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Abstract: Salt-affected soils are related to salinity (high content of soluble salts) and/or sodicity
(excess of sodium), which are major leading causes of agricultural land degradation. This study
aimed to evaluate the performances of three machine learning (ML) algorithms in predicting the soil
exchangeable sodium percentage (ESP), electrical conductivity (ECe), and salt-affected soil classes,
from soluble salt ions. The assessed ML models were Partial Least-Squares (PLS), Support Vector
Machines (SVM), and Random Forests (RF). Soil samples were collected from the High Valley of
Cochabamba (Bolivia). The explanatory variables were the major soluble ions (Na+, K+, Ca2+, Mg2+,
HCO3

−, Cl−, CO3
2−, SO4

2−). The variables to be explained comprised soil ECe and ESP, and a
categorical variable classified through the US Salinity Lab criteria. According to the model validation,
the SVM and RF regressions performed the best for estimating the soil ECe, as well as the RF model
for the soil ESP. The RF algorithm was superior for predicting the salt-affected soil categories. Soluble
Na+ was the most relevant variable for all the predictions, followed by Ca2+, Mg2+, Cl−, and HCO3

−.
The RF and SVM models can be used to predict soil ECe and ESP, as well as the salt-affected soil
classes, from soluble ions. Additional explanatory features and soil samples might improve the ML
models’ performance. The obtained models may contribute to the monitoring and management of
salt-affected soils in the study area.

Keywords: machine learning; electrical conductivity; exchangeable sodium percentage; salt-affected
soil classification

1. Introduction

Salt-affected soils are mainly related to arid and semiarid regions and basically com-
prise saline and/or sodic soils. Saline soils have a significant amount of soluble salts which
consist of major ions like sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+),
bicarbonate (HCO3

−), chloride (Cl−), carbonate (CO3
2−), and sulfate (SO4

2−). Sodic soils
have an excess of exchangeable Na+ in the cation exchange complex, as well as in the soil
solution. Soluble salts and Na+ normally originate either from natural processes such as
weathering (primary salinity/sodicity) or are induced by human activities such as the
inappropriate management of land and water resources (secondary salinity/sodicity). Soil
salinity negatively affects root growth and crop yield through the osmotic effect caused by
the high concentration of soluble salts, and soil sodicity causes adverse effects, such as an
increase in soil pH, loss of soil physical structure (clay dispersion, swelling, and plugging of
soil pores), and the deterioration of soil–water relations (decrease in infiltration, hydraulic
conductivity, retention and drainage), leading to soil erosion, crusting, compaction, runoff,
waterlogging, nutrient imbalances, and specific ion effects on plants [1–7].

Salinity levels can be expressed as total soluble salts (TSS) or as soil electrical con-
ductivity (EC) of saturated extract or soil–water suspensions. Sodicity levels are usually
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determined as the exchangeable sodium percentage (ESP) through the amount of exchange-
able Na+ as a proportion of either the cation exchange capacity (CEC) or the sum of
exchangeable cations [4,8], as well as by the sodium adsorption ratio (SAR) calculated from
the soluble Na+ relative to the soluble Ca2+ + Mg2+ concentrations in a soil solution using
the formula proposed by Richards et al. [9]. The widely used salt-affected soil classification
from the US Salinity Lab (USSL)—based on the threshold values of a soil ECe of 4 dS m−1,
ESP of 15%, and pH of 8.5—generates four classes, namely, normal, saline, saline–sodic,
and sodic soil. The Australian classification is analogous to the USSL criteria with the
exception that it considers a soil ESP threshold value of 6% and takes into account the
pH levels [10]. Furthermore, neutral and alkali salts determine the distinction between
sodicity and alkalinity, so alkali soils normally have an excess of exchangeable Na+ and
carbonates besides a pH above 8 [11]. Concerning that fact, Chhabra et al. [12] proposed an
alternative classification including the ion ratios of (2CO3

2− + HCO3
−)/(Cl− + 2SO4

2−)
and Na+/(Cl− + 2SO4

2−) expressed in mol m−3, besides soil ECe and ESP, for facilitating
the specific management and reclamation of salt-affected soils.

Data mining can be described as the capacity of identifying patterns from data to
establish relationships and models through data analysis, and machine learning (ML) is
a process of learning from a system’s experience for self-improving based on resultant
information. Moreover, supervised learning models the relationships and dependencies
between the target prediction output and the input data/features to predict the output
values for new data. Partial Least-Squares (PLS)—Discriminant Analysis (DA) is a ‘su-
pervised’ version of principal component analysis (PCA) which achieves dimensionality
reduction with complete cognizance of the classes, arriving at a linear transformation that
converts the data to a lower dimensional space with as small an error as possible [13]. In
addition, PLS regression combines features from PCA and multiple regression, allowing
the reduction of the dimensionality while focusing on covariance. Support Vector Machines
(SVM) seek to design a decision surface and separate the margin between the different
levels, finding this hyperplane using support vectors and margins. Then, the SVM with
linear kernel function fits an optimal hyperplane between the classes, making linear and
separable small samples [14], while support vector regression fits a line as the hyperplane
with the maximum number of points. Breiman and Cutler’s Random Forests (RF) algorithm
is a tree-based ensemble which generates trees built on resampled subsets of data, with
each tree depending on an ensemble of random variables. RF classification combines the
trees by unweighted voting and chooses the most voted class over all the tree ensembles at
training time if the response is categorical, or combines the resulting trees by unweighted
averaging if the response is continuous [15,16].

ML methods have been used to classify soils based on various features such as chemi-
cal, physical, and biological variables, as well as on specific criteria. Within the framework
of ML algorithms, many methods have been progressively developed to automate the
soil classification process, such as Decision Trees, k-Nearest Networks, Artificial Neural
Networks, and SVM [17]; in that context, some investigations on various soil type classifi-
cations using ML methods were carried out [18–21]. The review on ML and soil sciences
by Padarian et al. [22] shows that the modelling of continuous and categorical soil proper-
ties is based on their relationships with environmental covariates and is mainly focused
on mapping. Some key findings in the compilation by Motia and Reddy [23] were that:
the implementation of soil classification uses more ML methods than soil regression; the
assessment of soil salinity still shows a low contribution from ML; SVM and RF techniques
are widely used in ML predictions of soil parameters and classifications; and the RMSE
and R2 are the top metrics used for the performance evaluation of ML prediction models in
soil analysis.

Apart from simple/multivariate regression-based models, most of the studies based on
ML methods in predicting and mapping salinity use variables from remote sensing (spectral
bands and derived indices) [24–29], and combined with other environmental covariates
(elevation, geology, hydrology, morphometry, and climate) [30–34]. Field-measured data
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(physical and chemical soil–water properties), which are used to a lesser extent, may
improve the prediction performances for soil salinity, even more if alternative salt-term
parameters are considered. Moreover, the determination of the content of exchangeable
cations—and thus the soil ESP—is usually less cost-effective and more time-consuming
than that of soluble ion concentrations, which are often used for estimating salinity/sodicity
indirectly. Therefore, this study aimed to evaluate and compare the prediction performances
of three ML regression and classification algorithms (PLS, SVM, and RF) for estimating the
soil ECe and ESP, and classifying salt-affected soils from soluble salt ions. Then, the results
may contribute alternative covariates for modelling as well as to the characterization and
management of salt-affected soils in the study area.

2. Materials and Methods
2.1. Study Area and Data

The observations (135 soil samples) were collected at a depth of ~25 cm from the
agricultural lands of the High Valley of Cochabamba-Bolivia (Figure 1), under the frame-
work of the survey by Weber [35]. The area is located between the latitude boundaries of
−17◦29′47.7′′ to −17◦39′48.6′′ and longitude of −66◦5′16.8′′ to −65◦45′13.0′′, at an eleva-
tion of ~2750 m. The climate of the valley is semiarid with a mean annual temperature and
rainfall of 15–16 ◦C and 450–550 mm, respectively. Regarding the geomorphic character-
ization of this area [36] (Metternicht and Zinck, 2010), most of the salt-affected soils are
in the landscape of a valley with a relief type consisting of lagunary depressions, aluvio-
lagunary/lagunary facies, a landform consisting of lagunary flats, and soil associations
consisting of Ustalfic Haplargids/Ustochreptic Camborthids and Typic Salorthids/Natric
Camborthids. The soil textural classes consisting of loam, silty loam, and silty clay loam
were predominant among the samples.
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Figure 1. Soil sampling points and their salt-affected classes (USSL criteria) in the High Valley of
Cochabamba, Bolivia.

2.2. Variables

As the explanatory variables, concentrations of soluble cations (Na+, K+, Ca2+, Mg2+)
and anions (HCO3

−, Cl−, CO3
2−, SO4

2−) were determined from a paste extract, following
the standard procedures of Richards et al. [9] at the Soil-Water Lab, Faculty of Agricultural
and Livestock Sciences, Universidad Mayor de San Simón (Bolivia).

The continuous variables to be predicted were the soil ECe and the soil ESP calculated
using the formula (Equation (1)) [4,8] with the exchangeable cation values obtained through
a derived ISO 22171 at a pH of 7 and atomic adsorption spectroscopy at the Station Provin-
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ciale d’analyses agricoles Lab (Belgium), taking into account the assessment by So et al. [37]
for overcoming their overestimation as total extractable cations. The categorical variable
to be explained comprises four categories classified using the USSL criteria [9], namely:
normal (ESP < 15%, ECe < 4 dSm−1, pH < 8.5), saline (ESP < 15%, ECe > 4 dSm−1, pH < 8.5),
saline–sodic (ESP > 15%, ECe > 4 dSm−1, pH < > 8.5), and sodic (ESP > 15%, ECe < 4 dSm−1,
pH > 8.5). For practical purposes, the alkali soil was classified as sodic.

ESP =

(
Na+

Ca2+ + Mg2+ + Na+ + K+

)
100 (1)

where cations are expressed as a concentration in cmolc kg−1.

2.3. Data Preparation and Model Implementation

The flow process of the modelling is described in Figure 2. Extreme values in the
dataset were checked by applying a threshold value using the Mahalanobis distance from
the PCA, and then 10 observations were discarded. In overcoming the possibility of
hidden dependencies of the cross-validation (CV) and for testing purposes, the models
were evaluated through an internal validation by partitioning the dataset into two sets,
calibration (75%) and validation (25%), for both regression and classification models. The
data were scaled into each calibration process. A subsequent performance evaluation
showed that a min–max normalization was not needed.
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Figure 2. Flow chart of the methodological path of this study.

Three supervised ML algorithms were used: Partial Least-Squares (PLS) and Support
Vector Machines (SVM) with linear kernel function as discriminating methods, and Random
Forests (RF) as a tree-based method, for the respective regression (PLS-R, SV-R, RF-R) and
classification (PLS-DA, SVM-C, RF-C) algorithms. A multivariate linear regression (ML-R)
model was added for comparison purposes. The models were trained with tenfold groups,
and CV was repeated five times. The specific tuning of the parameters for the training and
CV of regression and classification models is shown in Table A1.

2.4. Model Performance Evaluation

The prediction was performed for the three regression/classification methods by
using the obtained models from the training process on the testing datasets; then, the
performances were compared. The metrics to evaluate the effectiveness of the regression
techniques were the determination coefficient R2 (Equation (2)) and the root mean square
error RMSE (Equation (3)) as the standard deviation of the error. For classification models,
the metrics were the overall accuracy (Equation (4)) as the correct classification of the
data obtained by executing the model, and Cohen’s kappa statistics (Equation (5)) like the
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strength of the agreement as the extent to which the data are correct representations of
the variables measured [38]. Additionally, the measures of sensitivity and specificity, as
the proportions of true positives and true negatives correctly predicted, respectively, were
calculated for classification.

R2 = 1− ∑n
i=1 (pi − oi)

2

∑n
i=1

(−
o − oi

)2 (2)

RMSE =
[
n−1∑n

i=1(pi − oi)
2
]1/2

(3)

where n is the number of observations, pi is the predicted values, oi is the observed data,

and
−
o is the mean for oi.

Accuracy = ∑n
i=1

True classi f ication
Total cases

(4)

Kappa =
Po − Pe

1− Pe
(5)

where n is the number of classes, Po is the total agreement probability, and Pe is the
agreement probability due to chance.

2.5. Other Assessments

The relative importance of the variables was assessed through the RF measures of
Mean Decrease Accuracy/Gini for classification and the percent increase in MSE and
increase in node purity for regressions. For overcoming the imbalance caused by the sodic
category, a resampling technique was applied. The stability of the models was assessed
in function to three different data partitions as an indicator of the change in the level of
performance; then, the dataset was split for obtaining a validation dataset proportion over
(30%) and below (20%) the referential of 25%. Finally, the models were assessed with
additional explanatory variables, namely, soil pH and ECe determined from the same
solution in which the soluble ions were measured, total organic carbon (TOC), and soil
texture (clay, silt, and sand).

2.6. Software

Statistical analysis and ML modelling/evaluation were performed by using the R
software (v.4.1.3) [39] and RStudio (v.1.31093) [40]. The regression and classification models
(PLS, SVM, RF) were trained and evaluated through the package caret (classification and
regression training) [41], and complementary packages for data preparation, analysis and
visualization such as randomForest [42] and FactomineR, among others, were used.

3. Results and Discussion
3.1. Statistical Overview

Some descriptive statistics of the dataset are shown in Table A2. The distribution
of samples according to the salt-affected soil classes was relatively balanced, except for
the sodic soil category (Figure 3a). Among the explanatory variables, soluble Ca2+ with
Mg2+ (r of 0.87) and Na+ with the anions were relatively highly correlated, as well as
the soil ECe and ESP with Na+ and soluble anions (Figure A1). Despite these relatively
high relationships, it should be considered that ML algorithms deal with multicollinearity
through regularizations and by focusing the prediction and accuracy instead of the influence
among variables; moreover, all soluble salt ions are part of the dominant composition and
balance in the soil solution of each site-specific sample. Correlations between the contents
of cations in the soil sorption complex and those in the soil–water solution are relatively
low (Table A3) in contrast to the findings of Porębska and Ostrowska [43]. According to
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the PCA, around 98% of the variance was explained by seven out of eight components.
The components are not so good for discriminating the clusters (Figure 3b); consequently,
for a complete separation of the soil categories, the PLS-DA, SVM, and RF classification
algorithms were performed.
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3.2. Evaluation of the Regression Models

Among the assessed ML regression models for predicting soil ECe, the SV-R and RF-R
algorithms performed the best with relatively similar values of R2 and RMSE, followed by
ML-R and PLS-R models, which, in contrast, showed good cross-validation performances
(Table 1). The overall high proportions of soil ECe variance explained by the soluble
ions agree with the fact that the soluble major ions complex is normally a good predictor
for the soil EC and vice versa, and also coincide with the high correlations between soil
ECe and soluble ions as total dissolved salts [44,45]. Furthermore, the low performance
of the PLS-R model agrees with the fact that it is better in cases where the number of
explanatory variables is high or where multicollinearity is an issue. As a partially related
study, Wang et al. [46] found that RF regression performed comprehensively better than
SVM among other ML models in predicting salinity from field-measured spectral and
salinity parameter data.

Table 1. Prediction performances of the regression models for estimating soil ECe and ESP.

Method
ECe ESP

RMSE R2 RMSE R2

PLS-R 2.9 (3.3) 0.82 (0.72) 19.0 (13.6) 0.41 (0.63)
SV-R 1.9 (3.5) 0.92 (0.74) 18.4 (14.0) 0.40 (0.65)
RF-R 2.1 (3.7) 0.91 (0.66) 12.6 (12.4) 0.71 (0.60)
ML-R 2.4 (2.8) 0.88 (0.81) 19.1 (13.6) 0.40 (0.54)

RMSE stands for root mean square error. Values in parentheses mean the CV performances.

For estimating the soil ESP, the RF-R obtained the best prediction performance (R2

of 0.71 and RMSE of 12.6), followed by the rest of the models with similar results; even
so, they obtained relatively good cross-validation performances (Table 1). The relatively
high performance of the RF-R model for predicting soil ESP is partly related to the rela-
tionships between SAR and ESP or exchangeable sodium ratio (ESR) (Table A3), and has
some correspondence to the results obtained to predict ESP from SAR by using simple
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regression [47–50], and there is also correspondence with those to estimate the ESR from
SAR [51,52].

Through the variable importance analysis by using the RF-R algorithm, two measures
were obtained: percent increase in mean square error (MSE) as the prediction error of
each variable if omitted from the analysis, and the increase in node purity as how much
the model error increases when a particular variable is randomly permuted or shuffled.
According to these metrics, Na+ is the most important variable for predicting both soil ESP
and ECe, besides Cl− and HCO3

− which are indispensable for estimating soil ECe, as well
as Ca2+ for ESP (Figure 4a,b). In addition, despite the relatively low importance of K+ in
predicting soil ESP (Figure 4b), it might be important to keep this cation for modelling
because it influences soil dispersion, as demonstrated through the exchangeable cation
ratio (ECR) [53] and the cation ratio of soil structural stability (CROSS) [54] as alternative
indicators for soil ESP and SAR, respectively.
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3.3. Evaluation of the Classification Models

According to the internal validation, the RF-C model obtained the best performance
with the highest prediction accuracy (87%) indicating a good classification with a significant
strength of agreement beyond chance (kappa of 82%), followed by the SVM-C and PLS-DA
models, both with a regular classification and moderate agreement. Additionally, according
to the CV analysis, the RF-C and SVM-C algorithms performed better than the PLS-DA
model with relatively similar results (Table 2).

Table 2. Accuracy and kappa values of the model training and model testing.

Method
Calibration/CV * Validation

Accuracy Kappa Accuracy Kappa

PLS-DA 0.55 0.37 0.67 0.52
SVM-C 0.63 0.49 0.70 0.58
RF-C 0.61 0.47 0.87 0.82

* CV stands for cross-validation.

The overall Out of Bag (OOB) error of the RF bootstrapping was 37.9%, and the
error classes were 0.29, 0.38, 0.26, and 0.68 for normal, saline, saline–sodic, and sodic soil,
respectively. The misclassifications of sodic soil were mainly due to its imbalance in contrast
to the other categories. The soil pH used to classify the soil may decrease the quality of the
classification models because it is not directly related to the soluble/exchangeable cations,
as the soil ECe and ESP are. Based on the predictions in the confusion matrixes (Table A4),
the measures of sensitivity and specificity were calculated. Overall, the sensitivity as the
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true positive rate was regular to good for predicting the normal, saline, and saline–sodic
classes but poor for the sodic class; in addition, the RF-C model generated higher values of
sensitivity than those of the SVM-C and PLS-DA (Table A5).

According to the estimation of the variables’ relative importance using the Mean
Decrease Accuracy and Mean Decrease Gini calculations, the soluble Na+ was the most
relevant parameter for classifying the salt-affected soils, followed by Ca2+, Mg2+, and Cl−

(Figure 5a,b). These rankings coincide with the variable selection through RF backward
elimination and become important for eventually discarding the less important variables if
and when the performance of the model is improved. The importance estimations have
some correspondence with the ratio of soluble Na+ to the base cations expressed by the
SAR and also with the relevance of neutral salts over alkali salts for these soils.
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3.4. Resampling

For overcoming the imbalance generated by the minority class (sodic), the mod-
els were trained a second time by applying the resampling method ‘Synthetic Minority
Over-Sampling Technique’ through the Smote function [55]; then, the results from the per-
formance validation showed a slight improvement for the SVM-C model, but a significant
decrease for the RF-C model in accuracy and kappa values (Table 3), compared to those
without resampling (Table 2).

Table 3. Accuracy and kappa values of the model training and testing with the Smote function.

Method
Calibration/CV * Validation

Accuracy Kappa Accuracy Kappa

PLS-DA 0.55 0.39 0.60 0.48
SVM-C 0.61 0.46 0.73 0.62

RF C 0.60 0.45 0.77 0.68
* CV stands for cross-validation.

3.5. Stability Analysis

The stability was evaluated by performing a new validation of the regression and
classification models based on three different partitions (percent calibration datasets of
70, 75, and 80). The RF regression models for predicting soil ECe and ESP obtained lower
differences between performances of the three calibration data amounts than those of SV-R
and PLS-R, whereas, for the classification, the PLS-DA followed by the SVM-C technique
were more stable than the RF-C model in predicting soil categories (Table 4).
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Table 4. Stability assessment for the performance validations of the models.

Model and
Metrics Method

Percent of Calibration Dataset
Difference *70% 75% 80%

ECe PLS-R 3.5/0.68 2.9/0.82 2.3/0.92 1.2/0.24
Regression SV-R 3.4/0.71 2.0/0.92 1.9/0.95 1.5/0.24
RMSE/R2 RF-R 2.9/0.79 2.1/0.91 3.0/0.88 1.7/0.15

ESP PLS-R 15.1/0.52 18.9/0.41 14.9/0.57 7.8/0.27
Regression SV-R 15.5/0.54 18.4/0.40 15.5/0.58 5.8/0.32
RMSE/R2 RF-R 12.6/0.65 12.6/0.71 11.1/0.78 1.5/0.13

Classification
Accuracy/Kappa

PLS-DA 0.65/0.51 0.67/0.52 0.71/0.57 0.06/0.06
SVM-C 0.70/0.58 0.70/0.58 0.79/0.69 0.09/0.11
RF-C 0.78/0.70 0.87/0.82 0.79/0.71 0.17/0.23

* Difference = sum of absolute differences among the metric values of the three partitions.

3.6. Additional Variables

By adding the soil pH, ECe, TOC, clay, silt, and sand to the matrix of predictor
variables, only the performances of PLS and SVM regressions to predict soil ESP showed
a significant improvement (Table 5) compared to those in Table 1. These results partly
contrast with those of Keshavarzi et al. [56] who obtained R2/MSE values of 0.84/5.36 and
0.90/5.09 for the AI-based models Multi-Layer Perceptron and Adaptive Neuro-Fuzzy
Inference System, respectively, for predicting ESP from ECe, pH, and clay. Although the RF
classification model obtained a slight increase in effectiveness (Table 5), should be noted
the redundancy caused by the soil ECe and pH as explanatory variables and as classifiers
of the explained categories at the same time; however, their further inclusion might be
pertinent if more easily obtained parameters are used, such as EC and pH measured in
soil–water suspensions.

Table 5. Obtained model performances by adding features to the matrix of explanatory variables.

Method
Regression—ECe Regression—ESP Classification

RMSE R2 RMSE R2 Accuracy Kappa

PLS 7.6 0.89 12.5 0.62 0.61 0.45
SVM 4.4 0.96 12.1 0.63 0.61 0.47
RF 12.1 0.55 12.7 0.62 0.90 0.87

3.7. Some Remarks

Overall, RF and SVM regression models performed the best for predicting soil ECe
from soluble ions, as well as the RF model for estimating the soil ESP from soluble cations;
and the RF followed by the SVM classification algorithm outperformed the PLS-DA in
predicting salt-affected soil classes from soluble salt ions. Considering that it is important
to apply tailored reclamation techniques based on modelling and predictive tools calibrated
and validated for site-specific salt-affected soils [57], the obtained models become important
tools for the monitoring and management of salt-affected soils for the study area, and also
as source of alternative covariates for further modelling.

As tentative limitations, all the models still need an optimization of their prediction
effectiveness; therefore, additional observations might be included in the dataset for im-
proving the performance and stability of the classification/regression models, as well as for
overcoming class imbalances and reinforcing the selection of variables. Additionally, the
input of additional features such as remote sensing data and field-measured soil properties
can also be useful for improving the modelling and predictions. Further classification mod-
elling could consider alternative classification systems such as that of Chhabra et al. [12]
which generates only three soil classes (normal, saline, and alkali).
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4. Conclusions

The performances of ML classification and regression algorithms (PLS, SVM, and RF)
in predicting soil ECe, ESP, and salt-affected soil classes were evaluated and compared.
Among the assessed ML regressions, SVM and RF obtained the best performances for
predicting the soil ECe, whereas the RF model was superior for estimating the soil ESP. The
RF classification algorithm showed the best prediction accuracy (87%) with a kappa value
of 82%, followed by SVM and PLS-DA. Soluble Na+ was the most important explanatory
variable for all the prediction models, followed by Ca2+, Mg2+, Cl−, and HCO3

− which
were important for classification, as well as for regression. The sodic class was poorly
predicted, and the applied resampling for overcoming its imbalance did not significantly
improve the classification performances. The stability analysis showed that the amount
of training data generated less impact on the RF regression models, whereas the SVM
and PLS-DA were more stable than RF for classification. Additional explanatory variables
somewhat improved the PLS and SVM regressions to predict ESP and the RF classification
effectiveness. It can be concluded that the RF or SVM and the RF regression can be suitable
to estimate the soil ECe and ESP, respectively. In addition, the RF and SVM classification
models can be appropriate in predicting salt-affected soil classes from soluble salt ions.
Additional samples and explanatory features can be included in the dataset for improving
the prediction performances. The assessed models might contribute significantly to the
monitoring, mapping, and management of salt-affected soils in the study area.
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Appendix A

Table A1. The setting of parameters for model training and cross-validation analysis.

Model Algorithms Parameters/Values

ECe and ESP Regression
PLS-R Number of components: 1 (ECe), 3 (ESP)
SV-R CF grid: 0.01, 0.1, 0.25, 0.5, 1
RF-R NT of 3000, MTRY of 5 (ECe), 2 (ESP)

Multiple classification
PLS-DA Number of components: 2
SVM-C CF grid: 0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2
RF-C NT of 3000, NS of 10, MTRY of 2

R = regression; C = classification; NT = number of trees; NS = minimum node size; MTRY = number of randomly
selected predictors; CF = capacity factor for SVM.
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Table A2. Descriptive statistics of explanatory variables (soluble salt ions), ESP and ECe.

Item Mean SD CV Min Max Median Count

Ca2+ 3.7 4.5 1.2 0.1 26.2 2.2 125
Mg2+ 1.7 1.9 1.1 0.09 9.4 1.0 125
Na+ 27.4 54.9 2.0 0.02 326.1 5.6 125
K+ 0.5 0.5 1.0 0.02 2.2 0.4 125
Cl− 17.4 35.3 2.0 0 205.0 5 125

SO4
2− 14.2 29.6 2.1 1.2 153.4 3.7 125

HCO3
− 5.4 6.6 1.2 0.5 34.0 3.0 125

CO3
2− 6.3 22.2 3.5 0.0 134.0 0.0 125

ESP 16.3 20.4 1.2 0.1 77.0 4.9 125
ECe 6.1 6.5 1.1 0.3 33.4 4.1 125

SD = standard deviation; CV = coefficient of variation.
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Table A3. Correlation matrix among sums of soluble and exchangeable cations, sodicity parameters,
and ECe.

Sum-Sol Cations Sum-Sol-Anions Sum-Exc-Cations SAR ESR ESP ECe

Sum-Sol Cations 1
Sum-Sol-Anions 0.78 1
Sum-Exc-Cations 0.32 0.42 1
SAR 0.90 0.75 0.33 1
ESR 0.57 0.77 0.45 0.61 1
ESP 0.66 0.75 0.50 0.66 0.93 1
ECe 0.81 0.84 0.30 0.73 0.64 0.64 1

Sum-Sol = Sum of soluble; Sum-Exc = Sum of exchangeable; SAR = sodium adsorption ratio; ESR = exchangeable
sodium ratio (ESP/100-ESP).
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Table A4. Confusion matrixes of the predictions for the three ML classification algorithms.

Class
PLS-DA SVM-C RF-C

NO SA SS SO NO SA SS SO NO SA SS SO

Normal 9 2 1 5 9 2 1 4 9 0 0 1
Saline 1 6 1 0 1 6 0 0 1 8 0 1

Saline–sodic 0 0 5 0 0 0 5 0 0 0 7 1
Sodic 0 0 0 0 0 0 1 1 0 0 0 2

NO = normal; SA = saline; SS = saline–sodic; SO = sodic.

Table A5. Sensitivity and specificity for the three classification models.

Class
Sensitivity Specificity

PLS-DA SVM-C RF-C PLS-DA SVM-C RF-C

Normal 0.90 0.90 0.90 0.60 0.65 0.95
Saline 0.75 0.75 1.00 0.91 0.95 0.90

Saline–sodic 0.71 0.71 1.00 1.00 1.00 0.96
Sodic 0.00 0.20 0.40 1.00 0.96 1.00
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