.48 ± 0.17 a 888.00 ± 21.66 a 2.52 ± 0.25 a 91.30 ± 23.13 a 233.77 ± 141.97 a 0.00 ± 0.00 a 0.54 ± 0.63 a 142.67 ± 29.67 a 0.08 ± 0.01 a 5.46 ± 0.99 a 3.70 ± 0.58 a 0.06 ± 0.01 a 9.30 ± 1.56 a 0.04 ± 0.01 a

CLSWC(6) 0.07 ± 0.04 ab 0.91 ± 0.52 ab 6.18 ± 0.47 a 1000.00 ± 105.50 a 3.69 ± 1.22 a 43.15 ± 16.81 b 21.55 ± 36.55 b 0.66 ± 0.84 a 0.04 ± 0.09 a 122.27 ± 20.81 a 0.05 ± 0.07 a 5.59 ± 2.62 a 2.29 ± 1.26 ab 0.02 ± 0.02 a 7,95 ± 3.87 a 0.04 ± 0.02 a

CLNSWC(6) 0.06 ± 0.02 ab 0.81 ± 0.13 ab 6.49 ± 0.36 a 928.00 ± 13.44 a 4.11 ± 1.17 a 39.38 ± 9.40 b 59.62 ± 78.58 b 0.97 ± 1.09 a 0.19 ± 0.16 a 118.80 ± 25.23 a 0.04 ± 0.03 a 5.16 ± 0.99 a 1.57 ± 0.51 a 0.03 ± 0.03 a 6.79 ± 1.41 a 0.03 ± 0.01 a

GL(6) 0.12 ± 0.05 a 1.45 ± 0.63 a 6.21 ± 0.40 a 962.67 ± 44.13 a 4.38 ± 2.66 a 56.42 ± 12.34 b 75.33 ± 54.92 b 0.78 ± 0.95 a 0.98 ± 1.21 a 123.17 ± 19.46 a 0.04 ± 0.03 a 6.65 ± 1.87 a 2.04 ± 0.81 ab 0.04 ± 0.02 a 8.77 ± 2.59 a 0.04 ± 0.02 a

C(6) 0.05 ± 0.03 b 0.71 ± 0.34 b 6.29 ± 0.86 a 920.33 ± 178.02 a 3.33 ± 2.15 a 46.13 ± 18.50 b 73.62 ± 96.54 b 0.17 ± 0.19 a 0.24 ± 0.42 a 148.02 ± 56.09 a 0.04 ± 0.02 a 3.93 ± 2.66 a 1.84 ± 1.12 b 0.02 ± 0.02 a 5.84 ± 3.46 a 0.03 ± 0.01 a

Uganda 0–15 AF(6) 0.22 ± 0.03 a 3.07 ± 0.32 ab 6.89 ± 0. 72 a 937.17 ± 115.00 b 3.68 ± 0. 52 b 75.08 ± 9.67 b 468.83 ± 74.49 a 22.52 ± 45.35 a 3.25 ± 1.25 a 89.83 ± 17.08 ab 0.03 ± 0.01 a 18.21 ± 7.51 a 5.50 ± 0.79 a 0.91 ± 0.74 a 24.65 ± 8.67 a 0.10 ± 0.02 a

CF(6) 0.36 ± 0.13 ab 4.50 ± 1.66 a 6.03 ± 0.87 abc 1031.50 ± 351.99 ab 3.40 ± 1.66 ab 193.50 ± 104.62 a 200.38 ± 154.89 c 14.45 ± 8.43 a 3.27 ± 0.59 a 94.95 ± 53.41 ab 0.13 ± 0.18 a 14.23 ± 7.23 ab 5.17 ± 2.13 a 0.61 ± 0.25 a 20.37 ± 9.25 ab 0.1140.02 a

CLSWC(6) 0.20 ± 0.05 ab 2.68 ± 0.76 ab 6.46 ± 0.29 ab 922.50 ± 90.68 b 4.52 ± 0.32 a 100.02 ± 22.71 b 557.00 ± 62.53 a 6.08 ± 4.26 a 3.24 ± 0.59 a 64.78 ± 14.50 b 0.03 ± 0.02 a 12.15 ± 2.49 abc 3.24 ± 0.70 ab 1.17 ± 0.93 a 16.59 ± 3.66 abc 0.09 ± 0.03 a

CLNSWC(6) 0.23 ± 0.04 ab 3.40 ± 0.32 ab 6.32 ± 0.25 abc 969.67 ± 127.33 ab 3.36 ± 0.60 ab 96.62 ± 20.24 b 398.83 ± 51.47 ab 2.57 ± 0.46 a 1.88 ± 1.41 ab 108.05 ± 42.91 ab 0.03 ± 0.02 a 14.41 ± 1.89 ab 4.13 ± 0.42 ab 0.56 ± 0.50 a 19.13 ± 2.07 ab 0.06 ± 0.02 a

GL(6) 0.32 ± 0.25 ab 4.82 ± 3.47 a 5.79 ± 0.52 bc 1483.33 ± 483.47 a 2.19 ± 0.83 ab 141.38 ± 55.77 ab 104.23 ± 122.66 c 3.63 ± 0. 88 a 0.76 ± 0.35 b 220.35 ± 164.81 a 0.06 ± 0.03 a 7.96 ± 4.72 bc 3.11 ± 2.13 ab 0.40 ± 0.47 a 11.53 ± 6.74 bc 0.04 ± 0.02 a

C(6) 0.13 ± 0.03 b 1.35 ± 0.73 b 5.31 ± 0.59 c 1391.67 ± 200.00 ab 2.16 ± 0.90 b 91.08 ± 29.77 b 252.66 ± 140.10 bc 4.91 ± 8. 09 a 0.76 ± 1.17 b 223.00 ± 104.40 a 0.26 ± 0.45 a 4.79 ± 3.12 c 2.13 ± 0.91 b 0.58 ± 0.57 a 7.73 ± 3.72 c 0.22 ± 0.27 a

15–45 AF(6) 013. ± 0.04 a 1.76 ± 0.54 a 6.59 ± 0.84 a 1145.00 ± 165.62 b 3.54 ± 0.54 a 92.27 ± 9.40 a 390.83 ± 129.82 a 1.28 ± 1.03 ab 0.89 ± 0.52 ab 134.55 ± 50.11 bc 0.05 ± 0.03 a 10.17 ± 3.73 a 4.19 ± 1.16 a 0.82 ± 1.35 a 15.23 ± 4.77 a 0.06 ± 0.03 b

CF(6) 0.16 ± 0.05 a 2.06 ± 0.73 a 5.71 ± 0.54 ab 1251.67 ± 252.62 b 3.37 ± 1.12 a 196.43 ± 136.02 ab 128.95 ± 119.65 b 3.34 ± 2.34 a 0.68 ± 0.32 b 240.35 ± 80.11 bc 0.78 ± 1.71 a 3.13 ± 4.42 ab 3.67 ± 1.70 a 047. ± 0.39 a 12.05 ± 5.82 a 0.05 ± 0.02 ab

CLSWC(6) 0.13 ± 0.03 a 1.58 ± 0.64 a 6.46 ± 0.10 a 1024.17 ± 40.05 b 3.84 ± 0.90 a 120.40 ± 28.20 ab 519.17 ± 123.35 a 1.61 ± 2.50 ab 1.59 ± 0.83 a 101.97 ± 27.29 c 0.02 ± 0.01 a 9.68 ± 3.28 a 3.10 ± 0.82 ab 0.45 ± 0.35 a 13.25 ± 3.48 a 0.05 ± 0.02 ab

CLNSWC(6) 0.15 ± 0.03 a 2.12 ± 0.20 a 6.17 ± 0.53 a 1144.50 ± 186.72 b 3.45 ± 0.50 a 109.78 ± 13.02 ab 358.00 ± 90.40 a 0.54 ± 0.34 b 0.69 ± 0.26 b 158.50 ± 53.09 bc 0.05 ± 0.02 a 10.33 ± 2.78 a 3.07 ± 0.31 ab 0.26 ± 0.23 a 13.71 ± 3.16 a 0.04 ± 0.01 ab

GL(6) 0.23 ± 0.24 a 3.28 ± 20.95 a 5.13 ± 0.33 b 1863.33 ± 496.41 a 1.73 ± 0.80 b 103.38 ± 50.45 a 33.06 ± 41.91 b 1.29 ± 0.84 ab 0.39 ± 0.13 b 346.83 ± 172.25 a 0.07 ± 0.05 a 2.03 ± 2.16 b 0.83 ± 1.15 c 0.13 ± 0.06 a 3.06 ± 3.27 b 0.02 ± 0.01 ab

C(6) 0.11 ± 0.09 a 1.26 ± 1.24 a 5.05 ± 0.62 b 1471.67 ± 190.62 ab 1.57 ± 0.88 b 70.35 ± 22.24 b 152.43 ± 106.79 b 0.23 ± 0.28 b 0.19 ± 0.15 b 275.33 ± 72.81 ab 0.05 ± 0.01 a 2.76 ± 1.68 b 1.47 ± 0.68 bc 0.15 ± 0.09 a 4.42 ± 2.22 b 0.07 ± 0.04 a

45–100 AF(6) 0.09 ± 0.05 a 1.09 ± 0.87 ab 6.28 ± 0.74 a 1215.00 ± 70.92 b 2.60 ± 0.93 ab 103.15 ± 23.37 ab 331.83 ± 167.95 a 0.61 ± 0.53 ab 0.39 ± 0.23 a 170.63 ± 50.87 b 0.03 ± 0.01 a 5.72 ± 3.38 a 2.95 ± 1.03 ab 0.98 ± 2.05 a 9.68 ± 4.23 a 0.04 ± 0.02 a

CF(6) 0.11 ± 0.03 a 1.18 ± 0.36 ab 5.84 ± 1.18 a 1330.83 ± 294.86 b 4.58 ± 2.86 ab 130.12 ± 69.57 a 99.99 ± 4.02 bc 1.16 ± 0.94 a 0.34 ± 0.17 a 172.52 ± 101.91 b 2,12 ± 4.71 a 5.16 ± 2.71 a 4.28 ± 3.11 a 0.32 ± 0.23 a 11.88 ± 9.48 a 0.06 ± 0.06 a

CLSWC(6) 0.08 ± 0.01 a 0.75 ± 0.26 ab 6.11 ± 0.50 a 1118.33 ± 59.81 b 2.14 ± 0.66 b 118.45 ± 29.32 ab 392.00 ± 143.57 a 0.11 ± 0.28 b 0.49 ± 0.35 a 176.67 ± 48.27 b 0.02 ± 0.01 a 6.01 ± 2.13 a 2.83 ± 0.56 ab 0.23 ± 0.10 a 9.09 ± 2.16 ab 0.04 ± 0.01 a

CLNSWC(6) 0.09 ± 0.01 a 0.96 ± 0.09 ab 5.88 ± 0.68 a 1278.33 ± 234.15 b 2.13 ± 0.76 b 100.60 ± 21.48 ab 275.00 ± 78.22 ab 0.00 ± 0.00 b 0.28 ± 0.04 a 253.67 ± 69.94 b 0.03 ± 0.01 a 5.43 ± 2.87 a 2.10 ± 1.11 abc 0.13 ± 0.08 a 7.69 ± 3.93 b 0.03 ± 0.01 a

GL(6) 0.17 ± 0.17 a 2.15 ± 1.68 ab 5.06 ± 0.26 a 1928.33 ± 335.76 a 1.50 ± 0.76 b 76.25 ± 33.43 ab 18.06 ± 40.90 c 0.63 ± 0.47 ab 0.18 ± 0.20 a 391.33 ± 136.02 b 0.04 ± 0.02 a 0.61 ± 0.30 a 0.26 ± 0.23 c 0.09 ± 0.06 a 1.01 ± 0.45 ab 0.01 ± 0.00 a

C(6) 0.07 ± 0.02 a 0.70 ± 0.22 b 5.11 ± 0.66 a 1455.00 ± 169.56 b 1.14 ± 0.63 b 57.25 ± 8.67 b 85.67 ± 140.90 c 0.15 ± 0.23 b 0.24 ± 0.25 a 290.33 ± 66.70 ab 0.06 ± 0.03 a 2.58 ± 1.83 ab 1.01 ± 0.60 bc 0.19 ± 0.23 a 3.84 ± 2.50 ab 0.06 ± 0.05 a

AF = Agroforestry; CF = Community forest; CLSWC = Cropland with soil and water conservation; CLNSWC = Cropland without soil and water conservation; GL = Grassland; C = Control. Means down the
groups within a country followed by different letters are significantly different (p < 0.05) with respect to land use and soil depths; n = number of samples per land-use category.
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4. Discussion

Total ensemble modeling was used as an alternative method for predicting soil quality
indicators of different climate-smart land-use practices using soil NIR spectra. The ensem-
ble modeling approaches have received little attention in contexts where calibration and
prediction are common in chemistry [20]. The adoption of this method showed improved
accuracy as compared to random forest optimization, gradient boosted machines, partial
least squares, Bayesian additive regression trees and Cubist (Figures 3 and 4). A good
prediction was obtained for total carbon (R2 = 0.87), TN (R2 = 0.82), exchangeable bases
(sum of Mehlich exch Ca, Mg, K, Na), Mehlich 3 extractable Cu, Mehlich 3 extractable Fe,
Mehlich 3 extractable B, Mehlich 3 extractable Mn, exchangeable Na and exchangeable
Ca. Exchangeable Ca and Mg have also been satisfactorily predicted (R2 > 0.70) by other
authors [37,40,41]. Nevertheless, Chang et al. [38] found that some soil chemical or physical
variables that do not have their primary response in the NIR region are poorly predicted,
in comparison with biological indicators. However, the predictions of such properties
can be achieved by correlations with biological properties [49]. Bian et al. [50] found that
the linearity relationship of the total ensemble method was better than other modeling
methods such as PLS.

Total ensemble modeling first generates diverse training subsets from the sample
direction to build multiple sub-models [51], while gradient boosted machines (GBM) are
hybrid methods that combines boosting and bagging techniques [28]. Cubist and random
forests models have also been used to generate a more comprehensive predictive accuracy
on NIR spectra [30,52]. The failure in calibration for Mehlich 3 extractable P and Mehlich 3
extractable Zn could probably be as a result of very narrow ranges, with extreme minimum
values of 0.00 mg kg−1 for both Zn and P (Table 1). However, Minasny et al. [53] attributed
the poor prediction of these properties to the fact that they are not related to the soil matrix
or solid constituents. Additionally, electrical conductivity (R2 = 0.40) and pH (R2 = 0.65)
do not exhibit a primary response in the NIR region and their prediction depends on their
relationships with organic matter and clay contents [54]. Unsatisfactory predictions of
Mehlich 3 extractable P and electrical conductivity (R2 < 0.66 and RPD < 2) were also
observed by other authors [42,54]. In general, electrolyte concentration-related parameters
such as electrical conductivity (ECd) are not accurately predicted [55].

The concepts of soil health and soil quality are based on the ability of a given soil
to sustain production and measure both positive and negative changes in soil health [46].
Soil characteristics and overall soil health are influenced by land-use systems and intrinsic
features, with soil nutrient availability and soil metal concentrations accounting for the
majority of the variation seen. Additionally, land-use patterns have an impact on the
soil nutrient distribution and availability by affecting soil characteristics [56]. However,
the different soil pH ranges for different climate-smart land-use types observed in this
study suggest that soil pH is unlikely to have a negative impact on plant development and
agricultural productivity. Some of the physical-chemical qualities of soil are static across
time, while others are dynamic across a range of time scales. Some are resistant to change
brought about by land-use types, whereas others are quickly influenced in both positive
and negative ways by land use [57]. In most of the quality indicators assessed at different
soil depths, agroforestry, community forest, cropland with soil and water conservation,
cropland without soil and water conservation and grassland land uses resulted in better
soil quality as compared to controlled land use. As a result, the findings of this study
showed the potential of different climate-smart land-use types to improve or preserve
soil quality. Soil quality changes are typically the result of increased erosion processes
caused by plowing, burning, overgrazing, and other land-use practices that remove the
protective vegetative cover [58]. Using a threshold value of 0.2% TN [25] to assess the
agricultural productivity of soils at different depths for different land uses, the majority
of topsoils (0–15 cm), mid depth (15–45 cm), and at a depth of 45–100 cm had >0.2% N.
The results agree with other authors who concluded that climate-smart land use can
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reduce the degradation of soil quality. Adopting climate-smart land-use practices is a
prerequisite to ensure soil health and crop production for sustainable food production
systems. These practices, such as agroforestry, community forestry, cropland with soil and
water conservation, and grasslands, can increase soil microbial activities and the cation
exchange capacity [59]. The soil health indicators used for the assessment of any soil are
based on the intended use of the soil. Hence, the set of soil parameters used to assess
soil for sustainable rangeland may differ from those used to assess the soil for sustainable
crop production, grasslands, and community forests. As a result, there are no universal
soil health indicators that will work in all systems. Some soil health indicators, such as
water-holding capacity and soil texture, do not change rapidly over time, while other
soil health indicators fluctuate more throughout a field and over time according to soil
management, crop variety, precipitation, and temperature.

5. Conclusions

This study highlighted the robustness and the predictive power of using total ensemble
modeling on NIR spectra for predicting the soil chemical and physical properties as soil
health indicators. The results are better when using the total ensemble algorithm as
opposed to the random forest optimization, gradient boosted machines, partial least
squares and Bayesian additive regression trees algorithms. Further, the developed models
were able to predict the physical and chemical properties of soil collected from soils used
for different land-use practices at different depths. The soils of the research locations are
suitable for sustainable food production systems according to the current assessment of
soil health indicators; however, land-use systems and sampling depth, as well as intrinsic
traits, influence the overall soil health, with soil nutrient availability accounting for the
majority of the variation observed. Thus, the findings of this study highlighted the land-use
categories’ potential for improving or sustaining soil quality. As a result, there is reason for
adopting climate-smart agriculture (CSA) practices as a viable alternative.
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