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Abstract: Background: Self-organizing maps (SOMs) are a class of neural network algo-
rithms able to visually describe a high-dimensional dataset onto a two-dimensional grid.
SOMs were explored to classify soils based on an array of physical, chemical, and biolog-
ical parameters. Methods: The SOM analysis was performed considering soil physical,
chemical, and microbial data gathered from an array of apple orchards and strawberry
plantations managed by organic or conventional methods and located in different European
climatic zones. Results: The SOM analysis considering the “climatic zone” categorical
variables was able to discriminate the samples from the three zones for both crops. The
zones were associated with different soil textures and chemical characteristics, and for
both crops, the Continental zone was associated with microbial parameters—including
biodiversity indices derived from the NGS data analysis. However, the SOM analysis based
on the “management method” categorical variables was not able to discriminate the soils
between organic and integrated management. Conclusions: This study allowed for the
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discrimination of soils of medium- and long-term fruit crops based on their pedo-climatic
characteristics and associating these characteristics to some indicators of the soil biome,
pointing to the possibility of better understanding the interactions among diverse variables,
which could support unraveling the intricate web of relationships that define soil quality.

Keywords: apple; neural networks; soil microbiome diversity; strawberry

1. Introduction
Self-organizing maps (SOMs) are a class of neural network algorithms in the

unsupervised-learning category that perform a nonlinear projection of a high-dimensional
dataset onto a two-dimensional grid [1]. The most popular learning algorithm was devel-
oped by Kohonen [2]; hence, SOM architecture is often referred to as Kohonen’s model.
Since the map preserves the topology in the display, the clustering of the data space, as well
as the metric-topological relationships of the data, items are clearly visible, allowing for
the exploration of relationships and patterns between parameters as well as structures in a
single parameter (e.g., approximating the probability distribution of the parameter) [3,4].
The advantage of having a flexible map instead of a plane specified by principal compo-
nents analysis allows us to better separate classes [5], making it suitable for clustering,
visualization, and extraction of information from multi-dimensional data [6,7]. The dataset
used for training the map can be tailored to include or combine parameters relevant to the
studied case, for example, combining physical parameters with biological indicators [3–8].

Various studies have applied SOMs to agricultural topics and, interestingly, mainly
to soil-related features. For example, this approach was applied to understand the re-
lationship between spatial vegetation patterns and dryland resilience [9] to validate a
water stress index [10], or to predict relations between soil chemical parameters [11,12]
or physical features [13], individually or together [4]. The application of neural network
models to better represent soil complexity is explained considering the complex nature and
multifunctionality of soil, its spatial variability, and the timescale of soil processes.

Soil biological parameters are gaining interest due to the soil biome’s critical functions
on all soil processes and crop performance [14]. The populations of soil micro-, meso-, and
macro-organisms are affected by land use, weather conditions, topography, crop manage-
ment, etc. [15], which are both spatially and temporarily variable. However, the relationship
between soil’s physical, chemical, and biological characteristics is not fully understood. It
has been shown that some chemical parameters, e.g., pH or organic matter content, are
frequently associated with microbial activity [16] but their relationships with microbial
biodiversity are still unclear. Patterns of soil microbial populations have been identified
at various scales [17,18]; however, representing these relationships and defining classes
of soil quality based on complex datasets comprising various kinds of soil parameters
is still a challenge [19]. In this respect, SOMs, not relying on the assumption of spatial
stationarity [11], can thus capture such complex relationships and patterns in the data,
allowing for the representation of both global and local structures that are easier to interpret
and suitable for classifying soils with different quality or fertility levels, similarly to what
was obtained in other cases [20].

Indeed, the definition of a comprehensive indicator that could include soil’s physical,
chemical, and biological characteristics would be useful to enable all stakeholders (farmers,
advisors, scientists, and policymakers) to make informed evaluations regarding practices,
processes, and policies for soil use and management [19]. However, the representation
of the index, eventually in relation to the crop, should be easy to interpret and visualize
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if a practical use should be expected. SOMs could, thus, represent a suitable tool also in
this respect.

The objective of this study was to exploit the potential use of SOMs to classify soils
based on an array of physical, chemical, and biological parameters. Considering that the
practices for soil management differ depending on the cropping system and farm man-
agement, medium- (strawberry) and long-term (apple) cropping systems were analyzed,
which were managed by conventional and organic methods, gathering data from different
European climatic zones.

2. Materials and Methods
2.1. Study Sites

This study utilized data obtained from 21 locations situated in Austria, Denmark,
Germany, Italy, Poland, and the UK. The fields selected for the trials planned in the Ex-
calibur project (“https://excaliburh2020.eu/en”, accessed on 10 January 2025) represent
different climatic conditions and were characterized by diverse field histories and man-
agement methods (Supplementary Materials, Table S1). Some of the fields were already
hosting the crop (e.g., existing apple orchards—hereafter referred to as the long-term fruit
cropping system), while those planned for strawberry plantations were prepared for the
establishment of this crop (hereafter referred to as the medium-term fruit cropping system).
The fields were managed according to organic farming (ORG) or conventional methods
applying integrated pest management (IPM).

2.2. Soil Sample Collection and Analysis

Soil samples were collected from the selected locations at the beginning of the grow-
ing season (March–June) in 2021. This time range was due to the differences in climatic
conditions, which affected the beginning of the growing season in the different countries.
However, the sampling time was suitable to match with the period of dynamic soil microor-
ganism activity. Sampling was performed using Egner’s auger (2.5-centimeter diameter)
collecting at least 10 subsamples at 0–20 cm depth, which were pooled to form the analytical
sample. Four pooled samples (replicates) were collected from each field. The samples
were used for physical and chemical analyses, as well as for DNA extraction, to determine
bacteria and fungi populations.

Soil texture was determined according to the ISO standard 11277:2020 method [21].
The following soil chemical characteristics were determined: pH; organic matter (OM); total
phosphorus (P); total potassium (K); total calcium (Ca); total magnesium (Mg). Mineral
elements were determined as previously described [22]. The pH was determined in a
water suspension (1:20 vol) with a pH meter. DNA was extracted from 1 g of wet soil
following the instructions of the EZNA Soil DNA kit from Omega (Omega Bio-tek, Inc.,
Norcross, GA, USA). The DNA was subjected to qualitative evaluation by a Nanodrop
1000 spectrophotometer (ThermoFisher, Waltham, MA, USA). The DNA was then filtered
and concentrated using 30 kDa Amicon ultra 0.5 mL centrifugal filters (Merk, Darmstadt,
Germany) and sequenced by NGS analysis on the Illumina Platform (i.e., MiSeq 2 × 300).
Sequencing libraries for bacteria were prepared using V4 16S rRNA gene sequencing from
the Earth Microbiome Project (“https://earthmicrobiome.org/protocols-and-standards/16
s/”, accessed on 12 September 2024) with the Illumina adapters. Sequencing libraries for
fungal ITS1 were prepared by amplifying specific locus ITS1f-ITS2 tailed with the Illumina
adapters. The bacterial sequences were clustered into Operational Taxonomic Units (OTUs)
based on 97% similarity with the SILVA reference database 132 [23]. Fungal taxonomy was
assigned using the UNITE database version 8.2, dynamic [24]. Data were evaluated using a
standardized bioinformatic pipeline (i.e., QIIME2), which allows for an in-depth analysis

https://excaliburh2020.eu/en
https://earthmicrobiome.org/protocols-and-standards/16s/
https://earthmicrobiome.org/protocols-and-standards/16s/
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of complex microbial communities (diversity, taxonomic composition) and provides first
indications for microbial functions.

The total number of bacteria (observed_bact) and fungal (observed_fung) OTU were
determined based on the results of NGS analysis. The alpha diversity of the microorgan-
isms’ populations (diversity_shannon bact; diversity_shannon fung) was calculated using
Shannon index. Pielou index was calculated to describe microbial communities’ evenness
(evenness_pielou_bact; evenness_pielou_fung).

For each variable considered, the Shapiro–Wilk W test (H0 = normality) showed a uni-
variate non-normal distribution (p < 0.05). For this reason, a non-parametric Kruskal–Wallis
test (H0 = same median) was used to compare, for each variable, the median of the climatic
zones. Tests were performed with the software PAST (version 2.17v) [25].

2.3. Self-Organizing Maps (SOMs)

For the SOM analysis, the R package kohonen (3.0.11 version) was used [26]. SOM anal-
ysis of the long-term fruit cropping system included 38 samples, while 46 samples were used
for the medium-term fruit cropping system. For both cropping systems, 15 variables were
selected as follows: silt (%), clay (%), sand (%), pH, OM (g/kg), P (ppm), K (ppm), Ca (ppm),
Mg (ppm), observed_bact (number), diversity_shannon_bact (H’), evenness_pielou_bact,
observed_fung (number), diversity_shannon_fung (H’), evenness_pielou_fung.

The SOM features two fully connected layers: the input layer and the output layer.
Each neuron in the output layer is represented in two ways: by a reference vector, which
has as many components as the input variables, and by its position in the grid [27].

The reference vectors collectively formed a codebook, which approximates the space
covered by the original dataset (input data or input matrix) and its probability distribu-
tion [7]. The map, projecting the codebook onto a grid, enables the identification of clusters
of observations with similar characteristics by analyzing all parameters simultaneously.

The SOM analyses of the two datasets (i.e., apple and strawberry) were organized
as follows: one vector for each object was created by concatenating the dependent (X;
described in Section 2.2) and independent variables (Y), and the SOM was trained by
using the distance of an object to a unit as the sum of separate distances for X and Y
spaces [11]. A hexagonal SOM grid with 4 × 4 dimensions was used for the training. The
SOM’s dimension was determined using the heuristic rule,

(
5·
√

N
)

/2, aiming to compress
the data into a smaller (possibly more manageable) number of patterns for analysis and
obtain an acceptable accuracy (of representation of the data vectors) [28]. The number of
data layers was 2 and the distance measure used was the sum of squares. The neighbor
function used was Gaussian and the number of iterations for the training phase was 100
(random initialization).

The variables were analyzed considering two groups of categorical variables (depen-
dent): the field management method (two variables, ORG and IPM); and the climatic zone
to which the field belonged according to the biogeographical classification defined by the
European Environmental Agency [29]. For the apple orchards, these included three cate-
gorical variables—Atlantic (A), Continental (C), and Mediterranean (M); for the strawberry
plantations, these included three categorical variables—Continental (C), Mediterranean
(M), and Alpine (L).

SOM analysis was performed to identify the key characteristics that make up the
dominant patterns in the dataset (pattern extraction) and to discover which data items were
similar to each other with respect to these characteristics (clustering). The characteristics of
the predominant patterns are revealed by the high-dimensional vectors associated with each
map node—the location of which is defined by the combination of dimension values that
make up its vector. As data elements are mapped to their nearest map nodes after training,
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clusters of data elements with similar characteristics are formed. Coloring was used to
indicate dimensional weights (values) at each node, with a separate component plane
showing the values of each dimension of the SOM. The axes and grid nodes corresponded
exactly to those of the SOM output map [28–30]. Count plots were obtained to show the
number of objects mapped to the individual units. Empty units were depicted in gray.
Quality plots were obtained to show the mean distance of objects mapped to a unit to
the codebook vector of that unit. The smaller the distance, the better the objects were
represented by the codebook vectors.

3. Results
3.1. Univariate Analysis of Long-Term Fruit Cropping System

Significant differences emerged between Continental (C) and Mediterranean (M)
climatic zones after the univariate analysis (Table 1) of the following variables: silt, clay,
sand, OM, pH, P, K, Mg, observed_bact, observed_fung, and diversity_shannon_fung.
When the same analysis was conducted considering the grouping of variable management
(integrated vs. organic), significant differences were found only for OM and Mg.

Table 1. Median values of the soil’s physical–chemical and microbial parameters in the long-term fruit
cropping systems (apple) in the group “climatic zone” for the three categorical variables considered:
Atlantic (A), Continental (C), and Mediterranean (M). Different letters indicate a significant difference,
p ≤ 0.05 (Kruskal–Wallis test).

Variables
Climatic Zone

A C M

Silt 30 ab 20 a 41 b

Clay 8 ab 3 a 42 b

Sand 62 ab 77 b 17 a

OM 17.9 ab 23.1 b 2.1 a

pH 6.3 ab 6.6 a 8.2 b

P 679.5 ab 807.5 b 19 a

K 5089.5 ab 2116.5 b 284 a

Ca 4217.5 a 3708 a 3915 a

Mg 5756 ab 2935.5 b 402 a

observed_bact 569 ab 581.5 b 553 a

diversity_shannon_bact 5.9 a 5.9 a 5.7 a

evenness_pielou_bact 0.9 a 0.9 a 0.9 a

observed_fung 287.5 ab 355 b 258 a

diversity_shannon_fung 4.4 ab 4.6 b 4.1 a

evenness_pielou_fung 0.8 a 0.8 a 0.8 a

3.2. SOM of Long-Term Fruit Cropping System

The SOM for the long-term fruit cropping system considering the “climatic zone”
categorical variables returned a pattern in which all three variables were well-discriminated
(the left part of Figure 1). The group Atlantic (A) is positioned with one cell on the bottom-
left side of the map. The group Continental (C), even if separated from the other two groups,
is split into three different positions on the map. This is also visible considering the counts
and quality plots in Figure 2. A first sub-group (C1) is positioned with one cell on the
bottom-left side of the map; a second sub-group (C2), consisting of five cells, is positioned
on the bottom-right side of the map; and a third sub-group (C3) is positioned with one cell
on the top-right side of the map. The group Mediterranean (M) is positioned with two cells
on the top-left side of the map, well-isolated from the others (Figure 2).
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Figure 2. Count (A) and quality (B) plots for SOM trained for the long-term fruit cropping system
(apple) in the group “climatic zone”.

Observing the heatmaps for each experimental variable, showing the value distribu-
tion among the units in color-code (the right side of Figure 1), it is possible to observe the
relationship between variables and groups. In particular, the group Atlantic (A) is charac-
terized by higher values of Mg and K. The group Continental (C1) is characterized by high
values of silt and low values of pH and clay. The group Continental (C2) is characterized
by high values of sand, OM, P, Mg, Ca, Evenness_Pielou_fung, and all the variables related
to bacteria; for the group C2, low values of silt and clay are shown. The group Continental
(C3) is characterized by high values of sand, Obs_fung, and Diversity_Shannon_fung and
low values of silt and clay. The group Mediterranean (M) is characterized by high values
of clay and pH and low values of sand, OM, P, K, Mg, Obs_bact, Diversity_Shannon_bact,
Obs_fung, and Diversity_Shannon_fung.

The SOM elaborated considering the two categorical variables related to the “manage-
ment method”, was not able to discriminate between organic and integrated management
(Supplementary Materials, Figure S1).

3.3. Univariate Analysis of Medium-Term Fruit Cropping System

Significant differences were found among climatic zones for the following variables:
silt, clay, sand, OM, pH, P, K, Mg, and evenness_pielou_bact (Table 2). The same procedure
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was conducted considering the two grouping variables related to soil management (inte-
grated vs. organic), displaying significant differences concerning the variables silt, sand,
pH, K, and Mg (Supplementary Materials, Table S2).

Table 2. Median values of the soil’s physical–chemical and microbial parameters for medium-term
fruit cropping system (strawberry) performed on the categorical group “climatic zone” for the three
categorical variables considered: Continental (C), Mediterranean (M), and Alpine (L). Different letters
indicate a significant difference, p ≤ 0.05 (Kruskal–Wallis test).

Variables
Climatic Zone

C L M

Silt 20 a 29 b 54 b

Clay 1 a 2 b 34 c

Sand 79 b 69 a 12 a

OM 33.8 b 2.7 ab 1.8 a

pH 7.5 b 5.7 a 8.2 c

P 861.2 b 9.9 a 22 a

K 1079 b 13.9 ab 257 a

Ca 3508 a 3245 a 3365 a

Mg 1866 b 8751 c 284 a

observed_bact 584 a 641 a 589 a

diversity_shannon_bact 5.9 a 6.0 a 5.9 a

evenness_pielou_bact 0.92 ab 0.93 b 0.92 a

observed_fung 293.0 a 273.5 a 233.5 a

diversity_shannon_fung 4.1 a 4.0 a 4.1 a

evenness_pielou_fung 0.7 a 0.7 a 0.8 a

3.4. SOM of Medium-Term Fruit Cropping System

The SOM for the medium-term fruit cropping system (strawberry) and the “climatic
zone” categories returned a pattern in which the three zones were discriminated (Figure 3).
The group Continental (C), even if separated from the other two groups, is split into two
different positions on the map. This is also visible considering the count and quality plots
in Figure 4. A first sub-group (C1) is positioned with one cell in the center of the map; a
second sub-group (C2), consisting of three cells, is positioned on the bottom-right side of
the map. The group Alpine (L), even if separated from the other two groups, is split into
two different positions on the map. This is also visible considering the count and quality
plots in Figure 4. A first sub-group (L1) is positioned with one cell on the top-left side of
the map; a second sub-group (L2), is positioned with one cell on the central-left side of the
map. The group Mediterranean (M) is positioned with two cells on the top-right side of the
map, well-isolated from the others (Figure 4).

Observing the heatmaps for each experimental variable showing the value distribution
among the units in color-code (the right side of Figure 3), it is possible to observe the
relationship between variables and groups. The group Continental (C1) is characterized
by high values of P, Ca, Evenness_Pielou_fung, and all the variables related with bacteria.
The group Continental (C2) is characterized by high values of sand, K, Obs_fung, and
Diversity_Shannon_fung and low values of silt, clay, Ca, and Evenness_Pielou_fung. The
group Alpine (L1) is characterized by high values of silt and OM and low values of sand
and Ca. The group Alpine (L2) is characterized by high values of Mg and low values of
clay, pH, P, K, and Ca. The group Mediterranean (M) is characterized by high values of
clay and pH and low values of sand, OM, P, Ca, Mg, Obs_fung, Diversity_Shannon_fung,
and all the variables related with bacteria.
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Figure 4. Count (A) and quality (B) plots for SOM trained for the medium-term fruit cropping system
(strawberry), in the group “climatic zone”.

The SOM based on the “management method” categorical variables was not able to
discriminate between organic and integrated management of this medium-term cropping
system (Supplementary Materials, Figure S2).

4. Discussion
The primary function of SOMs is to perform an unsupervised classification. The

soil variables considered in this study were well-classified with the SOMs on the basis of
climatic zones for both long-term and medium-term cropping systems. This was not clearly
emerging when considering the simple analysis of each individual parameter. In particular,
the Continental zone was strongly characterized by some physical–chemical parameters,
particularly P and Ca, and the totality of biological parameters related to both bacterial and
fungal communities, irrespective of the cropping system considered. The other climatic
zones were instead characterized by only a few physical or chemical parameters. Clay
and pH characterized the Mediterranean zone for both cropping systems, although the
fields of each crop were located in different regions with diverse kinds of soils (Table S1).
These two parameters are not commonly related, although the mineralogical characteristics
of clay can impact on soil pH [31]. In the case of strawberry, OM was associated to soils
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located in the Alpine zone, while it was included in the Continental zone when soils from
apple orchards were considered. The mineralization of soil organic matter is affected
by several factors, including climatic conditions (i.e., temperature and moisture), soil
physicochemical properties, and the soil’s microorganisms [32–34]. However, the impact of
the diverse soil management practices between strawberry and apple orchards could also
account for this result [35,36]. The analysis of the count and quality plots confirmed that
the discrimination of the soils according to the climatic zones was based on a combination
of various parameters, highlighting some associations among them that could be expected,
being the parameters related (e.g., as in the case of texture variables), as well as between
some that could not be assumed a priori (e.g., in the case of the content of some nutrients
and microbial features). In some cases, the SOM could have suggested that more than
one group was possible to be identified within the same climatic zone. For example, the
fields of the Continental zone of the long-term cropping system characterized by high Mg
and P content could be differentiated from the others showing high bacterial diversity.
Similarly, for the medium-term cropping system, the group of fields showing high silt and
OM—which were related to the Alpine zone—could have been distinguished from those
showing high sand and Mg; however, this seemed less feasible when considering both the
count and quality plots. In the latter case, it shall be considered that sand and silt content
are in relation also with the clay content, which was consistently low in both cases. It is
intriguing that the Mediterranean zone was characterized by high clay and pH, together
with high fungal diversity, although the size of the fungal population was low. This could
point to the interaction between the three components of the soil fertility as affected by the
climatic conditions.

Soil bacterial and fungal communities are directly driven by climate or soil charac-
teristics [37,38] but also indirectly through processes induced by the plant species [39].
However, it is noteworthy that the SOM analysis carried out was not able to discriminate
either cropping system when the variables were categorized according to the management
method (organic or conventional). Soil management practices are considered an important
factor in shaping the soil fertility, particularly the microbial community [40], e.g., inducing
higher microbial richness and diversity [41] and organic matter content [42]. Plant pro-
tection, soil tillage, and fertilization are major practices that diverge between organic and
conventional crop management, which can modify the soil characteristics in the long-term.
However, even though pesticide applications influenced the community abundance of
bacteria and fungi [43], the pesticide usage—in either organic farming or integrated pest
management of conventional crops—is limited to non-synthetic or to less harmful active
substances, respectively. Similarly, tillage practices are also impacting the soil’s microbial
population and chemical characteristics [44]. The two cropping systems were characterized
by a diversified management of soil tillage: less invasive for the long-term apple orchards
(where tillage is normally not performed on the row where soil samples were collected)
compared to the seasonal cultivation of the medium-term cropping system characteristic of
strawberry production. This difference applied also to the fertilization practices, prompt-
ing the hypothesis that also different fertilization practices, though impacting the soil’s
chemical and biological characteristics [45], would not be enough to modify the soil to an
extent that allowed for SOM discriminating the two management methods. Indeed, the
method of field management was also found to not affect the nematodes’ population (size
and trophic groups diversity) in samples of the same sites analyzed in this study (unpub-
lished data), which further confirms the difficulty in clearly discriminate soils according to
management methods.

Conclusions supporting the results obtained in this study are provided by recent
analyses showing that the impact of land use and some soil chemical characteristics on
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soil microbial community are mainly driven by climatic conditions [18,19]. Nevertheless,
in an effort of recognizing patterns in macrofungal communities, SOM was effectively
discriminating xerothermal meadows into three plant coenoses, which were characterized
by a very different number of fungal species [46]. Mapping environmental data onto
SOM patterns that indicate the health of an ecosystem or predict the consequences of
environmental changes [47,48] would result in identifying the most important parameters
suitable for modeling of the environmental and economic system data and the trade-off
analysis useful to propose sustainable environment management [49].

The relationship between biotic and chemical–physical variables within the Continen-
tal climatic zone highlighted possible positive and negative correlations among them. For
example, for the medium-term fruit crop, it was possible to observe a positive relationship
between the bacteria population (all parameters) and the high content of some nutrient
elements (P and Ca), which has been observed under different conditions as well [50]. The
high content of Ca is generally associated to high pH in soils, and could be also associated
to high P content (as calcium phosphate is a common soil mineral). Their association
with the bacteria community could depend on the capacity of bacteria species to solubilise
P compounds with low solubility containing also calcium. For the long-term fruit crop,
texture components resulted differently associated to microbial community indices. The
richness and diversity of the soil fungal population is known to be positively correlated
to some soil fractions [51]. Various studies have demonstrated that the diversity and
composition of soil microbial communities are linked to soil pH and nutrients [17,52–54].
Moreover, a study at the continental level pointed out an effect of soil mineral nutrient lev-
els on the microbiome [37]. Phosphorus, potassium, and calcium contents correlated with
both bacterial and fungal communities’ diversity, like the results from the SOM analyses
presented here. Interestingly, the SOM classified sand content within the Continental zone
together with the soil microorganisms’ community parameters, a textural characteristic that
was also associated with potential bacterial and fungal pathogens [37], common species of
agricultural soils such as those included in the present study.

Grouping the input data according to the climatic zone of the study sites allowed
for identifying consistent associations between the variables, irrespective of the cropping
system. Interestingly, SOM analysis was able to classify different soil types based on
variables such as color, texture, and drainage class with almost 92% correctness [55]. The
discrimination power of SOM was much higher compared to PCA and hierarchical cluster
analysis (HCA) to evaluate sediment quality of 40 sites from three estuaries using physical,
chemical, and ecotoxicological variables [56]. SOM was able to differentiate a group of
stations characterized by lower contamination and toxicity, thus with lower environmental
risk, and not requiring further steps of a multilevel assessment framework, which were
instead clustered together with other sites by the HCA or PCA analyses. The use of various
biological parameters, including biochemical (phospholipid fatty acids) and genetic (RFLPs)
variables of the soil microbial community in an SOM analysis allowed us to discriminate
soils from two different regions of Australia [57]. The associations of various chemical
and physical variables and the indices characterizing microbial communities that were
pointed out in the current study through SOM could improve our understanding of the
relationships between the factors defining the soil quality toward an overall classification
of soil quality.

Nevertheless, despite their strengths, SOMs are not without limitations. One challenge
is the interpretability of the resulting maps, as the visualization may become cluttered or
overly complex with very-high-dimensional data. Furthermore, while SOMs can highlight
correlations and patterns, they do not provide direct causal insights, necessitating further
analysis to draw definitive conclusions. An example of these challenges is reflected in
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a large study applying SOM on a multidimensional soil dataset surveying the Central
Valley of Chile [4]. Even though the pH is considered a critical factor in shaping soil
microbial communities [58], and has been found associated in our study to various microbial
parameters, it was the only parameter of that study that did not have important associations
with other parameters. On the other hand, the study pointed out that the content of organic
matter related to soil series characteristics and management practices, which was not
possible to confirm in the present study. The availability of a wider dataset in terms of
samples and specific metadata, including soil management practices, could provide a
higher classification power to the SOM analysis of soils, useful for practical purposes.

5. Conclusions
The advent of sophisticated computational techniques has significantly transformed

the landscape of data analysis. Among these, multivariate analysis techniques such as
SOMs have emerged as powerful tools for analyzing and interpreting complex datasets
by visualizing data of a different nature. The present study allowed us to discriminate
soils of medium- and long-term fruit crops based on their pedo-climatic characteristics
and associating these characteristics to some indicators of the soil biome. However, it was
not possible, for both crops, to discriminate between soils managed with organic farming
or integrated (i.e., conventional) methods. Nevertheless, by facilitating the exploration of
interactions among such diverse variables, particularly those associated to soil microbiome
or other biological features, SOMs could become a method to derive meaningful insights
from a complex matrix such as soil, helping to unravel the intricate web of relationships
that define its quality.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/soilsystems9010010/s1, Table S1: List of fields and their characteristics
used for the SOM analysis. Table S2. Median value of each variable analyzed for the long-term (apple)
and medium-term (strawberry) cropping systems in the group “management” for the two categorical
variables considered: integrated (I) and organic (O). Different letters indicate significant differences,
p ≤ 0.05 (Kruskal–Wallis test). Figure S1: Mapping plot of the trained SOM performed for the
long-term cropping system on the categorical group “management” for the two categorical variables
considered: integrated (I), organic (O). Figure S2: Mapping plot of the trained SOM performed for
the medium-term cropping system on the categorical group “management” for the two categorical
variables considered: integrated (I), organic (O).
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