Genetically Engineered Organisms: Possibilities and Challenges of Heavy Metal Removal and Nanoparticle Synthesis
Abstract
:1. Introduction
2. GEOs in Removal of Heavy Metals
GEOs | Removal Efficiency | HMs | Refs. |
---|---|---|---|
Escherichia coli (MT2 and MT3) | 212 and 250 mg L−1 | Cd(II) | [42] |
E. coli (Jm109) | 10.11 mg/g | Ni(II) | [43] |
E. coli (Jm109) | 90 % | Hg(II) | [44] |
E. coli (Jm109) | 96% | Hg(II) | [45] |
E. coli (Jm109) | 98% | As(III) | [46] |
Saccharomyces cerevisiae (W303) | 27.1 ± 0.46 nmol mg−1 | Zn(II) | [47] |
Pseudomonas putida (X4) | 90% | Cd(II) | [48] |
Rhodopseudomonas palustris | 77.58 mg g−1 | Hg(II) | [49] |
E. coli (pBLP1) | 526 μmol g−1 | Pb(II) | [50] |
E. coli (BL21) | 7.59 mg As/g dry cells | As(III) | [51] |
E. coli | 99% | Hg(II) | [52] |
Plants | HMs | Genes | Refs. |
---|---|---|---|
Nicotiana tabacum | As | AtACR2 | [53] |
Oryza sativa | Cu and Cd | ricMT | [54] |
Brassica napus | Zn and Cu | OsMyb4 | [55] |
Sedum plumbizincicola | Cd | SpHMA1 | [56] |
Arabidopsis thaliana | Cd | MAN3 | [57] |
Brassica juncea | Pb | AtACBP1 AtACBP4 | [58] |
A. thaliana | Cd | YSL | [59] |
N. tabacum | As and Cd | OsMTP1 | [60] |
A. thaliana | Cd | PCs1 | [61] |
3. GEOs in NP Synthesis
4. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iravani, S.; Varma, R.S. Biofactories: Engineered nanoparticles via genetically engineered organisms. Green Chem. 2019, 21, 4583–4603. [Google Scholar] [CrossRef]
- Kaur, S.; Roy, A. Bioremediation of heavy metals from wastewater using nanomaterials. Environ. Dev. Sustain. 2021, 23, 9617–9640. [Google Scholar] [CrossRef]
- Ahmad, I.; Siddiqui, W.A.; Qadir, S.; Ahmad, T. Synthesis and characterization of molecular imprinted nanomaterials for the removal of heavy metals from water. J. Mater. Res. Technol. 2018, 7, 270–282. [Google Scholar] [CrossRef]
- Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011, 13, 2638–2650. [Google Scholar] [CrossRef]
- Iravani, S.; Varma, R. Plant-derived Edible Nanoparticles and miRNAs: Emerging Frontier for Therapeutics and Targeted Drug-delivery. ACS Sustain. Chem. Eng. 2019, 7, 8055–8069. [Google Scholar] [CrossRef]
- Varma, R.S. Greener approach to nanomaterials and their sustainable applications. Curr. Opin. Chem. Eng. 2012, 1, 123–128. [Google Scholar] [CrossRef]
- Varma, R.S. Journey on greener pathways: From the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation. Green Chem. 2014, 16, 2027–2041. [Google Scholar] [CrossRef]
- Varma, R.S. Greener and sustainable chemistry. Appl. Sci. 2014, 4, 493–497. [Google Scholar] [CrossRef] [Green Version]
- Varma, R.S. Greener and Sustainable Trends in Synthesis of Organics and Nanomaterials. ACS Sustain. Chem. Eng 2016, 4, 5866–5878. [Google Scholar] [CrossRef]
- Varma, R.S. Biomass-Derived Renewable Carbonaceous Materials for Sustainable Chemical and Environmental Applications. ACS Sustain. Chem. Eng. 2019, 7, 6458–6470. [Google Scholar] [CrossRef]
- Kato, Y.; Suzuki, M. Synthesis of Metal Nanoparticles by Microorganisms. Crystals 2020, 10, 589. [Google Scholar] [CrossRef]
- Ayangbenro, A.S.; Babalola, O.O. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. Int. J. Environ. Res. Public Health 2017, 14, 94. [Google Scholar] [CrossRef] [PubMed]
- Gericke, M.; Pinches, A. Biological synthesis of metal nanoparticles. Hydrometallurgy 2006, 83, 132–140. [Google Scholar] [CrossRef]
- Gericke, M.; Pinches, A. Microbial production of gold nanoparticles. Gold Bull. 2006, 39, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Wen, L.; Lin, Z.; Gu, P.; Zhou, J.; Yao, B.; Chen, G.; Fu, J. Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route. J. Nanoparticle Res. 2009, 11, 279–288. [Google Scholar] [CrossRef] [Green Version]
- Saravanan, A.; Senthil Kumar, P.; Karishma, S.; Vo, D.-V.N.; Jeevanantham, S.; Yaashikaa, P.R.; George, C.S. A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere 2021, 264, 128580. [Google Scholar] [CrossRef]
- Jung, J.H.; Park, T.J.; Lee, S.Y.; Seo, T.S. Homogeneous biogenic paramagnetic nanoparticle synthesis based on a microfluidic droplet generator. Angew. Chem. Int. Ed. 2012, 51, 5634–5637. [Google Scholar] [CrossRef]
- Luo, C.-H.; Shanmugam, V.; Yeh, C.-S. Nanoparticle biosynthesis using unicellular and subcellular supports. NPG Asia Mater. 2015, 7, e209. [Google Scholar] [CrossRef] [Green Version]
- Verma, S.; Bhatt, P.; Verma, A.; Mudila, H.; Prasher, P.; Rene, E.R. Microbial technologies for heavy metal remediation: Effect of process conditions and current practices. Clean Techn. Environ. Policy 2021, 1–23. [Google Scholar] [CrossRef]
- Ranjbar, S.; Malcata, F.X. Is Genetic Engineering a Route to Enhance Microalgae-Mediated Bioremediation of Heavy Metal-Containing Effluents? Molecules 2022, 27, 1473. [Google Scholar] [CrossRef]
- Bose, S.; Kumar, P.S.; Vo, D.-V.N.; Rajamohan, N.; Saravanan, R. Microbial degradation of recalcitrant pesticides: A review. Environ. Chem. Lett. 2021, 19, 3209–3228. [Google Scholar] [CrossRef]
- Shukla, P.K.; Sharma, S.; Singh, K.N.; Singh, V.; Bisht, S.; Kumar, V. Rhizoremediation: A Promising Rhizosphere Technology; Patil, Y.B., Rao, P., Eds.; Intech: Rijeka, Croatia, 2013; Volume 331. [Google Scholar]
- Gomes, M.A.; Hauser-Davis, R.A.; Nunes de Souza, A.; Vitória, A.P. Metal phytoremediation: General strategies, genetically modified plants and applications in metal nanoparticle contamination. Ecotoxicol. Environ. Saf. 2016, 134, 133–147. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Hu, T.; Zhai, Y.; Lu, N.; Aliyeva, J. The improved methods of heavy metals removal by biosorbents: A review. Environ. Pollut. 2020, 258, 113777. [Google Scholar] [CrossRef] [PubMed]
- Ozyigit, I.I.; Can, H.; Dogan, I. Phytoremediation using genetically engineered plants to remove metals: A review. Environ. Chem. Lett. 2021, 19, 669–698. [Google Scholar] [CrossRef]
- Fasani, E.; Manara, A.; Martini, F.; Furini, A.; DalCorso, G. The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals. Plant Cell Environ. 2018, 41, 1201–1232. [Google Scholar] [CrossRef]
- Cheng, S.Y.; Show, P.-L.; Lau, B.F.; Chang, J.-S.; Ling, T.C. New Prospects for Modified Algae in Heavy Metal Adsorption. Trends Biotechnol. 2019, 37, 1255–1268. [Google Scholar] [CrossRef]
- Wiszniewska, A.; Hanus-Fajerska, E.; MuszyŃska, E.; Ciarkowska, K. Natural organic amendments for improved phytoremediation of polluted soils: A review of recent progress. Pedosphere 2016, 26, 1–12. [Google Scholar] [CrossRef]
- Choudhury, R.; Srivastava, S. Zinc resistance mechanisms in bacteria. Curr. Sci. 2001, 81, 768–775. [Google Scholar]
- Wu, G.; Kang, H.; Zhang, X.; Shao, H.; Chu, L.; Ruan, C. A critical review on the bio-removal of hazardous heavy metals from contaminated soils: Issues, progress, eco-environmental concerns and opportunities. J. Hazard. Mater. 2010, 174, 1–8. [Google Scholar] [CrossRef]
- Yang, T.; Chen, M.; Wang, J. Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance. TrAC Trends Anal. Chem. 2015, 66, 90–102. [Google Scholar] [CrossRef]
- Ramasamy, K.; Kamaludeen, S.; Parwin, B. Bioremediation of metals microbial processes and techniques. In Environmental Bioremediation Technologies; Singh, S.N., Tripathi, R.D., Eds.; Springer Publication: New York, NY, USA, 2006; pp. 173–187. [Google Scholar]
- Wheaton, G.H.; Counts, J.A.; Mukherjee, A.; Kruh, J.; Kelly, R.M. The Confluence of heavy metal biooxidation and heavy metal resistance: Implications for bioleaching by extreme Thermoacidophiles. Minerals 2015, 5, 397–451. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Q.; Qi, X.; Li, Y.; Zhou, G.; Dai, M.; Miao, M.; Kong, Q. Evolution and resistance of a microbial community exposed to Pb(II) wastewater. Sci. Total Environ. 2019, 694, 133722. [Google Scholar] [CrossRef] [PubMed]
- Xavier, J.C.; Costa, P.E.S.; Hissa, D.C.; Melo, V.M.M.; Falcão, R.M.; Balbino, V.Q.; Mendonça, L.A.R.; Lima, M.G.S.; Coutinho, H.D.M.; Verde, L.C.L. Evaluation of the microbial diversity and heavy metal resistance genes of a microbial community on contaminated environment. Appl. Geochem 2019, 105, 1–6. [Google Scholar] [CrossRef]
- Jain, S.; Saluja, B.; Gupta, A.; Marla, S.S.; Goel, R. Validation of arsenic resistance in Bacillus cereus strain AG27 by comparative protein modeling of arsC gene product. Protein J. 2011, 30, 91–101. [Google Scholar] [CrossRef]
- Xu, S.; Sun, B.; Wang, R.; He, J.; Xia, B.; Xue, Y.; Wang, R. Overexpression of a bacterial mercury transporter MerT in Arabidopsis enhances mercury tolerance. Biochem. Biophys. Res. Commun. 2017, 490, 528–534. [Google Scholar] [CrossRef]
- Kashyap, D.R.; Botero, L.M.; Franck, W.L.; Hassett, D.J.; McDermott, T.R. Complex regulation of arsenite oxidation in Agrobacterium tumefaciens. J. Bacteriol. 2006, 188, 1081–1088. [Google Scholar] [CrossRef] [Green Version]
- Saravanan, A.; Kumar, P.S.; Ramesh, B.; Srinivasan, S. Removal of toxic heavy metals using genetically engineered microbes: Molecular tools, risk assessment and management strategies. Chemosphere 2022, 298, 134341. [Google Scholar] [CrossRef]
- Wu, C.; Li, F.; Yi, S.; Ge, F. Genetically engineered microbial remediation of soils co-contaminated by heavy metals and polycyclic aromatic hydrocarbons: Advances and ecological risk assessment. J. Environ. Manag. 2021, 296, 113185. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Kumar, P.S.; Jeevanantham, S.; Saravanan, R. A review on bioremediation approach for heavy metal detoxification and accumulation in plants. Environ. Pollut. 2022, 301, 119035. [Google Scholar] [CrossRef]
- Uckun, A.A.; Uckun, M.; Akkurt, S. Efficiency of Escherichia coli Jm109 and genetical engineering strains (E. coli MT2, E. coli MT3) in cadmium removal from aqueous solutions. Environ. Technol. Innov. 2021, 24, 102024. [Google Scholar] [CrossRef]
- Deng, X.; Li, Q.B.; Lu, Y.H.; Sun, D.H.; Huang, Y.L.; Chen, X.R. Bioaccumulation of nickel from aqueous solutions by genetically engineered Escherichia coli. Water Res. 2003, 37, 2505–2511. [Google Scholar] [CrossRef]
- Deng, X.; Hu, Z.L.; Yi, X.E. Continuous treatment process of mercury removal from aqueous solution by growing recombinant E. coli cells and modelling study. J. Hazard. Mater. 2008, 153, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.W.; Zhou, M.H.; Li, Q.B.; Lu, Y.H.; He, N.; Sun, D.H.; Deng, X. Simultaneous mercury bioaccumulation and cell propagation by genetically engineered Escherichia coli. Process Biochem. 2005, 40, 1611–1616. [Google Scholar] [CrossRef]
- Kostal, J.; Yang, R.; Wu, C.H.; Mulchandani, A.; Chen, W. Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR. Appl. Environ. Microbiol. 2004, 70, 4582–4587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinopal, S.; Ruml, T.; Kotrba, P. Biosorption of Cd2+ and Zn2+ by cell surface-engineered Saccharomyces cerevisiae. Int. Biodeterior. Biodegrad. 2007, 60, 96–102. [Google Scholar] [CrossRef]
- He, X.; Chen, W.; Huang, Q. Surface display of monkey metallothionein α tandem repeats and EGFP fusion protein on Pseudomonas putida X4 for biosorption and detection of cadmium. Appl. Microbiol. Biotechnol. 2012, 95, 1605–1613. [Google Scholar] [CrossRef]
- Deng, X.; Jia, P. Construction and characterization of a photosynthetic bacterium genetically engineered for Hg2+ uptake. Bioresour. Technol. 2011, 102, 3083–3088. [Google Scholar] [CrossRef]
- Nguyen, T.T.L.; Lee, H.R.; Hong, S.H.; Jang, J.-R.; Choe, W.-S.; Yoo, I.-K. Selective lead adsorption by recombinant Escherichia coli displaying a lead-binding peptide. Appl. Biochem. Biotechnol. 2013, 169, 1188–1196. [Google Scholar] [CrossRef]
- Ma, Y.; Lin, J.; Zhang, C.; Ren, Y.; Lin, J. Cd(II) and As(III) bioaccumulation by recombinant Escherichia coli expressing oligomeric human metallothioneins. J. Hazard. Mater. 2011, 185, 1605–1608. [Google Scholar] [CrossRef]
- Deng, X.; Wilson, D. Bioaccumulation of mercury from wastewater by genetically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 2001, 56, 276–279. [Google Scholar] [CrossRef]
- Nahar, N.; Rahman, A.; Nawani, N.N.; Ghosh, S.; Mandal, A. Phytoremediation of arsenic from the contaminated soil using transgenic tobacco plants expressing ACR2 gene of Arabidopsis thaliana. J. Plant Physiol. 2017, 218, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Lv, S.; Xu, H.; Hou, D.; Li, Y.; Wang, F. H2O2 is involved in the metallothionein-mediated rice tolerance to copper and cadmium toxicity. Int. J. Mol. Sci. 2017, 18, 2083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raldugina, G.N.; Maree, M.; Mattana, M.; Shumkova, G.; Mapelli, S.; Kholodova, V.P.; Karpichev, I.V.; Kuznetsov, V.V. Expression of rice OsMyb4 transcription factor improves tolerance to copper or zinc in canola plants. Biol. Plant. 2018, 62, 511–520. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, L.; Zhao, F.-J.; Wu, L.; Liu, A.; Xu, W. SpHMA1 is a chloroplast cadmium exporter protecting photochemical reactions in the Cd hyperaccumulator Sedum plumbizincicola. Plant Cell Environ. 2019, 42, 1112–1124. [Google Scholar] [CrossRef]
- Chen, J.; Yang, L.; Gu, J.; Bai, X.; Ren, Y.; Fan, T.; Han, Y.; Jiang, L.; Xiao, F.; Liu, Y.; et al. MAN3 gene regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis thaliana. New Phytol. 2015, 205, 570–582. [Google Scholar] [CrossRef]
- Du, Z.Y.; Chen, M.X.; Chen, Q.F.; Gu, J.D.; Chye, M.L. Expressionof arabidopsis acyl-coa-binding proteins atacbp1 and atacbp4 confers pb(ii) accumulation in brassica juncea roots. Plant Cell Environ. 2015, 38, 101–117. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, C.; Guo, H.; Hu, Y.; He, Y.; Jiang, D. Overexpression of a Miscanthus sacchariforus yellow stripe-like transporter MsYSL1 enhances resistance of Arabidopsis to cadmium by mediating metal ion reallocation. Plant Growth Regul. 2018, 85, 101–111. [Google Scholar] [CrossRef]
- Das, N.; Bhattacharya, S.; Maiti, M.K. Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene osmtp1 is promising for phytoremediation. Plant Physiol. Bioch. 2016, 105, 297–309. [Google Scholar] [CrossRef]
- Bai, J.; Wang, X.; Wang, R.; Wang, J.; Le, S.; Zhao, Y. Overexpression of three duplicated BnPCS genes enhanced Cd accumulation and translocation in Arabidopsis thaliana mutant cad1–3. Bull. Environ. Contam. Toxicol. 2019, 102, 146–152. [Google Scholar] [CrossRef]
- Gavrilescu, M. Removal of heavy metals from the environment by biosorption. Eng. Life Sci. 2004, 4, 219–232. [Google Scholar] [CrossRef]
- Asksonthong, R.; Siripongvutikorn, S.; Usawakesmanee, W. Heavy metal removal ability of Halomonas elongata and Tetragenococcus halophilus in a media model system as affected by pH and incubation time. Int. Food Res. J. 2018, 25, 234–240. [Google Scholar]
- Paliwal, V.; Puranik, S.; Purohit, H.J. Integrated perspective for effective bioremediation. Appl. Biochem. Biotechnol. 2012, 166, 903–924. [Google Scholar] [CrossRef] [PubMed]
- Poirier, I.; Hammann, P.; Kuhn, L.; Bertrand, M. Strategies developed by the marine bacterium Pseudomonas fluorescens BA3SM1 to resist metals: A proteome analysis. Aquat. Toxicol. 2013, 128, 215–232. [Google Scholar] [CrossRef] [PubMed]
- Valls, M.; Atrian, S.; de Lorenzo, V.; Fernandez, L.A. Engineering a mousemetallothionein on the cell surface ofRalstonia eutrophaCH34 for immobilizationof heavy metals in soil. Nat. Biotechnol. 2000, 18, 661–665. [Google Scholar] [CrossRef]
- Zhu, N.; Zhang, B.; Yu, Q. Genetic Engineering-Facilitated Coassembly of Synthetic Bacterial Cells and Magnetic Nanoparticles for Efficient Heavy Metal Removal. ACS Appl. Mater. Interfaces 2020, 12, 22948–22957. [Google Scholar] [CrossRef]
- Al-Amin, A.; Parvin, F.; Chakraborty, J.; Kim, Y.-I. Cyanobacteria mediated heavy metal removal: A review on mechanism, biosynthesis, and removal capability. Environ. Technol. Rev. 2021, 10, 44–57. [Google Scholar] [CrossRef]
- Pasula, R.R.; Lim, S. Engineering nanoparticle synthesis using microbial factories. Eng. Biol. 2017, 1, 12–17. [Google Scholar] [CrossRef]
- Levskaya, A.; Chevalier, A.A.; Tabor, J.J.; Simpson, Z.B.; Lavery, L.A.; Levy, M.; Davidson, E.A.; Scouras, A.; Ellington, A.D.; Marcotte, E.M.; et al. Synthetic biology: Engineering Escherichia coli to see light. Nature 2005, 438, 441–442. [Google Scholar] [CrossRef]
- Elahian, F.; Reiisi, S.; Shahidi, A.; Mirzaei, S.A. High-throughput bioaccumulation, biotransformation, and production of silver and selenium nanoparticles using genetically engineered Pichia pastoris. Nanomedicine 2017, 13, 853–861. [Google Scholar] [CrossRef]
- Choi, Y.; Park, T.J.; Lee, D.C.; Lee, S.Y. Recombinant Escherichia coli as a biofactory for various single- and multi-element nanomaterials. Proc. Natl. Acad. Sci. USA 2018, 115, 5944–5949. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.H.; Bozhilov, K.N.; Myung, N.V.; Mulchandani, A.; Chen, W. Microbial synthesis of Cds nanocrystals in genetically engineered E. coli. Angew. Chem. Int. Ed. Engl. 2008, 47, 5186–5189. [Google Scholar] [CrossRef]
- Ramanathan, R.; Field, M.R.; O’Mullane, A.P.; Smooker, P.M.; Bhargava, S.K.; Bansal, V. Aqueous phase synthesis of copper nanoparticles: A link between heavy metal resistance and nanoparticle synthesis ability in bacterial systems. Nanoscale 2013, 5, 2300–2306. [Google Scholar] [CrossRef]
- Yang, D.; Zhou, Y.; Rui, X.; Zhu, J.; Lu, Z.; Fong, E.; Yan, Q. Fe3O4 nanoparticle chains with N-doped carbon coating: Magnetotactic bacteria assisted synthesis and high-rate lithium storage. RSC Adv. 2013, 3, 14960–14962. [Google Scholar] [CrossRef]
- Kolinko, I.; Lohße, A.; Borg, S.; Raschdorf, O.; Jogler, C.; Tu, Q.; Pósfai, M.; Tompa, E.; Plitzko, J.M.; Brachmann, A.; et al. Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters. Nat. Nanotechnol. 2014, 9, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Hershey, D.M.; Ren, X.; Melnyk, R.A.; Browne, P.J.; Ozyamak, E.; Jones, S.R.; Chang, M.C.; Hurley, J.H.; Komeili, A. Mamo is a repurposed serine protease that promotes magnetite biomineralization through direct transition metal binding in magnetotactic bacteria. PLoS Biol. 2016, 14, e1002402. [Google Scholar] [CrossRef] [PubMed]
- Chellamuthu, P.; Tran, F.; Silva, K.P.T.; Chavez, M.S.; El-Naggar, M.Y.; Boedicker, J.Q. Engineering bacteria for biogenic synthesis of chalcogenide nanomaterials. Microb. Biotechnol. 2019, 12, 61–172. [Google Scholar] [CrossRef] [Green Version]
- Delalat, B.; Sheppard, V.C.; Rasi Ghaemi, S.; Rao, S.; Prestidge, C.A.; McPhee, G.; Rogers, M.L.; Donoghue, J.F.; Pillay, V.; Johns, T.G.; et al. Targeted drug delivery using genetically engineered diatom biosilica. Nat. Commun. 2015, 6, 8791. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhang, X.; Yu, M.; Li, S.; Zhang, J. Photoinduced silver nanoparticles/nanorings on plasmid DNA scaffolds. Small 2012, 8, 310–316. [Google Scholar] [CrossRef]
- Jeong, C.K.; Kim, I.; Park, K.I.; Oh, M.H.; Paik, H.; Hwang, G.T.; No, K.; Nam, Y.S.; Lee, K.J. Virus-directed design of a flexible BaTiO3 nanogenerator. ACS Nano 2013, 7, 11016–11025. [Google Scholar] [CrossRef]
- Love, A.J.; Makarov, V.V.; Sinitsyna, O.V.; Shaw, J.; Yaminsky, I.V.; Kalinina, N.O.; Taliansky, M.E. A Genetically Modified Tobacco Mosaic Virus that can Produce Gold Nanoparticles from a Metal Salt Precursor. Front. Plant Sci. 2015, 6, 984. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iravani, S.; Varma, R.S. Genetically Engineered Organisms: Possibilities and Challenges of Heavy Metal Removal and Nanoparticle Synthesis. Clean Technol. 2022, 4, 502-511. https://doi.org/10.3390/cleantechnol4020030
Iravani S, Varma RS. Genetically Engineered Organisms: Possibilities and Challenges of Heavy Metal Removal and Nanoparticle Synthesis. Clean Technologies. 2022; 4(2):502-511. https://doi.org/10.3390/cleantechnol4020030
Chicago/Turabian StyleIravani, Siavash, and Rajender S. Varma. 2022. "Genetically Engineered Organisms: Possibilities and Challenges of Heavy Metal Removal and Nanoparticle Synthesis" Clean Technologies 4, no. 2: 502-511. https://doi.org/10.3390/cleantechnol4020030
APA StyleIravani, S., & Varma, R. S. (2022). Genetically Engineered Organisms: Possibilities and Challenges of Heavy Metal Removal and Nanoparticle Synthesis. Clean Technologies, 4(2), 502-511. https://doi.org/10.3390/cleantechnol4020030