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Abstract: Cadmium (Cd) is a heavy metal present in atmosphere, rocks, sediments, and soils without
a known role in plants. It is relatively mobile and can easily enter from soil into groundwater and
contaminate the food chain. Its presence in food in excess amounts may cause severe conditions in
humans, therefore prevention of cadmium entering the food chain and its removal from contaminated
soils are important steps in preserving public health. In the last several years, several approaches
for Cd remediation have been proposed, such as the use of soil amendments or biological systems
for reduction of Cd contamination. One of the approaches is phytoremediation, which involves the
use of plants for soil clean-up. In this review we summarized current data on the use of different
plants in phytoremediation of Cd as well as information about different approaches which have been
used to enhance phytoremediation. This includes data on the increasing metal bioavailability in the
soil, plant biomass, and plant accumulation capacity as well as seed priming as a promising novel
approach for phytoremediation enhancing.

Keywords: heavy metal tolerance; phytoremediation enhancement; hyperaccumulating plants; metallophytes

1. Introduction

Cadmium (Cd) is a non-essential metal with an unknown role in plants and toxic effects
on plants and animals. It is naturally present in the atmosphere, sedimentary rocks, and
soils. Major natural sources of Cd contamination are the result of geological weathering of
rocks [1] and anthropogenic sources that include application of agrochemicals, or pollution
of soils by disposal or reuse of industrial or urban wastes [2]. Cd may be produced as
part of industry processes, such as Zn smelting, and historically, it has found uses in
batteries, semiconductors, electroplating, and stabilizers [3]. Phosphatic (P) fertilizers are a
major source of Cd in agricultural systems, and increased Cd content in soil was observed
in countries where P fertilizer is used extensively [3]. In unpolluted soils, Cd occurs at
concentrations of 0.01 to 1 mg/kg with a worldwide mean of 0.36 mg/kg (reviewed by [2]).
It is one of the heavy metals with relatively high mobility (depending on many factors)
in the environment and may be faster released from the soil into groundwater than other
heavy metals [2]. From the soil, it can be relatively easily transferred into vegetative cover
entering the food chain [4]. Since 1972, Cd has been recognized as a food contaminant, and
if administered in high amounts, it may cause renal failure, bone demineralization and
increased cancer risk [5]. At birth, Cd is not present in the human body, but it accumulates
with age, mainly in the kidneys and liver [3]. Cd-contaminated food is the main source of
Cd exposure in the general population, but some specific groups such as smokers, workers
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in Cd industries, or people with high industrial or environmental exposure have increased
risk for negative impacts of Cd [5].

Pollution of soils and groundwater with Cd is a global problem. Different approaches
have been proposed for prevention of Cd contamination or its remediation. Wastew-
ater cleaning, control of Cd levels in landfills and mines, and reduction of the use of
Cd-contaminated phosphate fertilizers may help reduce soil and water contamination.
Various approaches could be used to remove Cd from the soil and to prevent food chain
contamination. One of the proposed approaches is soil washing with chemicals, where
different amendments have been proposed for agricultural use [6–8]. In addition, different
microbes such as bacteria, fungi, algae, and plants may be potentially useful for remov-
ing Cd from soil [9–11]. In this review, we will examine the use of phytoremediation, a
plant-based approach that is economically feasible, eco-friendly that has attracted great
attention for the past several years [12–15]. In this work, we focused on summarizing
the data about current aspects of Cd phytoremediation, which plants have a potential
to be used in phytoremediation, and what different approaches can be used to enhance
Cd phytoremediation.

2. Behaviour of Cadmium in the Soil and Uptake by Plants

Cd (II) is a highly toxic, soil-persistent, primary heavy metal contaminant [16], rel-
atively easily absorbed by plant roots by which it can contaminate the food chain and
consequently bioaccumulate in the human body, expressing its toxic effects. There are
several factors that can affect uptake of Cd by plants, pH is one of the most prominent ones
since adsorptive capacity of soils for Cd triples for each pH unit increase within the interval
4–7 [17]. Cd is relatively water soluble under acidic conditions, with limited solubility in
carbonate forms (CdCO3) and neutral solubility in alkaline soils [18]. Besides pH, other
soil factors can also affect Cd solubility, such as organic matter content, cation exchange
capacity and concentration of other cations. Organic matter bounds Cd and converts it into
an organically bound fraction, reducing its bioavailability [19]. Replacement of structural
magnesium cation (Mg) with Cd is an important mechanism in cation sorption, affecting
cation exchange capacity (reviewed by [18]).

Cd is a soft Lewis acid promoting formation of strong complex ions with S2−, HS−, halide
ions and organic sulphides and thiols. The presence of inorganic and organic ligands in the soil
solution may decrease soil adsorption by formation of dissolved complexes. Cadmium belongs
to the group of metals that interact more with low molecular weight organic matter with an
order of affinity as follows: Cu2+ > Cd2+ > Fe2+ > Pb2+ > Ni2+ > Co2+ > Mn2+ > Zn2+ [20].
Organic acids that are dominated by carboxyl groups facilitate complexation of Cd when
present in large concentrations, with a magnitude of Cd solubilisation in the following
order: fumaric > citric > oxalic > acetic ≈ succinic acid [21]. The presence of some anions in
the soils influences sorption behaviour of Cd, e.g., Cl− and NO3− restrain Cd sorption due
to the formation of soluble inorganic complexes, while H2PO4

− and HSO4
− enhance Cd

sorption due to surface precipitation [22]. Because of similar geochemical behaviour, Zn is
the most efficient Cd competitor for sorption sites, but the limiting pH for Cd mobility is
6.5, higher than that of Zn (5.5–6) and other heavy metals (Ni 5.5; Cu 4.5; Cr 4.0; Pb < 4),
reducing the competition between Cd and other minerals [23].

Absorption of Cd from the soil and its (re)distribution between roots and shoots is
a highly regulated process where several key players are involved: metal transporters of
the root cell plasma membrane, xylem and phloem loading/unloading and leaf/shoot
sequestration and detoxification. Plants absorb cadmium through the roots, and there are
several factors that can affect availability of cadmium to plants, such as above-mentioned
pH, the rhizosphere, and organic acids [24]. In nature, Cd can exist in different forms
such as Cd(OH)2, CdCO3, CdSO4 or as a precipitate in the form of arsenates, chromates,
sulphides, etc. For plants, Cd uptake can happen at pH 6–7 in forms such as CdCl−,
CdHCO3

+, CdCO3
+ and CdCln [25].
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Generally, uptake of any metal consists of two stages: (1) apoplastic adsorption, a
rapid process, where metal ions accumulate in root apoplast due to electrostatic inter-
actions between positively charged metal cations and deprotonated, negatively charged
carboxyl groups (dissociation of carboxylic acid due to pH increase) and (2) symplastic
uptake which is correlated to metabolic activity and a much slower process (reviewed
by [24]). For cadmium to enter the root cells (symplast), it needs to cross the cell mem-
brane, which is facilitated through the presence of various channels and metal transporters.
Metal transporters that participate in Cd transport are: ZIP (ZRT and IRT-like proteins)
transporter family which can transport metals from extracellular space to cytoplasm; OPT
(oligopeptide transporter) family, such as YSL (yellow stripe-like) transporters that trans-
port metal–nicotinamide complexes through the plant cell membrane and can transport Cd
complexes; NRAMP (natural resistance-associated macrophage protein), proton-coupled
metal ion transporters [26]. There are some reports that Cd could enter the cell also
through Ca2+ channels [27] and that Cd can block Ca2+ channels of the cytoplasmic side of
vacuolar membrane [28].

At the level of the plasma membrane within the root cells, H+ and HCO3− are dis-
sociated from H2CO3 in the process of respiration, followed by rapid exchange of H+

with Cd2+ resulting in adsorption of Cd2+ on the cell surface preparing Cd for apoplast
absorption pathway [29]. Cd then enters the cell through ion channels for Fe2+, Zn2+ and
Ca2+, additionally plants can secrete low molecular compounds (e.g., mugineic acid, malic
acid etc.), enhancing the availability of the ions and forming metal chelates [30] which are
subsequently absorbed by the plant.

After Cd crosses the membrane of the root, metal ions are transported from the
symplast to xylem and this process is regulated by several factors. Once the metal enters
the plant cell, it can be accumulated to a certain level, depending on the plant tolerance,
and the rate of accumulation can depend upon the affinity of the chelating molecules (such
as nicotianamine, glutathione, and proline), and selectivity and presence of the transporters.
Excess Cd is removed from the cytosol to preserve plant activities, and this is achieved by
chelation and compartmentalisation in vacuole or plant cell walls [31].

Chelating agents (phytochelatins), vacuolar sequestration and apoplectic barriers,
as well as loading activity to the xylem [32,33], where high cation exchange capacity of
xylem cell walls controls metal ion transport [24], are major factors that affect Cd xylem
loading. In hyperaccumulating plants where high concentration of Cd accumulate in the
cells, plants employ different mechanisms of detoxification such as of Cd vacuolar seques-
tration, Cd chelation (binding Cd to S-containing ligands—phytochelatins, glutathione and
metallothionines—cysteine-rich, metal-binding proteins) to alleviate Cd toxicity [34,35].
Phytochelatins are involved in metal inactivation and accumulation mechanisms while
metallothionines’ role is restrained to cytosol, and they play small or no roles in the accu-
mulation of Cd [24].

If the metal is transported via phloem, it must be ligated to nicotianamine, glutathione
(GSH) or phytochelatins (PCs) [36,37], and PCs have high affinity to Cd binding [36]. It is
considered that Cd is loaded into the phloem in the form of Cd-thiolate complexes where
stability of Cd-S bond minimizes the toxicity [38], and xylem to phloem transfer plays a
key role in Cd transport in plants [39]. Movement of metals from the root through xylem is
coordinated with sulphur and acetate ligands and ability to load Cd into xylem parenchyma
cells is dependent upon the activity of transport proteins. Cd2+ uptake from the xylem to
shoot symplast is governed by the activity of heavy metal transporters embedded in shoot
cell membrane [29]. There are still many aspects of Cd transport and accumulation that
remain unclear, especially in plants with different levels of Cd tolerance, resistance and
accumulation capacity, further clarification of those mechanisms will lead to more efficient
use of hyperaccumulating plants in the processes of phytoremediation.
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3. Toxic Effects of Cd on Plants

Toxic effects of Cd are evident in different metabolic and physiological plant processes,
with different degrees of severity depending on how resistant the plant is to Cd. Even at low
dosages, Cd can cause leaf chlorosis, necrotic lesions, destruction of chloroplast structures,
water stress, inhibition of root elongation, impaired gas exchange, wilting, and it can affect
uptake of macro- and micronutrients [40]. Once Cd enters plant cells, elicitation of free
radicals leads to outbursts of reactive oxygen species (ROS) initiating apoptosis [41]. Plants
must counteract these toxic effects by a variety of mechanisms starting from the first point
of Cd entrance—the root membrane [42]. Plants transport Cd in the form of metal-organic
complexes and in the rhizosphere, Cd often competes with several essential metal ions and
Cd absorption can lead to iron deficiency in plants exposed to Cd toxicity [43].

Since root is the first contact point between the plant and Cd it often gets damaged due
to oxidation of membrane proteins/thiols, inhibition of protein pumps or simply by altered
membrane fluidity reviewed by [42]. Once Cd reaches plant leaves it is sequestered in
vacuoles to reduce its toxic effects on photosynthesis and other processes, or it is detoxified
by chelating compounds (glutathione, phytochelatins, metallothioneins and other cysteine-
rich membrane proteins), reviewed by [42]. In other cases, plants can prevent Cd absorption
by excretion of root exudates including carboxylic acid (citric, malic) and histidine [44].
Correlation between synthesis of citric, malic, and oxalic acid and phenolic acids and Cd
tolerance has been reported in Silene sendtneri [45].

Level of cadmium that is toxic for plants varies among plant species based on ecotypes,
cultivars etc. [46]. Some species are sensitive to low Cd concentrations, while other species are
highly tolerant and can accumulate high concentrations of Cd in their shoots (>100 mg Cd kg−1)
and are considered as Cd hyperaccumulators [47,48]. There are several species classified as Cd
hyperaccumulators with high bioconcentration and translocation factors and enhance accumu-
lation of Cd in shoots (>2000 mg Cd kg−1), such as Arabis gramminifera, Chromolaena odorata [49],
Chara aculeata, Nittela opaca [50] and Silene sendtneri [45]. Since hyperaccumulating plants do
not show toxic symptoms, such as shoot biomass decrease, plants with high translocation
factor (ratio of metal concentration in the shoot to that in the root) are suitable for phytomining
(re-extraction of metals form plant biomass) [51].

In contrast, non-accumulating and non-tolerant plant species are susceptible to toxic
effects of Cd and severity of toxic symptoms varies in relation to degree of soil contam-
ination, plant species, ecotypes, cultivars, soil composition etc. [24]. Cd can affect plant
growth, biomass production, photosynthesis and carbon assimilation, mineral uptake
and translocation, development of reproductive tissues, and many other processes in
non-tolerant plants.

In the context of Cd effects on plant growth, most prominent effect is reduction of root
length and dry mass which is related to decrease of mitotic activity in root meristems under
Cd stress [51,52]. In shoots most prominent effects of Cd toxicity can be seen through changes
in leaves such as chlorosis, desiccation, necrosis, and stunting [53]. Cd affects photosynthetic
apparatus influencing complex II and two photosystems (PSI and PSII) [54] altering the chloro-
plast ultrastructure. Cadmium disrupts enzymes involved in the Calvin cycle, decreasing
photosynthetic rate. Cd can displace Ca2+ ions in oxygen-evolving complexes and Mg2+ in
chlorophyll pigments and decrease chlorophyll and carotenoid content [54,55].

Cadmium interferes with absorption of minerals such as zinc, iron, calcium, man-
ganese, magnesium, copper, silicon, and potassium [56,57]. It is considered that the effect
of Cd on mineral absorption is a result of molecular competition between Cd and other
cations in channels for essential metal uptake from soil to root leading to deficiency of
essential elements [44]. One of the minerals highly affected is iron, where deficiency of
iron is one of the main reasons for toxicity of Cd in leaves [58]. The citrate transporter
responsible for xylem loading of iron and its translocation is downregulated by Cd [59],
causing Fe deficiency. Other metals using the same transport mechanism such as Cu, Al,
Cr and Ni show similar decrease under Cd toxicity. For alkaline earth ions, Mn, and Zn
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(Ca-like metals) competitive inhibition of translocation is also present suggesting that Cd
can use the same translocation system as Ca [24].

Plants resistance to heavy metals depends on different levels of defence, and the first
line of defence is the epidermal layer in the roots with the root tip and root hairs as the most
important plant part for the absorbance of Cd2+ ions from the soil [29]. In the cell, Cd2+ can
induce oxidative stress inducing production of reactive oxygen species (ROS) indirectly
by blocking cysteine groups in enzymes, by competitive binding to Ca2+ binding motifs
in calmodulin and water-splitting complex of photosystem II [60]. Cd2+ can also induce
increased production of oxygen radicals at complex III [61]. Plants respond to increased
ROS generation by activation of antioxidant response. In hyperaccumulating plants, this is
often regulated by changes in gene expression and related to heavy metal resistance genes
presence. Antioxidant is any class of compounds that can protect cells from damage caused
by exposure to ROS. Series of antioxidant enzymes comprise enzymatic antioxidant plant
system including superoxide dismutase (SOD), catalases (CAT), ascorbate peroxidases
(APX) and guaiacol peroxidase (SOD), numerous plant metabolites can also serve as antiox-
idants in detoxification of heavy metals building a non-enzymatic antioxidant response [62].
The antioxidant role of amino acids has been confirmed, suggesting a different contribution
to antioxidant response, e.g., proline in Cd stress reduces formation of free radicals and
enhances levels of GSH [63]. Other metabolites, such as organic acid, bind directly to
metals and are involved in sequestration of metals. Citrate has high affinity for Cd and Fe,
while malate binds to Zn [64]. Confirmations for accumulation of phenolic compounds
as a defensive mechanism against heavy metals has been reported for several plants and
different metals: maize under aluminium [65] and under Cd exposure [66], Silene sendtneri
under Cd stress [45].

4. Phytoremediation of Cadmium from Polluted Soils

Phytoremediation is considered an eco-friendly remediation of soil, often called green
remediation [67]. Basic mechanism of phytoremediation is based on the use of fast-growing
plants to eliminate toxic contaminants in the soil or water [68]. Depending on the mech-
anism of heavy metal elimination from the soil, phytoremediation can be divided into
five types: phytostabilisation, phytostimulation, phytotransformation, phytofiltration and
phytoextraction [67,69].

Phytostabilisation refers to the process in which the plant reduces the mobility and
bioavailability of heavy metals and reduces their leakage into the ground water conse-
quently decreasing the contamination of the food chain [70]. Process of the metal mobi-
lization reduction includes immobilization of the metal (chemical or physical) by the plant
roots and fixation of the metal with different soil amendments [43]. In this method, plants
have a role in reduction of water percolation limiting the contact with heavy metals to de-
crease movement of contaminants [71]. It can be employed for clean-up of Cd from the soil,
among other pollutants [72]. For Cd, several species could be used for phytostabilisation
such as Virola surinamensis [73]; Miscanthus x giganteus [74], oats, white mustard [75]. Most
of the plants that have potential for phytostabilisation are plants that are considered as
hypertolerant plants or heavy metal excluders (such as Commelina communis, Thlaspi arvense
and others) (Table 1). This method can reduce the availability of metals to the plant, but the
method does not actually remove the metals and it is considered more as a management
strategy rather than elimination strategy [76] which is the main disadvantage of this tech-
nique [1]. List of plants that have shown potential for the use in phytostabilisation in the
past 10 years are listed in Table 1.

Phytostimulation, often called rhizo-degradation, refers to the process of degradation
of organic pollutants in rhizosphere with enhanced microbial activity [77]. Root exudes
stimulate microbial activity by providing nutrients for their growth and in return microbes
convert toxic to non-toxic chemicals. It is not suitable for Cd soil remediation. Phytotrans-
formation or phytodegradation refers to breakdown of organic compounds either in plant
metabolism or by plant enzymes and it is not related to microbial community [78]. Plants
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can degrade organic compounds, Hg and Se and I in this manner and during this process
they release volatile compounds into the atmosphere (phytovolatilization) [79].

Phytofiltration exploits plant roots for remediation of soil surface, ground water and wastew-
ater in cases of lower heavy metal contamination [77]. During filtration, contaminants are
absorbed or precipitated (due to excretion of root exudates and change in pH) [80], and this
method can be used for extraction of Cd, Cr, Cu and Zn. There are reports for several plants with
potential of Cd phytofiltration such as Limnicharis flava [81], Arunda donax [82]. Additionally
list of plants that have potential to be used in phytofiltration is given in Table 1. Main
disadvantage is that any contaminant below rooting depth is not extracted and it is a
time-consuming technique.

Phytoextraction/phytoaccumulation exploits fast growing plants for removal of heavy
metals from the contaminated soil or water [66,83] through absorption and accumulation
of contaminants in the plant. Heavy metals are removed by roots and transported to upper
plant parts [84], harvested subsequently and used for biomining/phytomining (metal recov-
ery) [85]. Phytoextraction includes elimination of heavy metals by absorption, translocation,
and accumulation of the metals in hyperaccumulating plants families (Scrophulariaceae,
Lamiaceae, Asteraceae, Euphorbiaceae and Brassicaceae). Plants that accumulate more
than: 100 mg/kg for Se and Cd; 300 mg/kg for Cr, Co and Cu; 1000 mg/kg for As, Pb
and Ni; 10,000 mg/kg for Mn; 3000 mg/kg for Zn are considered as a hyperaccumulat-
ing plants [86]. The metal hyperaccumulation should be achieved while maintaining the
growth [86] for the plant to be usable in phytoextraction purposes. In cases that there is
no suitable plant for the phytoextraction, some chelating agents could be added to the soil
(EDTA, citric acid, proline etc.) to increase the solubility and availability of the pollutants
and facilitate the phytoextraction process [1].

The technique is best when contamination levels are low to medium, since in highly
polluted soils, even hyperaccumulating plants can have severely impaired growth minimis-
ing the success rate of phytoextraction [70]. Currently, several plants are identified as Cd
hyperaccumulating plants such as: Celosia argentea [87], Cassia alata [88], Vigna unguiculata,
Solanum melonaena, Momordica charantia [89], Nicotiana tabacum, Kummerowia striata [90],
Swietenia macrophylla [91], and Silene sendtneri [45].

There are several benefits of this method including improvement of the soil for future plant
colonisation [92], it is environmentally friendly method, and it is an affordable and cost-effective
technique for soil remediation [93]. A main disadvantage is the limitations of plants capacity
for accumulation and plants sensitivity to soil contamination levels [94,95]. Plants usually
accumulate only one metal and may be highly sensitive to presence of other contaminants [94].

Table 1. The list of the plants which have shown potential for application in phytoremediation and
their rate of cadmium accumulation (Table summarizes data for the past 5 years according to the data
available on Web of Science (WoS)).

Plant Species Cd Concentration in the Plant (mg/kg) Plant Part Where Cd Is Accumulated Recommended for

Aerva sanguinolenta [95] 186 roots phytostabilisation

Amaranthus hybridus [96] 242 shoots phytoextraction

Amaranthus hypochondriacus [87] 217 leaf phytoextraction

Amaranthus mangostanus [97] 102–604 shoots, roots, leaf phytoextraction
phytostabilisation

Arabidopsis halleri [98,99] 228–5722 shoots, roots phytoextraction
phytostabilisation

Arabis gemmifera [100] 1810 leaf phytoextraction

Arabis paniculate [101] 1662–8670 leaves, roots phytoextraction,
phytostabilisation

Arabis yokoscense [100] 685 leaves phytoextraction

Atriplex halimus [102] 217–606 shoot, roots phytoextraction
phytostabilisation
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Table 1. Cont.

Plant Species Cd Concentration in the Plant (mg/kg) Plant Part Where Cd Is Accumulated Recommended for

Azolla pinnata [103] 740 whole plant phytoextraction

Beta vulgaris [104] 314.17–4547.9 shoots, roots phytoextractin
phytostabilisation

Bidens pilosa [105] 400 leaf phytoextraction

Brachiaria mutica [106] 186 shoots phytoextaction

Brachiaria sp. [95] 137.3–647 shoot, roots phytoextraction
phytostabilisation

Cosmos. bipinnata [107] 112.62 shoots phytoextrction

Chromolaena. odorata [108] >100 shoots phytoextraction

Calendula calypso [109] 165 roots phytostabilisation

Callisia fragrans [110] >101 shoots phytoextraction

Carthamus tinctorius [111] 148.1–236.6 leaves phytoextraction

Cassia alata [85] 159 roots phytostabilisation

Celosia Argentea [87,112] 121–236 leaves, roots phytoextraction
phytostabilisation

Chlorophytum comosum [110] >100 shoots phytoextraction

Chromolaena odorata [49] 102–1440 leaves, roots phytoextraction
phytostabilisation

Desmostachya bipinnata [106] 312 shoots phytoextaction

Eucalyptus camaldulensis [113] 10.5 roots phytostabilisation

Eleusine indica [95] 150 roots phytostabilisation

Eucalyptus camaldulensis [113] leaves phytostabilisation

Eucalyptus globulus [114] 5.11 roots phytostabilisation

Glycine max [115] 74.8–290 leaves phytoextraction

Gynura pseudochina [95,116] 457.7 shoots phytoextraction

Helianthus annuus [117] 65.7 shoots, roots phytoextraction,
phytostabilisation

Helianthus tuberosus [118] 328.77–2167.9 leaves, roots phytoextraction
phytostabilisation

Hydrocotyle sibthorpioides [119] 128.5 shoots phytoextraction

Impatiens violaeflora [95] 212,3 shoots phytoextraction

Imperata cylindrica [95] 133,2 roots phytostabilisation

Iris lacteal 121 shoots phytoextraction

Iris tectorum 171 shoots phytoextraction

Justicia procumbens [95] 548 shoots phytoextraction

Lantana camara [16] >100 shoots phytoextraction

Leptochloa fusca [106] 245 shoots phytoextaction

Lolium multiforum [115] 106.83 leaves phytoextraction

Lonicera japonica [120] 402.96 shoots phytoextraction

Lycopersicon esculentum [121] 130–174 shoots phytoextraction

Microsorum pteropus [122] >400 mg/kg root, stem, leaves phytoextraction

Macleaya cordata [123] 163.39 roots phytostabilisation

Malva rotundifolia [124] 900 shoots phytoextraction

Nicotiana sp. [125] 271.5 leaves phytoextraction

Nicotiana tabacum [90] 314.6 shoots phytoextraction

Phytolacca acinosa [87] 110 leaves phytoextraction

Phytolacca americana [126] 188.4 shoots phytoextraction
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Table 1. Cont.

Plant Species Cd Concentration in the Plant (mg/kg) Plant Part Where Cd Is Accumulated Recommended for

Picris divaricata [127] 585 shoots phytoextraction

Pistia stratiotesfe [128] 248 shoots phytoextraction

Populus nigra [129] 2070 shoots phytoextraction

Potamogeton pectinatus [130] 422 shoots phytoextraction

Prosopis laevigata [131] 8176 shoots phytoextraction

Pteris vittate [132] 216.5 shoots phytoextraction

Pterocypsela laciniata [133] 207.97 shoots phytoextraction

Rorippa globosa [134] 150 shoots phytoextraction

Sedum plumbizincicola [135] 152.93 shoots phytoextaction

Sida rhombifolia [124] 225.31 roots phytostabilisation

Sedum alfredii [136] 9000 leaves phytoextraction

Sedum plumbizincicola [124] 139 shots phytoextraction

Siegesbeckia orientalis [137] 193 shots phytoextraction

Silene sendtneri [45] 2156 shots phytoextraction

Silene vulgaris [138] 203–750 Roots Phytostabilisation

Solanum lycopersicum [115] 133.45 leaves phytoextraction

Solanum nigrum [104] 100.6–2021.7 shoots, roots phytoextraction
phytostabilisation

Sphagneticola calendulacea [139] >100 shoots phytoextaction

Sporobolus arabicus [106] 171 shoots phytoextaction

Tagetes. erecta [140] 166.07 shoots phytoextraction

Tagetes. patula [141] 231.72–601.45 shoots phytoextraction

Taraxacum ohwianum [142] 181.39 shoots phytoextraction

Turnip landraces [143] 139.7 leaves phytoextraction

Vettiveria zizanioides [144,145] 263–2232 Roots phytostabilisation

Viola baoshanensis [132] 2310 shoot phytoextraction

5. Approaches for Enhancing Cadmium Phytoremediation

Phytoremediation can be enhanced using different methods and techniques that could
be generally grouped in: (1) techniques employed to enhance phytoremediation through
amelioration of the soil (mostly used for phytoextraction techniques) and (2) enhancement of
plant performance/tolerance/accumulation properties. Some examples of phytoremediation
enhancement treatments are shown at Table 2.

5.1. Enhancement of Phytoremediation by Soil Amelioration

The mobility of Cd in the soil can be affected by supplementation of: (a) certain chemi-
cals and surfactants such as ethylenediaminetetraacetic acid (EDTA) [146] alone or in com-
bination with biochar [147], urea [148], ethylenediamine disuccinic acid (EDDS) [149], citric
acid [150] or reduction of pH in the soil [151,152] by addition of acids or acid-producing
fertilisers [153] and (b) by addition of biological enhancers (bacteria, fungi, intercropping).

The most-known chemical chelator is EDTA, which increases the concentration of
water-soluble Cd, promotes its uptake, and facilitates its transfer to shoots [148]. Conversely,
EDTA has a complex relationship with pH when small concentrations of EDTA are added to
the soil (the number of extracted cations is dependent on pH). Additionally, EDTA efficiency
is related to soil type, and in Ca-rich soil EDTA is rapidly consumed by dissolution of
calcite [153]. Addition of EDTA can increase the bioavailability of heavy metals, but
it also can affect the soil microorganisms, contaminate groundwater and due to slow
decomposition, it can cause ground water pollution [154]. Organic acids, due to their
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biodegradability, can be used as less hazardous chelators with lower possibility of ground
water contamination. Citric acid, if added in smaller dosages, can be an efficient mobiliser of
Cd facilitating phytoextraction [155], and enhancing effects on the uptake of Cd are probably
a result of ameliorative effect of citric acid. Changes in root structure and shape and
activation of ATPases in root plasma membrane changing the transport of ions increasing
Cd symplastic and apoplastic uptake have been recorded in plants grown in the soil
ameliorated with citric acids. Humic acids can be used for enhancement of phytoextraction
by soil supplementation. These acids are not water soluble in acidic conditions, but
under higher pH, they are extractable and soluble. Their carboxyl and OH functional
groups enable them to play a role in the transport, bioavailability, and solubility of heavy
metals [156]. In the context of the sustainable increase of bioavailability, acidified manure
can be applied to increase phytoextraction efficiency [157].

A widely used enhancement of Cd accumulation is bioaugmentation of soils with
cadmium-resistant bacteria. There are many studies reporting the potential of microor-
ganisms for phytoremediation through their effect on Cd bioavailability [158,159]. For
phytoremediation, we use bacteria that can transform metals into soluble and bioavailable
forms through production of siderophores and these bacteria are classified as plant-growth
promoting bacteria (PGPB). Such activity has been recorded for several groups of bac-
teria: Pseudomonas sp., Microbacterium sp., Bacillus sp., Rahnella sp., Burkholderia sp. and
Enterobacter sp. [148,160]. Some of the identified bacteria are resistant to Cd and can be
used for improvement of tolerance as well as accumulation capacities of hyperaccumu-
lating plants to further phytoremediation efficiency. Micrococcus sp. MU1 and Klebsiella
sp. BAM1, cadmium-resistant PGPBs promote root elongation of Helianthus annuus in
cadmium-contaminated soil through stimulation of the indole-3-acetic acid (IAA) synthesis.
Increase of Cd accumulation was achieved after adding Klebsiella to the soil 4 weeks after
plant cultivation in Cd-contaminated soils [161,162]. Change in pH in the rhizosphere
was induced by addition of cadmium-resistant Enterobacter sp. FM-1 resulting in an in-
crease of cadmium content in aerial parts of Centella asiatica up to 160% [163]. Successful
increase of cadmium accumulation in roots and shoots of Zea mays was achieved by soil
augmentation with cadmium-resistant Micrococcus sp. TISTR2221 [164]. One problem in
bioaugmentation is that some bacteria have growth problems in cadmium polluted soils, in
those cases biostimulation which includes addition of mineral nutrients to the soil together
with bacteria, can enable the bacterial growth regardless of Cd contamination. Stimulation
of phytoextraction of Cd by biostimulated bioaugmentation with Sphingobium sp. SA2 was
recorded for Glycine max [165].

5.2. Enhanced Phytoremediation by Increasing Plant Capacities

One of the simplest approaches of phytoremediation enhancement is to increase plant
biomass production and subsequently enhance Cd phytoremediation rates [166], which can
be achieved through soil amendments or by plant changes directly. Seed pre-treatments
(priming) before sowing can increase seedling vigour and increase biomass production.

Seed priming is a controlled rehydration (imbibition) of seeds for induction of metabolic
activity without radicle emergence, followed by seed drying and re-imbibition prior to
sowing. It is widely used for improvement of seed vigour, enhancement of germination
and achieving germination uniformity, especially under stress conditions. Due to com-
mence of re-hydration, so-called “pre-germinative metabolism” is triggered which includes
cellular processes of de novo nucleic acid and protein synthesis, accumulation of phospho-
lipids and sterols, DNA repair and activation of antioxidant mechanisms. The potential of
plant priming in abiotic stress tolerance has been extensively investigating using different
types of molecules added exogenously to plant organs (roots, leaves etc.) with a result
of enhanced tolerance of abiotic stress [167], there are only few papers concerning how
seed priming affects tolerance levels, and what is the mechanism of plants memory of
“primed” state in seeds. Seed priming with different agents (water, proline, salicylic acid,
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silicic acid) increased biomass production in Silene sendtneri under Cd stress by increasing
tolerance levels [45].

One of the most studied molecules in plant priming is plant hormone salicylic acid
(SA). This hormone plays a pivotal role in many metabolic processes including antioxidant
response under different abiotic stressors [168,169]. It has been recorded that seed priming
and plant priming with salicylic acid can affect the plant antioxidant status resulting in
increased tolerance levels towards heavy metal exposure [170,171]. Exogenously applied
salicylic acid can enhance plant tolerance to heavy metals and increase phytoremediation
efficiency [172]. One other molecule that can be used as a priming agent is proline. Proline
is considered as a stress marker in plants subjected to abiotic stress [173]. Using proline,
seed priming can imprint seeds for defence against various abiotic stressors including
heavy metals [45,66]. It is still unknown in which way seed priming induces changes
in metabolism that is memorised and transferred to growing plants under heavy metal
stress [174]. Main advantage of this method is how easy it is to perform seed priming,
the method often uses simple steps such as hydropriming (pre-treatment of seeds with
water), and it is considered an eco-friendly method of seed performance improvement. A
main disadvantage lays in sensitive timing of priming, since emergence of radicle must be
avoided, and time of priming needs to be adjusted to ensure that metabolic processes are
initiated but radicle is not emerged.

Genetic engineering of plants can be utilised for production of more advanced, more
efficient, more robust hyperaccumulators. Candidate plants for genetic engineering are
usually plants with high biomass production and existing capacity for heavy metal accumu-
lation. Genetic engineering can also be employed for induction of gene overexpression such
as glutamylcystein syntlitase enhancing heavy metal accumulation [175]. Brassica juncea
transgenic plant has gshl gene from Escherichia coli and it synthesises higher concentrations
of phytochelatins, glutathione and nonprotein thiols and displays increased heavy metal
tolerance [174]. Incorporation of gene for nicotinamine synthase responsible for synthesis
of metal chelating amino acid, HcNAS1 from Hordeum vulgare into Arabidopsis can stimu-
late heavy metal accumulation [176]. Similarly, incorporation of the metallothionein gene
IlMt2a gene from Iris lactea var. chinensis incorporated in Arabidopsis genome resulted in
higher tolerance of Cd [177].

Beside incorporation of new genes into the plant genome, through genetic engineer-
ing, overexpression of different genes responsible for enhanced heavy metal, increase in
tolerance and accumulation can be achieved. Overexpression of metal transport proteins
in plants can induce enhanced metal accumulation in roots (phytostabilisation) or in the
shoots (phytoextraction) can be achieved. Additionally, manipulation of genes for phy-
tochelatins (phytochelatin synthetase and c-glutamyl cysteine synthetase) can result with
enhanced heavy metal tolerance, such as higher Cd accumulation in transgenic tabaco
(Nicotiana glauca and Nicotiana tabacum) [178]. In the past few years, numerous studies
have shown plants overexpressing metallothioneins transgenes with demonstrated im-
provement of heavy metal tolerance [179]. Overexpression of trans genes responsible for
antioxidant plant response (superoxide dismutase, ascorbate peroxidase, catalase, and
glutathione S-transferase) in some cases impaired the morphological and physiological
plant parameters [176].

A newly taken approach in genetic engineering for improvement of heavy metal
tolerance is gene silencing. This process includes a process in which small RNA molecules
supress gene expression and translation of target mRNA [180]. This technique can be
employed in crops to ensure that no heavy metals are accumulated in plants and by
silencing phytochelatin synthase gene Cd levels in grains were drastically decreased. Con-
versely, by silencing gene encoding root-localized Cd-transporter OsNRAMP5 enhanced
Cd translocation to the shoots was achieved [181]. The most prominent disadvantage of
gene manipulation and genetic transformation is low acceptance by the public, and there is
still fear from GMO plants and the process of introduction of such plants in open fields is
long and complex.
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Table 2. Some examples of phytoremediation enhancement treatments.

Method Used Enhancer Plant Species Result

So
il

su
pp

le
m

en
ta

ti
on

C
he

m
ic

al
ch

el
at

or
s

ethylenegluatarotriacetic acid (EDTA); sodium
dodecyl sulfate (SDS) [112] Calendula officinalis; Althea rosea Significant increase of Cd accumulation in A. rosea

SDS EDTA [182] Calendula officinalis Efficient chemical enhancement of Cd phytoremediation

Citric acid, ethylenediamine disuccinic
acid (EDDS), EDTA [149] Ricinus communis Low effectiveness great risks due to toxicology and

environmental persistence

[N, N]-bis glutamic acid (GLDA), nitrilotriacetic acid (NTA), [S,
S]- EDDS, and citric acid (CA) [183] Amaranthus hypochondriacus Combination of chelators effective for enhancement of Cd

phytoremediation

EDTA [149] Lolium perenne Increased heavy metal absorption

Biochar and EDTA [147] Brassica juncea Enhanced heavy metal tolerance

EDTA [184] Pelargonium hortoum Increased biomass, increased accumulation of heavy metals

EDTA [185] Sedum aizoon
Suaeda salsa Enhanced efficiency of Cd removal

EDTA [186] bamboo Increased absorption of heavy metals

EDTA [187] Datura stamonium Enhanced phytoremediation of Cd

EDTA, EDDS [183] Amaranthus hypochondriacus Enhanced accumulation of heavy metals

El
ec

tro
-p

hy
to

re
m

ed
ia

tio
n

Application of low voltage
direct current to electrodes

in the soil [188]
Solanum tuberosum. Var. Kuras Increase of Cd accumulation in plant roots

DC electric fields [189] Eucalyptus globulus
Increase of phytoremediation capacity

DC electric fields [190] Eucalyptus globulus
Increased uptake of heavy metals

Bi
oa

gu
m

en
ta

ti
on

Micrococcus sp., Pseudomonas
sp. Arthrobacter sp. [191] Glycine max Increased Cd uptake

Lactococcus, Raoultella, Bacillus, Acinetobacter,
Gluconacetobacter, Dyella [192] Phragmites australis Enhanced phytoremediation

Cyanobacteria [193] Portulacea oleracea Enhanced phytoremediation of heavy metals

Rhizobacteria [194] Scirpus grossus Enhanced phytoremediation of pollutants

Vibrio alginolyticus [195] Scirpus grossusThypha angustifolia Enhanced removal of heavy metals from soil

Enterobacter sp. FM-1 [196] Polygonum hydropiper Polygonum lapathifolium Enhanced Cd phytoextraction
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Table 2. Cont.

Method Used Enhancer Plant Species Result

So
il

su
pp

le
m

en
ta

ti
on

Bi
oa

gu
m

en
ta

ti
on

Kluyvera intermedia,
Klebsiella oxytoca,

Citrobacter murliniae [197]
Sorghum bicolor Enhanced phytoremediation

Simplicillium chinense QD10 [150] Phragmites communis Significant removal of acid-extractable and reducible metals in
soils and the increase of Cd accumulation in P. communis

Funneliformis mosseae and
Rhizophagus intraradices,

β-cyclodextrin [198]
Solanum nigrum Combination of fungi and surfactant effective enhancement of

phytoremediation

Pl
an

te
nh

an
ce

m
en

t

Pl
an

tg
ro

w
th

re
gu

la
to

rs

Indole-3-acetic acid (IAA),
gibberellin A3 (GA3) and

6-Benzylaminopurine (6-BA) [189]
Brassica juncea Significant increase of shoot uptake of Cd after IAA treatment

IAA, GA3, 6-BA,
24-epibrassinolide (EBL) [199] Brassica juncea Enhanced phytoremediation of Cd

GA3 [200] Luffa acutangular Improved phytoremediation of pollutants

GA3, IAA, [201] Dysphania ambrosioides Improved Cd phytoextraction

Salicylic acid [199] Impatiens balsamina Enhanced phytoremediation of pollutants

Se
ed

pr
im

in
gt

Sound waves of frequency 200, 300,
400, 500, and 1000 Hz [202] Festuca arundinacea Increase od Cd extraction ability in positive correlation with

sound frequency

Proline [66] Zea mais Increased tolerance of Cd

Proline, salicylic and silicic acid [45] Silene sendtneri Increased tolerance and accumulation of Cd in shoots
(enhanced phytoremediation)

Putrescin [203] Coriandrum sativum Enhanced phytoextraction of Cd
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In search of the most effective phytoremediation, there is much work to perform in
combining different treatments, supplements, and processes to obtain higher efficiency
of hyperaccumulating plants. Often, a combination of plant growth regulators (such
as salicylic acid) and bioaugmentation with rhizobacteria is used for enhancement of
phytoremediation with promising results [172,204].

6. Conclusions

Cadmium is a serious soil contaminant posing a threat to human health through
contamination of the food chain since it can be easily absorbed by plants growing on
agricultural land that is heavily contaminated by Cd (through application of fertilizers).
Unfortunately, current global climate change is making this metal more dangerous, affecting
its mobility in soil, and causing cadmium leakage to underground freshwater reservoirs.
All this places Cd on top of the list of soil contaminants that need remediation. One of the
approaches for Cd remediation is the use of phytoremediation (especially phytoextraction),
which represents an eco-friendly, economical, and simple method for heavy metal removal
from polluted soils. There is only a relatively small number of plant species that are
considered as Cd hyperaccumulators that could be used effectively for this purpose, and
there is a constant search for new hyperaccumulating species as well as methods for
improvement of phytoremediation. The latest eco-friendly improvement method is seed
priming, representing a safe method for enhancement of plant tolerance and accumulation
capacities without disrupting soil properties, while increasing the rate of soil clean-up. The
next step in the phytoremediation process can be in succeeding of soil clean-up through
use of primed plants in intercropping systems, thus cleaning the soil while crops are
being grown and ensuring there is no disruption in crop growth. In addition, future
research should be focused on finding a solution for more efficient soil clean-up, including
investigation of possible inter-cropping systems of hyperaccumulating plants and crops.
Such systems would have the benefit of simultaneous soil remediation.
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