Review of Latest Advances and Prospects of Energy Storage Systems: Considering Economic, Reliability, Sizing, and Environmental Impacts Approach
Abstract
:1. Introduction
2. Energy Storage Resources
2.1. Conventional Energy
2.2. Renewable Energies
3. Energy Storage Technologies
3.1. Battery Storage System
3.1.1. Lead-Acid Batteries
3.1.2. Lithium-Ion Batteries
3.1.3. Sodium-Sulfur Batteries
3.1.4. Flow Batteries
3.2. Supercapacitors Energy Storage
3.3. Flywheel Energy Storage
3.4. Hydrogen Storage
3.5. Potential Energy Storage
3.6. Thermal Energy Storage
4. Energy Storage Modeling
4.1. Economic Analysis
4.1.1. Total Life Cycle Cost (TLCC)
4.1.2. Levelized Cost of Energy (LCOE)
4.1.3. Annualized Cost of the System (ACS)
4.1.4. Internal Rate-of-Return (IRR)
4.1.5. Payback Period (PBP)
4.2. Power
4.2.1. Loss of Power Supply Probability (LPSP)
4.2.2. Expected Energy Not Supplied (EENS)
4.2.3. Level of Autonomy (LA)
4.3. Energy Storage System Sizing Techniques
4.3.1. Artificial Intelligence (AI)
4.3.2. Multi-Objective Design
4.3.3. Iterative Approach
4.3.4. Analytical Method
4.3.5. Probabilistic Approach
4.3.6. Graphical Construction Method
4.3.7. Computer Tools and Software
5. Discussions
6. Conclusions
7. Challenges and Future Works
- Use technologies to produce energy storage devices with minimal damage to the environment and human health;
- Introducing a new generation of green batteries that, like fuel cells, use clean and renewable sources to generate and store energy;
- Optimize the size or number of energy storage devices used in systems such as clean microgrids;
- Increase the efficiency of energy storage devices;
- Increase the life cycle of energy storage devices;
- Reduce the cost of energy storage;
- Reduce the size of these storage devices, which makes transportation easier and occupies less space;
- Use fewer hazardous materials and heavy metals in producing this power storage tool;
- Create a platform for the faster and easier recycling of energy storage devices with minimal environmental damage.
Author Contributions
Funding
Conflicts of Interest
References
- Khanali, M.; Mobli, H.; Hosseinzadeh-Bandbafha, H. Modeling of Yield and Environmental Impact Categories in Tea Processing Units Based on Artificial Neural Networks. Environ. Sci. Pollut. Res. 2017, 24, 26324–26340. [Google Scholar] [CrossRef] [PubMed]
- Sharpton, T.; Lawrence, T.; Hall, M. Drivers and Barriers to Public Acceptance of Future Energy Sources and Grid Expansion in the United States. Renew. Sustain. Energy Rev. 2020, 126, 109826. [Google Scholar] [CrossRef]
- Di Silvestre, M.L.; Favuzza, S.; Sanseverino, E.R.; Zizzo, G. How Decarbonization, Digitalization and Decentralization Are Changing Key Power Infrastructures. Renew. Sustain. Energy Rev. 2018, 93, 483–498. [Google Scholar] [CrossRef]
- Galik, C.S.; DeCarolis, J.F.; Fell, H. Evaluating the US Mid-Century Strategy for Deep Decarbonization amidst Early Century Uncertainty. Clim. Policy 2017, 17, 1046–1056. [Google Scholar] [CrossRef]
- Kiehbadroudinezhad, M.; Merabet, A.; Abo-Khalil, A.G.; Salameh, T.; Ghenai, C. Intelligent and Optimized Microgrids for Future Supply Power from Renewable Energy Resources: A Review. Energies 2022, 15, 3359. [Google Scholar] [CrossRef]
- Mathy, S.; Menanteau, P.; Criqui, P. After the Paris Agreement: Measuring the Global Decarbonization Wedges from National Energy Scenarios. Ecol. Econ. 2018, 150, 273–289. [Google Scholar] [CrossRef]
- Zachar, M.; Trifkovic, M.; Daoutidis, P. Policy Effects on Microgrid Economics, Technology Selection, and Environmental Impact. Comput. Chem. Eng. 2015, 81, 364–375. [Google Scholar] [CrossRef]
- Faisal, M.; Hannan, M.A.; Ker, P.J.; Hussain, A.; Mansor, M.B.; Blaabjerg, F. Review of Energy Storage System Technologies in Microgrid Applications: Issues and Challenges. IEEE Access 2018, 6, 35143–35164. [Google Scholar] [CrossRef]
- Asensio, M.; de Quevedo, P.M.; Muñoz-Delgado, G.; Contreras, J. Joint Distribution Network and Renewable Energy Expansion Planning Considering Demand Response and Energy Storage-Part I: Stochastic Programming Model. IEEE Trans. Smart Grid 2016, 9, 655–666. [Google Scholar] [CrossRef]
- Asensio, M.; de Quevedo, P.M.; Muñoz-Delgado, G.; Contreras, J. Joint Distribution Network and Renewable Energy Expansion Planning Considering Demand Response and Energy Storage-Part II: Numerical Results. IEEE Trans. Smart Grid 2016, 9, 667–675. [Google Scholar] [CrossRef]
- Kong, J.; Kim, S.T.; Kang, B.O.; Jung, J. Determining the Size of Energy Storage System to Maximize the Economic Profit for Photovoltaic and Wind Turbine Generators in South Korea. Renew. Sustain. Energy Rev. 2019, 116, 109467. [Google Scholar] [CrossRef]
- Bahramirad, S.; Reder, W.; Khodaei, A. Reliability-Constrained Optimal Sizing of Energy Storage System in a Microgrid. IEEE Trans. Smart Grid 2012, 3, 2056–2062. [Google Scholar] [CrossRef]
- Mesbahi, T.; Khenfri, F.; Rizoug, N.; Bartholomeüs, P.; Le Moigne, P. Combined Optimal Sizing and Control of Li-Ion Battery/supercapacitor Embedded Power Supply Using Hybrid Particle Swarm–Nelder–Mead Algorithm. IEEE Trans. Sustain. Energy 2016, 8, 59–73. [Google Scholar] [CrossRef]
- Motalleb, M.; Reihani, E.; Ghorbani, R. Optimal Placement and Sizing of the Storage Supporting Transmission and Distribution Networks. Renew. Energy 2016, 94, 651–659. [Google Scholar] [CrossRef] [Green Version]
- Grover-Silva, E.; Girard, R.; Kariniotakis, G. Optimal Sizing and Placement of Distribution Grid Connected Battery Systems through an SOCP Optimal Power Flow Algorithm. Appl. Energy 2018, 219, 385–393. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.J.; Stewart, R.A.; Lu, J.W. Development of a Three-Phase Battery Energy Storage Scheduling and Operation System for Low Voltage Distribution Networks. Appl. Energy 2015, 146, 122–134. [Google Scholar] [CrossRef] [Green Version]
- Lyons, P.F.; Wade, N.S.; Jiang, T.; Taylor, P.C.; Hashiesh, F.; Michel, M.; Miller, D. Design and Analysis of Electrical Energy Storage Demonstration Projects on UK Distribution Networks. Appl. Energy 2015, 137, 677–691. [Google Scholar] [CrossRef] [Green Version]
- Kiehbadroudinezhad, M.; Merabet, A.; Rajabipour, A.; Cada, M.; Kiehbadroudinezhad, S.; Khanali, M.; Hosseinzadeh-Bandbafha, H. Optimization of Wind/solar Energy Microgrid by Division Algorithm Considering Human Health and Environmental Impacts for Power-Water Cogeneration. Energy Convers. Manag. 2022, 252, 115064. [Google Scholar] [CrossRef]
- Mahani, K.; Farzan, F.; Jafari, M.A. Network-Aware Approach for Energy Storage Planning and Control in the Network with High Penetration of Renewables. Appl. Energy 2017, 195, 974–990. [Google Scholar] [CrossRef]
- Petersen, N.C.; Rodrigues, F.; Pereira, F.C. Multi-Output Bus Travel Time Prediction with Convolutional LSTM Neural Network. Expert Syst. Appl. 2019, 120, 426–435. [Google Scholar] [CrossRef] [Green Version]
- Sen, S.; Ganguly, S. Opportunities, Barriers and Issues with Renewable Energy Development-A Discussion. Renew. Sustain. Energy Rev. 2017, 69, 1170–1181. [Google Scholar] [CrossRef]
- Lee, H. Intergovernmental Panel on Climate Change. World Meteorological Organization United Nations Environment Program. 2017. Available online: https://www.wikizero.com/en/Intergovernmental_Panel_on_Climate_Change (accessed on 1 March 2022).
- Billinton, R. Impacts of Energy Storage on Power System Reliability Performance. In Proceedings of the Canadian Conference on Electrical and Computer Engineering, Saskatoon, SK, Canada, 1–4 May 2005; IEEE: Piscataway, NJ, USA, 2005; pp. 494–497. [Google Scholar]
- Farhadi, M.; Mohammed, O. Energy Storage Technologies for High-Power Applications. IEEE Trans. Ind. Appl. 2015, 52, 1953–1961. [Google Scholar] [CrossRef]
- Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of Renewable Energy Sources in Environmental Protection: A Review. Renew. Sustain. Energy Rev. 2011, 15, 1513–1524. [Google Scholar] [CrossRef]
- Karki, R.; Dhungana, D.; Billinton, R. An Appropriate Wind Model for Wind Integrated Power Systems Reliability Evaluation Considering Wind Speed Correlations. Appl. Sci. 2013, 3, 107–121. [Google Scholar] [CrossRef]
- Lun, I.Y.F.; Lam, J.C. A Study of Weibull Parameters Using Long-Term Wind Observations. Renew. Energy 2000, 20, 145–153. [Google Scholar] [CrossRef]
- Awad, A.S.A.; El-Fouly, T.H.M.; Salama, M.M.A. Optimal ESS Allocation for Load Management Application. IEEE Trans. Power Syst. 2014, 30, 327–336. [Google Scholar] [CrossRef]
- Wang, C.; Jiao, B.; Guo, L.; Yuan, K.; Sun, B. Optimal Planning of Stand-Alone Microgrids Incorporating Reliability. J. Mod. Power Syst. Clean Energy 2014, 2, 195–205. [Google Scholar] [CrossRef]
- Moseley, P.T.; Rand, D.A.J.; Peters, K. Enhancing the Performance of Lead–acid Batteries with carbon–In Pursuit of an Understanding. J. Power Sources 2015, 295, 268–274. [Google Scholar] [CrossRef]
- Abbey, C.; Robinson, J.; Joos, G. Integrating Renewable Energy Sources and Storage into Isolated Diesel Generator Supplied Electric Power Systems. In Proceedings of the 2008 13th International Power Electronics and Motion Control Conference, Poznan, Poland, 1–3 September 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 2178–2183. [Google Scholar]
- Chauhan, A.; Saini, R.P. A Review on Integrated Renewable Energy System Based Power Generation for Stand-Alone Applications: Configurations, Storage Options, Sizing Methodologies and Control. Renew. Sustain. Energy Rev. 2014, 38, 99–120. [Google Scholar] [CrossRef]
- Chen, H.; Cong, T.N.; Yang, W.; Tan, C.; Li, Y.; Ding, Y. Progress in Electrical Energy Storage System: A Critical Review. Prog. Nat. Sci. 2009, 19, 291–312. [Google Scholar] [CrossRef]
- Karpinski, A.P.; Makovetski, B.; Russell, S.J.; Serenyi, J.R.; Williams, D.C. Silver-Zinc: Status of Technology and Applications. J. Power Sources 1999, 80, 53–60. [Google Scholar] [CrossRef]
- Makansi, J.; Abboud, J. Energy Storage: The Missing Link in the Electricity Value Chain. Energy Storage Counc. White Pap. 2002. Available online: http://www.energystoragecouncil.org/ (accessed on 1 March 2022).
- Rahman, F.; Rehman, S.; Abdul-Majeed, M.A. Overview of Energy Storage Systems for Storing Electricity from Renewable Energy Sources in Saudi Arabia. Renew. Sustain. Energy Rev. 2012, 16, 274–283. [Google Scholar] [CrossRef]
- Karami, H.; Karimi, M.A.; Haghdar, S.; Sadeghi, A.; Mir-Ghasemi, R.; Mahdi-Khani, S. Synthesis of Lead Oxide Nanoparticles by Sonochemical Method and Its Application as Cathode and Anode of Lead-Acid Batteries. Mater. Chem. Phys. 2008, 108, 337–344. [Google Scholar] [CrossRef]
- De Andrade, J.; Impinnisi, P.R.; Do Vale, D.L. 180 Ah Kg- 1 Specific Capacity Positive Tubular Electrodes for Lead Acid Batteries. J. Power Sources 2011, 196, 4832–4836. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, J.; Wu, X.; Hu, Y.; Yu, W.; Wang, J.; Dong, J.; Li, M.; Liang, S.; Hu, J. A Critical Review on Secondary Lead Recycling Technology and Its Prospect. Renew. Sustain. Energy Rev. 2016, 61, 108–122. [Google Scholar] [CrossRef]
- May, G.J.; Davidson, A.; Monahov, B. Lead Batteries for Utility Energy Storage: A Review. J. Energy Storage 2018, 15, 145–157. [Google Scholar] [CrossRef]
- Ma, Y.; Wu, L.; Guan, Y.; Peng, Z. The Capacity Estimation and Cycle Life Prediction of Lithium-Ion Batteries Using a New Broad Extreme Learning Machine Approach. J. Power Sources 2020, 476, 228581. [Google Scholar] [CrossRef]
- Tang, W.; Zhu, Y.; Hou, Y.; Liu, L.; Wu, Y.; Loh, K.P.; Zhang, H.; Zhu, K. Aqueous Rechargeable Lithium Batteries as an Energy Storage System of Superfast Charging. Energy Environ. Sci. 2013, 6, 2093–2104. [Google Scholar] [CrossRef]
- Costa, C.M.; Barbosa, J.C.; Gonçalves, R.; Castro, H.; Campo, F.J.D.; Lanceros-Méndez, S. Recycling and Environmental Issues of Lithium-Ion Batteries: Advances, Challenges and Opportunities. Energy Storage Mater. 2021, 37, 433–465. [Google Scholar] [CrossRef]
- Rahman, F.; Skyllas-Kazacos, M. Solubility of Vanadyl Sulfate in Concentrated Sulfuric Acid Solutions. J. Power Sources 1998, 72, 105–110. [Google Scholar] [CrossRef]
- Ippolito, M.G.; Di Silvestre, M.L.; Riva Sanseverino, E.; Zizzo, G.; Graditi, G. Multi-Objective Optimized Management of Electrical Energy Storage Systems in an Islanded Network with Renewable Energy Sources under Different Design Scenarios. Energy 2014, 64, 648–662. [Google Scholar] [CrossRef]
- Sharafi, M.; ELMekkawy, T.Y. Multi-Objective Optimal Design of Hybrid Renewable Energy Systems Using PSO-Simulation Based Approach. Renew. Energy 2014, 68, 67–79. [Google Scholar] [CrossRef]
- Abbes, D.; Martinez, A.; Champenois, G. Life Cycle Cost, Embodied Energy and Loss of Power Supply Probability for the Optimal Design of Hybrid Power Systems. Math. Comput. Simul. 2014, 98, 46–62. [Google Scholar] [CrossRef]
- da Silva Lima, L.; Quartier, M.; Buchmayr, A.; Sanjuan-Delmás, D.; Laget, H.; Corbisier, D.; Mertens, J.; Dewulf, J. Life Cycle Assessment of Lithium-Ion Batteries and Vanadium Redox Flow Batteries-Based Renewable Energy Storage Systems. Sustain. Energy Technol. Assess. 2021, 46, 101286. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, G.; Ai, D.; Yang, B.; Gan, Z.; Wang, K. Typical Application of Energy Storage in Power System. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Wuhan, China, 24–25 April 2020; IOP Publishing: Bristol, UK, 2020; Volume 555, p. 12030. [Google Scholar]
- Nguyen, T.; Savinell, R.F. Flow Batteries. Electrochem. Soc. Interface 2010, 19, 54–56. [Google Scholar] [CrossRef]
- Brekken, T.K.A.; Yokochi, A.; Von Jouanne, A.; Yen, Z.Z.; Hapke, H.M.; Halamay, D.A. Optimal Energy Storage Sizing and Control for Wind Power Applications. IEEE Trans. Sustain. Energy 2011, 2, 69–77. [Google Scholar] [CrossRef]
- Pavlov, D. Lead-Acid Batteries: Science and Technology; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 0080931685. [Google Scholar]
- Garche, J.; Dyer, C.; Moseley, P.T.; Ogumi, Z.; Rand, D.A.; Scrosati, B. (Eds.) Encyclopedia of Electrochemical Power Sources; Newnes: New South Wales, Australia; Elsevier Academic Press: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Reddy, T.B. Linden’s Handbook of Batteries; McGraw-Hill Education: New York, NY, USA, 2011; ISBN 007162421X. [Google Scholar]
- Weber, A.Z.; Mench, M.M.; Meyers, J.P.; Ross, P.N.; Gostick, J.T.; Liu, Q. Redox Flow Batteries: A Review. J. Appl. Electrochem. 2011, 41, 1137–1164. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z. Modeling and Power Control of a Marine Current Turbine System with Energy Storage Devices. Doctoral Dissertation, Université de Bretagne occidentale-Brest, Brest, France, 2014. [Google Scholar]
- Gores, H.J.; Barthel, J.; Zugmann, S.; Moosbauer, D.; Amereller, M.; Hartl, R.; Maurer, A. Handbook of Battery Materials; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011. [Google Scholar]
- Chauhan, A.; Saini, R.P. Statistical Analysis of Wind Speed Data Using Weibull Distribution Parameters. In Proceedings of the 2014 1st International Conference on Non Conventional Energy (ICONCE 2014), Kalyani, India, 16–17 January 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 160–163. [Google Scholar]
- Pena-Alzola, R.; Sebastián, R.; Quesada, J.; Colmenar, A. Review of Flywheel Based Energy Storage Systems. In Proceedings of the 2011 International Conference on Power Engineering, Energy and Electrical Drives, Malaga, Spain, 11–13 May 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–6. [Google Scholar]
- Placek, M. Projected Global Battery Demand from 2020 to 2030, by Application. Available online: https://www.statista.com/statistics/1103218/global-battery-demand-forecast/ (accessed on 1 March 2022).
- Díaz-González, F.; Sumper, A.; Gomis-Bellmunt, O.; Bianchi, F.D. Energy Management of Flywheel-Based Energy Storage Device for Wind Power Smoothing. Appl. Energy 2013, 110, 207–219. [Google Scholar] [CrossRef]
- Koohi-Fayegh, S.; Rosen, M.A. A Review of Energy Storage Types, Applications and Recent Developments. J. Energy Storage 2020, 27, 101047. [Google Scholar] [CrossRef]
- Fahmi, M.I.; Rajkumar, R.; Arelhi, R.; Isa, D. The Performance of a Solar PV System Using Supercapacitor and Varying Loads. In Proceedings of the 2014 IEEE Student Conference on Research and Development, Penang, Malaysia, 16–17 December 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–5. [Google Scholar]
- Mathew, S.; Kadam, P.; Rai, M.; Karandikar, P.B.; Kulkarni, N.R. Symmetric and Asymmetric Supercapacitors Derived from Banyan Tree Leaves and Rose Petals. In Proceedings of the 2016 IEEE Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), Bhopal, India, 5–6 March 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–4. [Google Scholar]
- Sebastián, R.; Alzola, R.P. Flywheel Energy Storage Systems: Review and Simulation for an Isolated Wind Power System. Renew. Sustain. Energy Rev. 2012, 16, 6803–6813. [Google Scholar] [CrossRef]
- Kiehbadroudinezhad, M.; Merabet, A.; Hosseinzadeh-Bandbafha, H. Optimization of Wind Energy Battery Storage Microgrid by Division Algorithm Considering Cumulative Exergy Demand for Power-Water Cogeneration. Energies 2021, 14, 3777. [Google Scholar] [CrossRef]
- Fateev, V.N.; Grigoriev, S.A.; Seregina, E.A. Hydrogen Energy in Russia and the USSR. Nanotechnol. Russ. 2020, 15, 256–272. [Google Scholar] [CrossRef]
- Tarhan, C.; Çil, M.A. A Study on Hydrogen, the Clean Energy of the Future: Hydrogen Storage Methods. J. Energy Storage 2021, 40, 102676. [Google Scholar] [CrossRef]
- Baker, J. New Technology and Possible Advances in Energy Storage. Energy Policy 2008, 36, 4368–4373. [Google Scholar] [CrossRef]
- Vahidinasab, V.; Habibi, M. Electric Energy Storage Systems Integration in Energy Markets and Balancing Services. In Energy Storage in Energy Markets; Elsevier: Amsterdam, The Netherlands, 2021; pp. 287–316. [Google Scholar]
- Rahman, F.; Baseer, M.A.; Rehman, S. Assessment of Electricity Storage Systems. In Solar Energy Storage; Elsevier: Amsterdam, The Netherlands, 2015; pp. 63–114. [Google Scholar]
- Manzoni, M.; Patti, A.; Maccarini, S.; Traverso, A. Analysis and Comparison of Innovative Large Scale Thermo-Mechanical Closed Cycle Energy Storages. Energy 2022, 249, 123629. [Google Scholar] [CrossRef]
- Khan, M.H. An Adaptive Optimum SMES Controller for Performance Enhancement of PMSG wind System. Doctoral Dissertation, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, 2012. [Google Scholar]
- Alva, G.; Lin, Y.; Fang, G. An Overview of Thermal Energy Storage Systems. Energy 2018, 144, 341–378. [Google Scholar] [CrossRef]
- Sarbu, I.; Sebarchievici, C. A Comprehensive Review of Thermal Energy Storage. Sustainability 2018, 10, 191. [Google Scholar] [CrossRef] [Green Version]
- Kiehbadroudinezhad, M.; Rajabipour, A.; Cada, M.; Khanali, M. Modeling, Design, and Optimization of a Cost Effective and Reliable Hybrid Renewable Energy System Integrated with Desalination Using the Division Algorithm. Int. J. Energy Res. 2020, 252, 115064. [Google Scholar] [CrossRef]
- Luna-Rubio, R.; Trejo-Perea, M.; Vargas-Vázquez, D.; Ríos-Moreno, G.J. Optimal Sizing of Renewable Hybrids Energy Systems: A Review of Methodologies. Sol. Energy 2012, 86, 1077–1088. [Google Scholar] [CrossRef]
- Eltamaly, A.M.; Mohamed, M.A. Optimal Sizing and Designing of Hybrid Renewable Energy Systems in Smart Grid Applications. In Advances in Renewable Energies and Power Technologies; Elsevier: Amsterdam, The Netherlands, 2018; pp. 231–313. [Google Scholar]
- Shah, S.; Bazilian, M. LCOE and Its Limitations. Energy for Growth Hub. Memo. 2020. Available online: https://www.energyforgrowth.org/wp-content/uploads/2020/01/LCOE-and-its-Limitations.pdf (accessed on 1 March 2022).
- Kanase-Patil, A.B.; Saini, R.P.; Sharma, M.P. Sizing of Integrated Renewable Energy System Based on Load Profiles and Reliability Index for the State of Uttarakhand in India. Renew. Energy 2011, 36, 2809–2821. [Google Scholar] [CrossRef]
- Bakos, G.C.; Soursos, M. Techno-Economic Assessment of a Stand-Alone PV/hybrid Installation for Low-Cost Electrification of a Tourist Resort in Greece. Appl. Energy 2002, 73, 183–193. [Google Scholar] [CrossRef]
- Lu, J.; Yin, S. Application of net present value method and internal rate of return method in investment decision. In Proceedings of the 4th International Conference on Global Economy, Finance and Humanities Research, Chongqing, China, 10–11 April 2021; pp. 131–134. [Google Scholar]
- Wiesner, M.P.A. The Impact of Enterprise Application Integration (EAI) on Business and Management. Doctoral Dissertation, University of Johannesburg, Johannesburg, South Africa, 2012. [Google Scholar]
- Olakunle, O.O.; Ogundeyi, O.A. An Evaluation of the Usage of Capital Investment Appraisal Techniques in Manufacturing. Bachelor Dissertation, Obafemi Awolowo University, Ile-Ife, Nigeria, 2011. [Google Scholar]
- Hosseinzadeh-Bandbafha, H.; Kiehbadroudinezhad, M. Environmental Impacts of Chocolate Production and Consumption. Trends Sustain. Choc. Prod. 2022, 229–258. [Google Scholar] [CrossRef]
- Belmili, H.; Haddadi, M.; Bacha, S.; Almi, M.F.; Bendib, B. Sizing Stand-Alone Photovoltaic-Wind Hybrid System: Techno-Economic Analysis and Optimization. Renew. Sustain. Energy Rev. 2014, 30, 821–832. [Google Scholar] [CrossRef]
- Ali, L.; Muyeen, S.M.; Bizhani, H.; Ghosh, A. International Journal of Electrical Power and Energy Systems A Peer-to-Peer Energy Trading for a Clustered Microgrid—Game Theoretical Approach. Int. J. Electr. Power Energy Syst. 2021, 133, 107307. [Google Scholar] [CrossRef]
- Eryilmaz, S.; Bulanık, İ.; Devrim, Y. Reliability Based Modeling of Hybrid Solar/wind Power System for Long Term Performance Assessment. Reliab. Eng. Syst. Saf. 2021, 209, 107478. [Google Scholar] [CrossRef]
- Allan, R.N. Reliability Evaluation of Power Systems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; ISBN 1489918604. [Google Scholar]
- Celik, A.N. Techno-Economic Analysis of Autonomous PV-Wind Hybrid Energy Systems Using Different Sizing Methods. Energy Convers. Manag. 2003, 44, 1951–1968. [Google Scholar] [CrossRef]
- Paliwal, P.; Patidar, N.P.; Nema, R.K. Determination of Reliability Constrained Optimal Resource Mix for an Autonomous Hybrid Power System Using Particle Swarm Optimization. Renew. Energy 2014, 63, 194–204. [Google Scholar] [CrossRef]
- Askarzadeh, A. A Discrete Chaotic Harmony Search-Based Simulated Annealing Algorithm for Optimum Design of PV/wind Hybrid System. Sol. Energy 2013, 97, 93–101. [Google Scholar] [CrossRef]
- Merei, G.; Berger, C.; Sauer, D.U. Optimization of an off-Grid Hybrid PV–Wind–Diesel System with Different Battery Technologies Using Genetic Algorithm. Sol. Energy 2013, 97, 460–473. [Google Scholar] [CrossRef]
- Kumar, R.; Gupta, R.A.; Bansal, A.K. Economic Analysis and Power Management of a Stand-Alone Wind/photovoltaic Hybrid Energy System Using Biogeography Based Optimization Algorithm. Swarm Evol. Comput. 2013, 8, 33–43. [Google Scholar] [CrossRef]
- Arabali, A.; Ghofrani, M.; Etezadi-Amoli, M.; Fadali, M.S.; Baghzouz, Y. Genetic-Algorithm-Based Optimization Approach for Energy Management. IEEE Trans. Power Deliv. 2012, 28, 162–170. [Google Scholar] [CrossRef]
- Kashefi Kaviani, A.; Riahy, G.H.; Kouhsari, S.M. Optimal Design of a Reliable Hydrogen-Based Stand-Alone wind/PV Generating System, Considering Component Outages. Renew. Energy 2009, 34, 2380–2390. [Google Scholar] [CrossRef]
- Kiehbadroudinezhad, S.; Shahabi, A.; Kiehbadroudinezhad, M.A. The Spatial Correlation of a Multiple-Input Multiple-Output and Channel Model Using Huygens-Fresnel Principle for Underwater Acoustic. J. Commun. Softw. Syst. 2019, 15, 343–350. [Google Scholar] [CrossRef]
- Fu, T.; Wang, C. A Hybrid Wind Speed Forecasting Method and Wind Energy Resource Analysis Based on a Swarm Intelligence Optimization Algorithm and an Artificial Intelligence Model. Sustainability 2018, 10, 3913. [Google Scholar] [CrossRef] [Green Version]
- Nezhad, M.A.K.B.; Massh, J.; Komleh, H.E. Tomato Picking Machine Vision Using with the Open CV’s Library. In Proceedings of the 2011 7th Iranian Conference on Machine Vision and Image Processing, Tehran, Iran, 16–17 November 2011. [Google Scholar] [CrossRef]
- Kiehbadroudinezhad, M.A.; Massah, J.; Komleh, H.E. Design and Construction of Intelligent Tomato Picking Machine Vision. Majlesi J. Mechatron. Syst. 2012, 1, 1–7. [Google Scholar]
- Varol Altay, E.; Alatas, B. Performance Analysis of Multi-Objective Artificial Intelligence Optimization Algorithms in Numerical Association Rule Mining. J. Ambient Intell. Humaniz. Comput. 2020, 11, 3449–3469. [Google Scholar] [CrossRef]
- Moura, P.S.; de Almeida, A.T. Multi-Objective Optimization of a Mixed Renewable System with Demand-Side Management. Renew. Sustain. Energy Rev. 2010, 14, 1461–1468. [Google Scholar] [CrossRef]
- Ould Bilal, B.; Sambou, V.; Ndiaye, P.A.; Kébé, C.M.F.; Ndongo, M. Optimal Design of a Hybrid Solar–wind-Battery System Using the Minimization of the Annualized Cost System and the Minimization of the Loss of Power Supply Probability (LPSP). Renew. Energy 2010, 35, 2388–2390. [Google Scholar] [CrossRef]
- Katsigiannis, Y.A.; Georgilakis, P.S.; Karapidakis, E.S. Multiobjective Genetic Algorithm Solution to the Optimum Economic and Environmental Performance Problem of Small Autonomous Hybrid Power Systems with Renewables. IET Renew. Power Gener. 2010, 4, 404–419. [Google Scholar] [CrossRef]
- Dufo-Lopez, R.; Bernal-Agustín, J.L. Multi-Objective Design of PV–wind–diesel–hydrogen–battery Systems. Renew. Energy 2008, 33, 2559–2572. [Google Scholar] [CrossRef]
- Diaf, S.; Belhamel, M.; Haddadi, M.; Louche, A. Technical and Economic Assessment of Hybrid Photovoltaic/wind System with Battery Storage in Corsica Island. Energy Policy 2008, 36, 743–754. [Google Scholar] [CrossRef]
- Bernal-Agustín, J.L.; Dufo-López, R.; Rivas-Ascaso, D.M. Design of Isolated Hybrid Systems Minimizing Costs and Pollutant Emissions. Renew. Energy 2006, 31, 2227–2244. [Google Scholar] [CrossRef]
- Zhang, X.; Tan, S.-C.; Li, G.; Li, J.; Feng, Z. Components Sizing of Hybrid Energy Systems via the Optimization of Power Dispatch Simulations. Energy 2013, 52, 165–172. [Google Scholar] [CrossRef]
- Gupta, A.; Saini, R.P.; Sharma, M.P. Steady-State Modelling of Hybrid Energy System for off Grid Electrification of Cluster of Villages. Renew. Energy 2010, 35, 520–535. [Google Scholar] [CrossRef]
- Ekren, B.Y.; Ekren, O. Simulation Based Size Optimization of a PV/wind Hybrid Energy Conversion System with Battery Storage under Various Load and Auxiliary Energy Conditions. Appl. Energy 2009, 86, 1387–1394. [Google Scholar] [CrossRef]
- Yang, H.; Wei, Z.; Chengzhi, L. Optimal Design and Techno-Economic Analysis of a Hybrid Solar–wind Power Generation System. Appl. Energy 2009, 86, 163–169. [Google Scholar] [CrossRef]
- Li, C.-H.; Zhu, X.-J.; Cao, G.-Y.; Sui, S.; Hu, M.-R. Dynamic Modeling and Sizing Optimization of Stand-Alone Photovoltaic Power Systems Using Hybrid Energy Storage Technology. Renew. Energy 2009, 34, 815–826. [Google Scholar] [CrossRef]
- Yang, H.; Lu, L.; Zhou, W. A Novel Optimization Sizing Model for Hybrid Solar-Wind Power Generation System. Sol. Energy 2007, 81, 76–84. [Google Scholar] [CrossRef]
- Khatod, D.K.; Pant, V.; Sharma, J. Analytical Approach for Well-Being Assessment of Small Autonomous Power Systems with Solar and Wind Energy Sources. IEEE Trans. Energy Convers. 2009, 25, 535–545. [Google Scholar] [CrossRef]
- Kaldellis, J.K.; Zafirakis, D.; Kondili, E. Optimum Autonomous Stand-Alone Photovoltaic System Design on the Basis of Energy Pay-Back Analysis. Energy 2009, 34, 1187–1198. [Google Scholar] [CrossRef]
- Bouwman, S.; Bloemhof, G.A.; van Casteren, J.F.L.; Taks, B. Advantages of Probabilistic System Analysis. In Proceedings of the CIRED 2005—18th International Conference and Exhibition on Electricity Distribution, Turin, Italy, 6–9 June 2006; pp. 1–4. [Google Scholar]
- Singh, P.; Titare, L.S.; Choube, S.C.; Arya, L.D. Security Assessment Accounting Uncertainties in Line Parameters and Control Variables with the Considerations of Transmission Line Unavailability. J. Electr. Syst. Inf. Technol. 2018, 5, 576–593. [Google Scholar] [CrossRef]
- Zhou, W.; Lou, C.; Li, Z.; Lu, L.; Yang, H. Current Status of Research on Optimum Sizing of Stand-Alone Hybrid Solar–wind Power Generation Systems. Appl. Energy 2010, 87, 380–389. [Google Scholar] [CrossRef]
- Nandi, S.K.; Ghosh, H.R. Techno-Economical Analysis of off-Grid Hybrid Systems at Kutubdia Island, Bangladesh. Energy Policy 2010, 38, 976–980. [Google Scholar] [CrossRef]
- Haidar, A.M.A.; John, P.N.; Shawal, M. Optimal Configuration Assessment of Renewable Energy in Malaysia. Renew. Energy 2011, 36, 881–888. [Google Scholar] [CrossRef] [Green Version]
- Tzamalis, G.; Zoulias, E.I.; Stamatakis, E.; Varkaraki, E.; Lois, E.; Zannikos, F. Techno-Economic Analysis of an Autonomous Power System Integrating Hydrogen Technology as Energy Storage Medium. Renew. Energy 2011, 36, 118–124. [Google Scholar] [CrossRef]
- Shaahid, S.M.; Elhadidy, M.A. Economic Analysis of Hybrid Photovoltaic–diesel–battery Power Systems for Residential Loads in Hot regions—A Step to Clean Future. Renew. Sustain. Energy Rev. 2008, 12, 488–503. [Google Scholar] [CrossRef]
- Beccali, M.; Brunone, S.; Cellura, M.; Franzitta, V. Energy, Economic and Environmental Analysis on RET-Hydrogen Systems in Residential Buildings. Renew. Energy 2008, 33, 366–382. [Google Scholar] [CrossRef]
- Nfah, E.M.; Ngundam, J.M.; Vandenbergh, M.; Schmid, J. Simulation of off-Grid Generation Options for Remote Villages in Cameroon. Renew. Energy 2008, 33, 1064–1072. [Google Scholar] [CrossRef]
- Himri, Y.; Stambouli, A.B.; Draoui, B.; Himri, S. Techno-Economical Study of Hybrid Power System for a Remote Village in Algeria. Energy 2008, 33, 1128–1136. [Google Scholar] [CrossRef]
- Weis, T.M.; Ilinca, A. The Utility of Energy Storage to Improve the Economics of Wind-Diesel Power Plants in Canada. Renew. Energy 2008, 33, 1544–1557. [Google Scholar] [CrossRef]
- Nandi, S.K.; Ghosh, H.R. A wind–PV-Battery Hybrid Power System at Sitakunda in Bangladesh. Energy Policy 2009, 37, 3659–3664. [Google Scholar] [CrossRef]
- Dalton, G.J.; Lockington, D.A.; Baldock, T.E. Case Study Feasibility Analysis of Renewable Energy Supply Options for Small to Medium-Sized Tourist Accommodations. Renew. Energy 2009, 34, 1134–1144. [Google Scholar] [CrossRef]
- Dalton, G.J.; Lockington, D.A.; Baldock, T.E. Feasibility Analysis of Renewable Energy Supply Options for a Grid-Connected Large Hotel. Renew. Energy 2009, 34, 955–964. [Google Scholar] [CrossRef]
- Nfah, E.M.; Ngundam, J.M. Feasibility of Pico-Hydro and Photovoltaic Hybrid Power Systems for Remote Villages in Cameroon. Renew. Energy 2009, 34, 1445–1450. [Google Scholar] [CrossRef]
- Alzola, J.A.; Vechiu, I.; Camblong, H.; Santos, M.; Sall, M.; Sow, G. Microgrids Project, Part 2: Design of an Electrification Kit with High Content of Renewable Energy Sources in Senegal. Renew. Energy 2009, 34, 2151–2159. [Google Scholar] [CrossRef]
- Kenfack, J.; Neirac, F.P.; Tatietse, T.T.; Mayer, D.; Fogue, M.; Lejeune, A. Microhydro-PV-Hybrid System: Sizing a Small Hydro-PV-Hybrid System for Rural Electrification in Developing Countries. Renew. Energy 2009, 34, 2259–2263. [Google Scholar] [CrossRef]
- Ramos, J.S.; Ramos, H.M. Sustainable Application of Renewable Sources in Water Pumping Systems: Optimized Energy System Configuration. Energy Policy 2009, 37, 633–643. [Google Scholar] [CrossRef]
- Hrayshat, E.S. Techno-Economic Analysis of Autonomous Hybrid Photovoltaic-Diesel-Battery System. Energy Sustain. Dev. 2009, 13, 143–150. [Google Scholar] [CrossRef]
- Shaahid, S.M.; El-Amin, I. Techno-Economic Evaluation of off-Grid Hybrid Photovoltaic–diesel–battery Power Systems for Rural Electrification in Saudi Arabia—A Way Forward for Sustainable Development. Renew. Sustain. Energy Rev. 2009, 13, 625–633. [Google Scholar] [CrossRef]
- Lujano-Rojas, J.M.; Dufo-López, R.; Bernal-Agustín, J.L. Probabilistic Modelling and Analysis of Stand-Alone Hybrid Power Systems. Energy 2013, 63, 19–27. [Google Scholar] [CrossRef]
- Tina, G.; Gagliano, S.; Raiti, S. Hybrid Solar/wind Power System Probabilistic Modelling for Long-Term Performance Assessment. Sol. Energy 2006, 80, 578–588. [Google Scholar] [CrossRef]
- Yang, H.X.; Lu, L.; Burnett, J. Weather Data and Probability Analysis of Hybrid Photovoltaic–wind Power Generation Systems in Hong Kong. Renew. Energy 2003, 28, 1813–1824. [Google Scholar] [CrossRef]
- Bagul, A.D.; Salameh, Z.M.; Borowy, B. Sizing of a Stand-Alone Hybrid Wind-Photovoltaic System Using a Three-Event Probability Density Approximation. Sol. Energy 1996, 56, 323–335. [Google Scholar] [CrossRef]
- Darning, X.; Longyun, K.; Liuchen, C.; Binggang, C. Optimal Sizing of Standalone Hybrid wind/PV Power Systems Using Genetic Algorithms. In Proceedings of the Canadian Conference on Electrical and Computer Engineering, Saskatoon, SK, Canada, 1–4 May 2005; Volume 2005, pp. 1722–1725. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, W.; Lu, L.; Fang, Z. Optimal Sizing Method for Stand-Alone Hybrid Solar–wind System with LPSP Technology by Using Genetic Algorithm. Sol. Energy 2008, 82, 354–367. [Google Scholar] [CrossRef]
- Abedi, S.; Alimardani, A.; Gharehpetian, G.B.; Riahy, G.H.; Hosseinian, S.H. A Comprehensive Method for Optimal Power Management and Design of Hybrid RES-Based Autonomous Energy Systems. Renew. Sustain. Energy Rev. 2012, 16, 1577–1587. [Google Scholar] [CrossRef]
- Borowy, B.S.; Salameh, Z.M. Methodology for Optimally Sizing the Combination of a Battery Bank and PV Array in a Wind/PV Hybrid System. IEEE Trans. Energy Convers. 1996, 11, 367–373. [Google Scholar] [CrossRef]
Line | Indices | Remarks | Mathematical Equations |
---|---|---|---|
1 | CRF | Capital recovery factor | |
2 | PW | A factor of payment present worth | |
3 | TLCC | Total life cycle cost | |
4 | LCC | Life cycle cost | |
5 | LCCPV | Life cycle cost of photovoltaic | |
6 | LCCWT | Life cycle cost of wind turbine | |
7 | LCCBAT | Life cycle cost of battery | |
8 | LCCINV | Life cycle cost of Inverter | |
9 | LOCE | Levelised cost of energy |
Line | Indices | Remarks | Mathematical Equations |
---|---|---|---|
1 | LPSP | Loss of power supply probability | |
2 | LOEP | Loss of energy probability | |
3 | DPSP | Deficiency of Power Supply Probability | |
4 | LOEE | Loss of energy expected | |
5 | LOLP | Loss of load probability | |
6 | LOLE | Loss of load expected |
No. | Authors | Energy Sources | Economic Analysis | Reliability Method | Sizing Techniques | Ref. | |
---|---|---|---|---|---|---|---|
Wind | Solar | ||||||
1 | Kiehbadroudinezhad et al. | ✓ | ✓ | TLCC | LPSP | DA | [18] |
2 | Lujano-Rojas et al. | ✓ | ✓ | NPC | EENS | ANN | [136] |
3 | Tina et al. | ✓ | ✓ | ACS | EENS | Analytical | [137] |
4 | Yang et al. | ✓ | ✓ | LCOE | EENS | Probabilistic | [138] |
5 | Bagul et al. | ✕ | ✓ | TLCC | LPSP | TEPD * | [139] |
6 | Xu et al. | ✓ | ✓ | TLCC | LPSP | GA | [140] |
7 | Yang et al. | ✓ | ✓ | ACS | LPSP | GA | [141] |
8 | Abedi et al. | ✓ | ✓ | NPC | LOLP | Fuzzy | [142] |
9 | Yang et al. | ✓ | ✓ | ACS | LPSP | Iterative | [111] |
10 | Diaf et al. | ✓ | ✓ | LCOE | LPSP | ANN | [106] |
11 | Yang et al. | ✓ | ✓ | LCOE | LPSP | Iterative | [113] |
12 | Borowy et al. | ✓ | ✓ | TLCC | LPSP | Graphical | [143] |
Item | Advantages | Disadvantages |
---|---|---|
(1) Energy storage technologies | ||
Lead-acid battery |
|
|
Lithium-ion battery |
|
|
Sodium-Sulfur Battery |
|
|
Flow battery |
|
|
Supercapacitors energy storage |
|
|
Flywheel energy storage |
|
|
Hydrogen storage |
|
|
Pumped storage hydropower |
|
|
Compressed air energy storage |
|
|
Thermal energy storage |
|
|
(2) Economic analysis of energy storage systems | ||
Total Life cycle cost |
|
|
Levelized cost of energy |
|
|
Annualized cost of system |
| |
Internal rate-of-return |
|
|
Payback period |
|
|
(3) Energy storage system sizing techniques | ||
Artificial intelligence |
|
|
Multi-objective design |
|
|
Iterative approach |
|
|
Analytical method |
| |
Probabilistic approach |
|
|
Computer tools and software |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiehbadroudinezhad, M.; Merabet, A.; Hosseinzadeh-Bandbafha, H. Review of Latest Advances and Prospects of Energy Storage Systems: Considering Economic, Reliability, Sizing, and Environmental Impacts Approach. Clean Technol. 2022, 4, 477-501. https://doi.org/10.3390/cleantechnol4020029
Kiehbadroudinezhad M, Merabet A, Hosseinzadeh-Bandbafha H. Review of Latest Advances and Prospects of Energy Storage Systems: Considering Economic, Reliability, Sizing, and Environmental Impacts Approach. Clean Technologies. 2022; 4(2):477-501. https://doi.org/10.3390/cleantechnol4020029
Chicago/Turabian StyleKiehbadroudinezhad, Mohammadali, Adel Merabet, and Homa Hosseinzadeh-Bandbafha. 2022. "Review of Latest Advances and Prospects of Energy Storage Systems: Considering Economic, Reliability, Sizing, and Environmental Impacts Approach" Clean Technologies 4, no. 2: 477-501. https://doi.org/10.3390/cleantechnol4020029
APA StyleKiehbadroudinezhad, M., Merabet, A., & Hosseinzadeh-Bandbafha, H. (2022). Review of Latest Advances and Prospects of Energy Storage Systems: Considering Economic, Reliability, Sizing, and Environmental Impacts Approach. Clean Technologies, 4(2), 477-501. https://doi.org/10.3390/cleantechnol4020029