Comparative Analysis of CAZymes from Trichoderma longibrachiatum LMBC 172 Cultured with Three Different Carbon Sources: Sugarcane Bagasse, Tamarind Seeds, and Hemicellulose Simulation
Abstract
:1. Introduction
2. Material and Methods
2.1. Maintenance of the Fungus and Culture Medium
2.2. Plant Material
2.3. Submerged Culture of T. longibrachiatum LMBC 172 for Protein Secretion Induction
2.4. Sample Processing
2.5. Characterization of the T. longibrachiatum LMBC 172 by Liquid Chromatography–Tandem Mass Spectrometry (LC–MS/MS)
3. Results and Discussion
Secretome Protein Composition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ravindra, K.; Singh, T.; Mor, S. Emissions of air pollutants from primary crop residue burning in India and their mitigation strategies for cleaner emissions. J. Clean. Prod. 2019, 208, 261–273. [Google Scholar] [CrossRef]
- Yadav, M.; Paritosh, K.; Pareek, N.; Vivekanand, V. Coupled treatment of lignocellulosic agricultural residues for augmented biomethanation. J. Clean. Prod. 2019, 213, 75–88. [Google Scholar] [CrossRef]
- Singh, T.A.; Sharma, M.; Sharma, M.; Sharma, G.D.; Passari, A.K.; Bhasin, S. Valorization of agro-industrial residues for production of commercial biorefinery products. Fuel 2022, 322, 124284. [Google Scholar] [CrossRef]
- Pasin, T.M.; Almeida, P.Z.; Scarcella, A.S.A.; Infante, J.; Polizeli, M.L.T.M. Bioconversion of agro-industrial residues to second-generation bioethanol. In Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals; Nanda, S., Vo, D.V.N., Sarangi, P.K., Eds.; Springer Nature: Berlin, Germany, 2020; pp. 23–47. [Google Scholar]
- Bechara, R.; Gomez, A.; Saint-Antonin, J.M.; Schweitzer, J.M.; Maréchal, F.; Ensinas, A. Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity. Renew. Sustain. Energy Rev. 2018, 91, 152–164. [Google Scholar] [CrossRef]
- Klein, B.C.; Sampaio, I.L.M.; Mantelatto, P.E.; Filho, R.M.; Bonomi, A. Beyond ethanol, sugar, and electricity: A critical review of product diversification in Brazilian sugarcane mills. Biofuel Bioprod. Biorefin. 2019, 13, 809–821. [Google Scholar] [CrossRef]
- Pereira, L.G.; Cavalett, O.; Bonomi, A.; Zhang, Y.; Warner, E.; Chum, H.L. Comparison of biofuel life-cycle GHG emissions assessment tools: The case studies of ethanol produced from sugarcane, corn, and wheat. Renew. Sustain. Energ. Rev. 2019, 110, 1–12. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Mimura, N.; Shirai, M.; Sato, O. Cascade utilization of biomass: Strategy for conversion of cellulose, hemicellulose, and lignin into useful chemicals. ACS Sustain. Chem. Eng. 2019, 7, 10445–10451. [Google Scholar] [CrossRef]
- Vaidya, A.A.; Murton, K.D.; Smith, D.A.; Dedual, G. A review on organosolv pretreatment of softwood with a focus on enzymatic hydrolysis of cellulose. Biomass Convers. Biorefin. 2022, 12, 5427–5442. [Google Scholar] [CrossRef]
- Loqué, D.; Scheller, H.V.; Pauly, M. Engineering of plant cell walls for enhanced biofuel production. Curr. Opin. Plant Biol. 2015, 25, 151–161. [Google Scholar] [CrossRef]
- Martínez-Sanz, M.; Lopez-Sanchez, P.; Gidley, M.J.; Gilbert, E.P. Evidence for differential interaction mechanism of plant cell wall matrix polysaccharides in hierarchically-structured bacterial cellulose. Cellulose 2015, 22, 1541–1563. [Google Scholar] [CrossRef]
- Binod, P.; Gnansounou, E.; Sindhu, R.; Pandey, A. Enzymes for second generation biofuels: Recent developments and future perspectives. Bioresour. Technol. Rep. 2019, 5, 317–325. [Google Scholar] [CrossRef]
- Brück, S.A.; Contato, A.G.; Gamboa-Trujillo, P.; de Oliveira, T.B.; Cereia, M.; Polizeli, M.L.T.M. Prospection of psychrotrophic filamentous fungi isolated from the High Andean Paramo region of northern Ecuador: Enzymatic activity and molecular identification. Microorganisms 2022, 10, 282. [Google Scholar] [CrossRef] [PubMed]
- Scarcella, A.S.A.; Pasin, T.M.; de Lucas, R.C.; Ferreira-Nozawa, M.S.; de Oliveira, T.B.; Contato, A.G.; Grandis, A.; Buckeridge, M.S.; Polizeli, M.L.T.M. Holocellulase production by filamentous fungi: Potential in the hydrolysis of energy cane and other sugarcane varieties. Biomass Convers. Biorefin. 2023, 13, 1163–1174. [Google Scholar] [CrossRef]
- Behera, S.S.; Ray, R.C. Solid state fermentation for production of microbial cellulases: Recent advances and improvement strategies. Int. J. Biol. Macromol. 2016, 86, 656–669. [Google Scholar] [CrossRef] [PubMed]
- Pellegrin, C.; Morin, E.; Martin, F.M.; Veneault-Fourrey, C. Comparative analysis of secretomes from ectomycorrhizal fungi with an emphasis on small-secreted proteins. Front. Microbiol. 2015, 6, 1278. [Google Scholar] [CrossRef] [PubMed]
- Basotra, N.; Kaur, B.; Di Falco, M.; Tsang, A.; Chadha, B.S. Mycothermus thermophilus (Syn. Scytalidium thermophilum): Repertoire of a diverse array of efficient cellulases and hemicellu-lases in the secretome revealed. Bioresour. Technol. 2016, 222, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Raheja, Y.; Kaur, B.; Falco, M.; Tsang, A.; Chadha, B.S. Secretome analysis of Talaromyces emersonii reveals distinct CAZymes profile and enhanced cellulase production through response surface methodology. Ind. Crops Prod. 2020, 152, 112554. [Google Scholar] [CrossRef]
- Contato, A.G.; Borelli, T.C.; Buckeridge, M.S.; Rogers, J.; Hartson, S.; Prade, R.A.; Polizeli, M.L.T.M. Secretome analysis of Thermothelomyces thermophilus LMBC 162 cultivated with Tamarindus indica seeds reveals CAZymes for degradation of lignocellulosic biomass. J. Fungi 2024, 10, 121. [Google Scholar] [CrossRef] [PubMed]
- Barrett, K.; Jensen, K.; Meyer, A.S.; Frisvad, J.C.; Lange, L. Fungal secretome profile categorization of CAZymes by function and family corresponds to fungal phylogeny and taxonomy: Example Aspergillus and Penicillium. Sci. Rep. 2020, 10, 5158. [Google Scholar] [CrossRef]
- Filiatrault-Chastel, C.; Heiss-Blanquet, S.; Margeot, A.; Berrin, J.G. From fungal secretomes to enzymes cocktails: The path forward to bioeconomy. Biotechnol. Adv. 2021, 52, 107833. [Google Scholar] [CrossRef]
- Samuels, G.J.; Ismaiel, A.; Mulaw, T.B.; Szakacs, G.; Druzhinina, L.S.; Kubicek, C.P.; Jaklitsch, W.M. The Longibrachiatum Clade of Trichoderma: A revision with new species. Fungal Divers. 2012, 55, 77–108. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhao, L.; He, X. Degradation potential of different lignocellulosic residues by Trichoderma longibrachiatum and Trichoderma afroharzianum under solid state fermentation. Process Biochem. 2022, 112, 6–17. [Google Scholar] [CrossRef]
- Contato, A.G.; Nogueira, K.M.V.; Buckeridge, M.S.; Silva, R.N.; Polizeli, M.L.T.M. Trichoderma longibrachiatum and Thermothelomyces thermophilus co-culture: Improvement the saccharification profile of different sugarcane bagasse varieties. Biotechnol. Lett. 2023, 45, 1093–1102. [Google Scholar] [CrossRef] [PubMed]
- Kunamneni, A.; Plou, F.J.; Alcalde, M.; Ballesteros, A. Trichoderma enzymes for food industries. In Biotechnology and Biology of Trichoderma; Elsevier: Amsterdam, The Netherlands, 2014; pp. 339–344. [Google Scholar]
- Contato, A.G.; Vici, A.C.; Pinheiro, V.E.; de Oliveira, T.B.; de Freitas, E.N.; Aranha, G.M.; Junior, A.L.A.V.; Vargas-Rechia, C.G.; Buckeridge, M.S.; Polizeli, M.L.T.M. Comparision of Trichoderma longibrachiatum xyloglucanase production using tamarind (Tamarindus indica) and jatoba (Hymenaea courbaril) seeds: Factorial design and immobilization on ionic supports. Fermentation 2022, 8, 510. [Google Scholar] [CrossRef]
- Camacho-Luna, V.; Pizar-Quiroz, A.M.; Rodríguez-Hernández, A.A.; Rodríguez-Monroy, M.; Sepúlveda-Jiménez, G. Trichoderma longibrachiatum, a biological control agent of Sclerotium cepivorum on onion plants under salt stress. Biol. Control 2023, 180, 105168. [Google Scholar] [CrossRef]
- Degani, O.; Rabinovitz, O.; Becher, P.; Gordani, A.; Chen, A. Trichoderma longibrachiatum and Trichoderma asperellum confer growth promotion and protection against late wilt disease in the field. J. Fungi 2021, 7, 444. [Google Scholar] [CrossRef] [PubMed]
- Pachauri, P.V.A.; More, S.; Sullia, S.B.; Deshmukh, S. Purification and characterization of cellulase from a novel isolate of Trichoderma longibrachiatum. Biofuels 2020, 11, 85–91. [Google Scholar] [CrossRef]
- Ashfaque, M.; Solomon, S.; Pathak, N. Kinetic study of immobilized cellobiase produced from immobilized wild-type Trichoderma longibrachiatum. Sugar Tech 2016, 18, 340–346. [Google Scholar] [CrossRef]
- Barnabas, L.; Ramadass, A.; Amalraj, R.S.; Palaniyandi, M.; Rasappa, V. Sugarcane proteomics: An update on current status, challenges, and future prospects. Proteomics 2015, 15, 1658–1670. [Google Scholar] [CrossRef]
- Farinas, C.S.; Marconcini, J.M.; Mattoso, L.H.C. Enzymatic conversion of sugarcane lignocellulosic biomass as a platform for the production of ethanol, enzymes and nanocellulose. J. Renew. Mater. 2018, 6, 203–216. [Google Scholar] [CrossRef]
- UNICA. Position on 04/12/2024 [Internet]. 2023/2024 Crop Ends as the Biggest in History. Available online: http://www.unica.com.br/ (accessed on 8 July 2024).
- Sugarcane Production in 2022, Crops/Regions/World List/Production Quantity/Year (Pick Lists). UN Food and Agriculture Organization, Corporate Statistical Database (FAOSTAT). 2024. Available online: https://www.fao.org/faostat/en/#data/QC (accessed on 8 July 2024).
- Miranda, N.T.; Motta, I.L.; Filho, R.M.; Maciel, M.R.W. Sugarcane bagasse pyrolysis: A review of operating conditions and products properties. Renew. Sustain. Energy Rev. 2021, 149, 111394. [Google Scholar] [CrossRef]
- Bezerra, T.L.; Ragauskas, A.J. A review of sugarcane bagasse for second-generation bioethanol and biopower production. Biofuel Bioprod. Biorefin. 2016, 10, 634–647. [Google Scholar] [CrossRef]
- Al Arni, S. Extraction and isolation methods for lignin separation from sugarcane bagasse: A review. Ind. Crops Prod. 2018, 115, 330–339. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, V.; Singh, B. Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective. Int. J. Biol. Macromol. 2021, 169, 564–582. [Google Scholar] [CrossRef]
- Reis, P.M.C.L.; Dariva, C.; Vieira, G.A.B.; Hense, H. Extraction and evaluation of antioxidant potential of the extracts obtained from tamarind seeds (Tamarindus indica), sweet variety. J. Food Eng. 2016, 173, 116–123. [Google Scholar] [CrossRef]
- Israel, K.S.; Murthy, C.; Patil, B.L.; Hosamani, R.M. Study the trend in area, production and productivity of tamarind. J. Pharmacogn. Phytochem. 2019, 8, 283–289. [Google Scholar]
- Ramesh, T.; Rajalaksmi, N.; Dhatathrevan, K.S. Activated carbons derived from tamarind seeds for hydrogen storage. J. Energy Storage 2015, 4, 89–95. [Google Scholar] [CrossRef]
- Kumar, C.S.; Bhattacharya, S. Tamarind seed: Properties, processing and utilization. Crit. Rev. Food Sci. Nutr. 2008, 48, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, G.R.; Gandolfi, O.R.; Bonomo, R.C.F.; Fontan, R.D.C.I.; Veloso, C.M. Synthesis of activated carbon from hydrothermally carbonized tamarind seeds for lipase immobilization: Characterization and application in aroma ester synthesis. J. Chem. Technol. Biotechnol. 2021, 96, 3316–3329. [Google Scholar] [CrossRef]
- Nagar, C.K.; Dash, S.K.; Rayaguru, K. Tamarind seed: Composition, applications, and value addition: A comprehensive review. J. Food Process Preserv. 2022, 46, e16872. [Google Scholar] [CrossRef]
- Contato, A.G.; de Oliveira, T.B.; Aranha, G.M.; de Freitas, E.N.; Vici, A.C.; Nogueira, K.M.V.; de Lucas, R.C.; Scarcella, A.S.A.; Buckeridge, M.S.; Silva, R.N.; et al. Prospection of fungal lignocellulolytic enzymes produced from jatoba (Hymenaea courbaril) and tamarind (Tamarindus indica) seeds: Scaling for bioreactor and saccharification profile of sugarcane bagasse. Microorganisms 2021, 9, 533. [Google Scholar] [CrossRef] [PubMed]
- Houfani, A.A.; Anders, N.; Spiess, A.C.; Baldrian, P.; Benallaoua, S. Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars—A review. Biomass Bioenergy 2020, 134, 105481. [Google Scholar] [CrossRef]
- Rao, J.; Lv, Z.; Chen, G.; Peng, F. Hemicellulose: Structure, chemical modification, and application. Prog. Polym. Sci. 2023, 140, 101675. [Google Scholar] [CrossRef]
- Khanna, P.; Sundari, S.S.; Kumar, N.J. Production, isolation, and partial purification of xylanases from an Aspergillus sp. World J. Microbiol. Biotechnol. 1995, 11, 242–243. [Google Scholar] [CrossRef] [PubMed]
- Arntzen, M.Ø.; Bengtsson, O.; Várnai, A.; Delogu, F.; Mathiesen, G.; Eijsink, V.G. Quantitative comparison of the biomass-degrading enzyme repertoires of five filamentous fungi. Sci. Rep. 2020, 10, 20267. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, I.Y.; Eneyskaya, E.V.; Bobrov, K.S.; Polev, D.E.; Ivanen, D.R.; Kopylov, A.T.; Naryzhny, S.N.; Kulminskaya, A.A. Comprehensive analysis of Carbohydrate-Active Enzymes from the filamentous fungus Scytalidium candidum 3C. Biochemistry 2018, 83, 1399–1410. [Google Scholar] [CrossRef]
- Weber, K.; Osborn, M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. Biol. Chem. 1969, 244, 4406–4412. [Google Scholar] [CrossRef]
- Voruganti, S.; Kline, J.T.; Balch, M.J.; Rogers, J.; Matts, R.L.; Hartson, S.D. Proteomic profiling of Hsp90 inhibitors. In Chaperones; Humana Press: New York, NY, USA, 2018; pp. 139–162. [Google Scholar]
- Cox, J.; Mann, M. MaxQuant enables high peptide identification rates, individualized ppb-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008, 26, 1367–1372. [Google Scholar] [CrossRef]
- Li, D.; Sun, Y.; Li, R.; Ao, T.; Liu, X.; Luo, Y. Selective conversion of corncob hemicellulose to xylose via hydrothermal treatment with Fe2(SO4)3 and NaCl. Biomass Convers. Biorefin. 2023, 13, 1231–1240. [Google Scholar] [CrossRef]
- Ravn, J.L.; Engqvist, M.K.; Larsbrink, J.; Geijer, C. CAZyme prediction in ascomycetous yeast genomes guides discovery of novel xylanolytic species with diverse capacities for hemicellulose hydrolysis. Biotechnol. Biofuels 2021, 4, 1–18. [Google Scholar] [CrossRef]
- Li, X.; Dilokpimol, A.; Kabel, M.A.; de Vries, R.P. Fungal xylanolytic enzymes: Diversity and applications. Bioresour. Technol. 2022, 344, 126290. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Gil, S.; Parkan, K.; Kaminský, J.; Pohl, R.; Miyazaki, T. Unlocking the hydrolytic mechanism of GH92 α-1,2-mannosidases: Computation inspires the use of C-glycosides as Michaelis Complex Mimics. Chem. Eur. J. 2022, 28, e202200148. [Google Scholar] [CrossRef] [PubMed]
- Seiboth, B.; Metz, B. Fungal arabinan and L-arabinose metabolism. Appl. Microbiol. Biotechnol. 2011, 89, 1665–1673. [Google Scholar] [CrossRef] [PubMed]
- Janusz, G.; Pawlik, A.; Świderska-Burek, U.; Polak, J.; Sulej, J.; Jarosz-Wilkołazka, A.; Paszczyński, A. Laccase properties, physiological functions, and evolution. Int. J. Mol. Sci. 2020, 21, 966. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Jiang, Q.; Wu, D.; Hu, Y.; Chen, S.; Ding, T.; Ye, X.; Liu, D.; Chen, J. What is new in lysozyme research and its application in food industry? A review. Food Chem. 2019, 274, 698–709. [Google Scholar] [CrossRef] [PubMed]
- Motta, M.L.L.; de Melo, R.R.; Zanphorlin, L.M.; Santos, C.A.D.; de Souza, A.P. A novel fungal metal-dependent α-l-arabinofuranosidase of family 54 glycoside hydrolase shows expanded substrate specificity. Sci. Rep. 2021, 11, 10961. [Google Scholar] [CrossRef] [PubMed]
- Zoglowek, M.; Lübeck, P.S.; Ahring, B.K.; Lübeck, M. Heterologous expression of cellobiohydrolases in filamentous fungi—An update on the current challenges, achievements, and perspectives. Process Biochem. 2015, 50, 211–220. [Google Scholar] [CrossRef]
- Morais, M.A.B.D.; Polo, C.C.; Domingues, M.N.; Persinoti, G.F.; Pirolla, R.A.S.; de Souza, F.H.M.; Correa, J.B.L.; Santos, C.R.D.; Murakami, T.M. Exploring the molecular basis for substrate affinity and structural stability in bacterial GH39 β-xylosidases. Front. Bioeng. Biotechnol. 2020, 8, 419. [Google Scholar] [CrossRef]
- Harvey, A.J.; Hrmova, M.; De Gori, R.; Varghese, J.N.; Fincher, G.B. Comparative modeling of the three-dimensional structures of family 3 glycoside hydrolases. Proteins 2020, 41, 257–269. [Google Scholar] [CrossRef]
- Rocha, V.A.L.; Maeda, R.N.; Jr, N.P.; Kern, M.F.; Elias, L.; Simister, R.; Steele-King, C.; Gómez, L.D.; McQueen-Mason, S.J. Characterization of the cellulolytic secretome of Trichoderma harzianum during growth on sugarcane bagasse and analysis of the activity boosting effects of swollenin. Biotechnol. Prog. 2016, 32, 327–336. [Google Scholar] [CrossRef]
- Duarte, E.R.; Maia, H.A.R.; Freitas, C.E.S.; Alves, J.M.S.; Valério, H.M.; Cota, J. Hydrolysis of lignocellulosic forages by Trichoderma longibrachiatum isolate from bovine rumen. Biocatal. Agric. Biotechnol. 2021, 36, 102135. [Google Scholar] [CrossRef]
- El Aty, A.A.A.; Saleh, S.A.; Eid, B.M.; Ibrahim, N.A.; Mostafa, F.A. Thermodynamics characterization and potential textile applications of Trichoderma longibrachiatum KT693225 xylanase. Biocatal. Agric. Biotechnol. 2018, 14, 129–137. [Google Scholar] [CrossRef]
- Chutani, P.; Sharma, K.K. Concomitant production of xylanases and cellulases from Trichoderma longibrachiatum MDU-6 selected for the deinking of paper waste. Bioprocess Biosyst. Eng. 2016, 39, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Neumüller, K.G.; Streekstra, H.; Gruppen, H.; Schols, H.A. Trichoderma longibrachiatum acetyl xylan esterase 1 enhances hemicellulolytic preparations to degrade corn silage polysaccharides. Bioresour. Technol. 2014, 163, 64–73. [Google Scholar] [CrossRef] [PubMed]
- de Souza, T.S.; Kawaguti, H.Y. Cellulases, hemicellulases, and pectinases: Applications in the food and beverage industry. Food Bioproc. Tech. 2021, 14, 1446–1477. [Google Scholar] [CrossRef]
- Kakkar, P.; Wadhwa, N. Extremozymes used in textile industry. J. Text. Inst. 2022, 113, 2007–2015. [Google Scholar] [CrossRef]
- Valle-Pérez, A.U.; Gómez-Angulo, J.H.; Flores-Cosío, G.; Amaya-Delgado, L. Interaction of fungal strains, biomass, and pH to produce lignocellulosic enzymes in solid-state fermentation for sustainable biotransformation of sugarcane and agave bagasse. BioEnergy Res. 2024, 17, 1015–1028. [Google Scholar] [CrossRef]
Degraded Biomass | iBAQ (a) Hemicellulose Simulation | iBAQ (a) Sugarcane Bagasse | iBAQ (a) Tamarind Seeds | Protein IDs (b) | Family | MS/MS View: Identified Proteins | Molecular Weight (kDa) (c) |
---|---|---|---|---|---|---|---|
amido | 4.13 × 1010 | 8.41 × 108 | 9.24 × 108 | A0A2T3YUD7 | GH15 | glucoamylase | 8 |
amido | 1.78 × 1010 | 7.88 × 108 | 2.24 × 108 | A0A2T3ZF22 | GH15 | glucoamylase | 33 |
amido | 1.62 × 108 | 1.18 × 107 | 1.29 × 107 | A0A2T3YUB0 | GH13 | α-amylase | 112 |
carboxylic ester | 1.69 × 107 | 6.71 × 107 | 1.76 × 106 | A0A6V8QQW9 | CE1 | carboxylic ester hydrolase | 36 |
cellulose | 5.20 × 1010 | 3.98 × 109 | 1.50 × 1010 | Q6QTF2 | GH12 | endoglucanase I | 36 |
cellulose | 2.32 × 1010 | 5.84 × 108 | 7.30 × 109 | A0A6V8R3W7 | GH6 | exoglucanase 2 | 64 |
cellulose | 1.48 × 1010 | 2.46 × 109 | 2.25 × 1010 | A0A6V8QY83 | GH7 | exoglucanase 1 | 28 |
cellulose | 5.55 × 109 | 3.75 × 107 | 6.87 × 107 | A0A6V8R5D3 | GH3 | β-glucosidase A | 26 |
cellulose | 3.06 × 109 | 3.40 × 108 | 4.86 × 109 | A0A142C169 | GH7 | 1,4-β-D-glucan cellobiohydrolase | 33 |
cellulose | 2.10 × 109 | 1.57 × 108 | 3.46 × 108 | A0A2T3YQZ3 | GH5 | glycoside hydrolase | 45 |
cellulose | 1.04 × 109 | 7.80 × 108 | 8.69 × 107 | KAH8124777.1 | CBM35 | carbohydrate-binding module | 44 |
cellulose | 4.81 × 108 | 2.78 × 108 | 1.20 × 109 | A0A2T3ZAP7 | CBM1 | carbohydrate-binding module | 88 |
cellulose | 1.69 × 108 | 9.14 × 106 | 4.78 × 107 | A0A2T3ZMC2 | CBM1 | carbohydrate-binding module | 33 |
cellulose | 2.96 × 107 | 1.90 × 108 | 2.20 × 108 | A0A6V8R7F2 | GH5 | endoglucanase II | 56 |
cellulose | 2.16 × 107 | 4.65 × 106 | 7.80 × 106 | A0A0W7VDH7 | GH6 | exoglucanase | 45 |
cellulose | 3.16 × 106 | 1.85 × 109 | 3.86 × 108 | A0A6V8R5M5 | GH3 | β-glucosidase celA | 57 |
chitin | 2.00 × 108 | 1.74 × 108 | 3.72 × 106 | XP_024756832.1 | GH18 | glycoside hydrolase | 56 |
chitin | 7.88 × 107 | 1.66 × 107 | 3.31 × 105 | A0A2T3YRL6 | GH18 | glycoside hydrolase | 46 |
chitin | 6.24 × 107 | 5.66 × 107 | 6.51 × 106 | A0A2K0U0B3 | GH18 | chitinase | 26 |
chitin | 2.28 × 106 | 1.78 × 108 | 2.20 × 106 | A0A0B5AH01 | GH18 | chitinase | 98 |
cutin | 1.59 × 109 | 2.00 × 107 | 2.33 × 107 | A0A2T3ZC81 | CE5 | cutinase | 42 |
ester carboxylic | 1.05 × 108 | 1.65 × 108 | 1.42 × 108 | A0A6V8R506 | CE1 | carboxylic ester hydrolase | 55 |
GMC | 2.17 × 107 | 1.33 × 108 | 2.46 × 107 | A0A6V8R691 | AA3 | glucose–methanol–choline GMC oxidoreductase | 57 |
hemicellulose | 2.38 × 1011 | 9.25 × 109 | 3.25 × 108 | A0A6V8RCI3 | GH3 | xylan 1,4-β-xylosidase | 32 |
hemicellulose | 1.93 × 1011 | 1.27 × 1010 | 3.18 × 1010 | A0A6V8R417 | GH54 | α-L-arabinofuranosidase | 85 |
hemicellulose | 1.72 × 1011 | 1.88 × 109 | 6.96 × 109 | A0A6V8R4W9 | GH11 | endo-1,4-β-xylanase | 34 |
hemicellulose | 1.35 × 1011 | 6.71 × 108 | 4.40 × 108 | A0A6V8QYX8 | GH27 | α-galactosidase | 57 |
hemicellulose | 1.27 × 1011 | 2.83 × 1010 | 6.35 × 109 | A0A088MAZ4 | GH11 | endo-1,4-β-xylanase | 38 |
hemicellulose | 3.10 × 1010 | 1.02 × 108 | 3.73 × 109 | A0A2T3YZH0 | GH11 | endo-1,4-β-xylanase | 55 |
hemicellulose | 1.27 × 1010 | 4.52 × 108 | 4.59 × 108 | A0A6V8R480 | GH72 | 1,3-β-glucanosyltransferase | 105 |
hemicellulose | 1.03 × 1010 | 1.33 × 108 | 1.20 × 107 | G9NNL4 | GH12 | glycoside hydrolase | 55 |
hemicellulose | 6.63 × 109 | 6.27 × 108 | 1.97 × 108 | A0A6V8QQS5 | GH54 | α-L-arabinofuranosidase | 88 |
hemicellulose | 5.49 × 109 | 2.57 × 108 | 3.19 × 106 | A0A6V8QVE6 | GH16 | endo-1,3(4)-β-glucanase | 31 |
hemicellulose | 4.93 × 109 | 2.29 × 108 | 3.19 × 109 | A0A2T3Z959 | GH62 | α-L-arabinofuranosidase | 66 |
hemicellulose | 4.40 × 109 | 3.00 × 107 | 1.36 × 108 | A0A6V8R688 | GH72 | 1,3-β-glucanosyltransferase | 33 |
hemicellulose | 2.17 × 109 | 4.19 × 106 | 5.16 × 105 | G9N9X8 | GH11 | glycoside hydrolase | 24 |
hemicellulose | 1.71 × 109 | 1.60 × 109 | 1.86 × 109 | A0A6V8QV79 | GH43 | arabinoxylan arabinofuranohydrolase | 26 |
hemicellulose | 1.28 × 109 | 7.97 × 107 | 1.97 × 106 | A0A6V8R523 | GH2 | β-mannosidase A | 88 |
hemicellulose | 1.24 × 109 | 2.84 × 107 | 8.89 × 107 | A0A2P4ZDF2 | GH27 | α-galactosidase | 67 |
hemicellulose | 1.09 × 109 | 4.23 × 108 | 8.82 × 106 | A0A6V8R4Z6 | GH30 | xylanase | 52 |
hemicellulose | 9.44 × 108 | 6.64 × 108 | 4.68 × 108 | A0A6V8QNB0 | GH16 | glycoside hydrolase | 50 |
hemicellulose | 8.42 × 108 | 4.51 × 108 | 5.59 × 109 | UKZ86534.1 | GH74 | xyloglucanase | 78 |
hemicellulose | 8.41 × 108 | 2.62 × 107 | 3.68 × 107 | A0A6V8QP12 | CE5 | acetylxylan esterase 2 | 53 |
hemicellulose | 7.38 × 108 | 2.48 × 108 | 1.65 × 108 | A0A6V8QM46 | GH17 | glucan endo-1,3-β-glucosidase eglC | 88 |
hemicellulose | 7.33 × 108 | 1.03 × 107 | 4.09 × 107 | G9NGV2 | GH27 | α-galactosidase | 60 |
hemicellulose | 3.32 × 108 | 3.81 × 108 | 1.23 × 107 | A0A2T3ZAU0 | GH30 | glycoside hydrolase | 56 |
hemicellulose | 2.74 × 108 | 1.65 × 108 | 1.44 × 106 | A0A6V8R899 | GH64 | glucan endo-1,3-β-glucosidase | 56 |
hemicellulose | 2.48 × 108 | 2.79 × 108 | 9.46 × 106 | A0A6V8QQA1 | GH72 | 1,3-β-glucanosyltransferase | 9 |
hemicellulose | 1.38 × 108 | 5.95 × 106 | 3.06 × 106 | A0A2N1L3Y3 | CE5 | acetylxylan esterase | 46 |
hemicellulose | 1.32 × 108 | 5.86 × 106 | 3.99 × 106 | A0A0F9XN15 | GH27 | α-galactosidase | 57 |
hemicellulose | 1.11 × 108 | 3.25 × 105 | 3.10 × 107 | A0A6V8R5J5 | GH55 | glucan 1,3-β-glucosidase | 57 |
hemicellulose | 1.07 × 108 | 5.67 × 106 | 5.74 × 106 | A0A6V8RC59 | GH27 | α-galactosidase | 36 |
hemicellulose | 7.91 × 107 | 1.10 × 107 | 4.34 × 107 | A0A2T4B0H5 | GH54 | α-L-arabinofuranosidase | 102 |
hemicellulose | 7.85 × 107 | 3.88 × 106 | 1.98 × 105 | Q6QNU8 | GH11 | endo-1,4-β-xylanase | 88 |
hemicellulose | 6.42 × 107 | 5.76 × 108 | 1.14 × 108 | A0A6V8QJT1 | GH55 | glucan 1,3-β-glucosidase | 79 |
hemicellulose | 5.74 × 107 | 2.15 × 107 | 3.48 × 106 | A0A6V8QPF0 | GH2 | β-mannosidase A | 125 |
hemicellulose | 5.66 × 107 | 6.36 × 107 | 4.29 × 106 | A0A2T3YZN9 | GH78 | glycoside hydrolase | 40 |
hemicellulose | 4.26 × 107 | 2.35 × 107 | 1.44 × 107 | A0A2T3YYK7 | GH71 | glycoside hydrolase | 27 |
hemicellulose | 2.47 × 107 | 1.06 × 1010 | 5.93 × 108 | A0A6V8QIP8 | GH10 | endo-1,4-β-xylanase C | 49 |
hemicellulose | 2.12 × 107 | 3.21 × 107 | 1.65 × 106 | A0A2T4C2Y0 | GH72 | 1,3-β-glucanosyltransferase | 51 |
hemicellulose | 1.92 × 107 | 1.59 × 106 | 7.44 × 105 | A0A2T4AVU1 | GH17 | glycoside hydrolase | 88 |
hemicellulose | 1.85 × 107 | 5.82 × 108 | 1.93 × 107 | A0A2T3YYG3 | GH30 | glycoside hydrolase | 63 |
hemicellulose | 1.13 × 107 | 8.23 × 106 | 3.68 × 104 | G0RWY3 | GH18 | endo-1,4-β-xylanase | 77 |
hemicellulose | 8.92 × 106 | 6.19 × 108 | 3.87 × 107 | A0A6V8R5H6 | GH35 | β-galactosidase | 60 |
hemicellulose | 8.60 × 106 | 1.64 × 106 | 1.88 × 105 | A0A2T3Z3S2 | GH27 | α-galactosidase | 87 |
hemicellulose | 3.74 × 106 | 2.33 × 108 | 2.02 × 106 | A0A2T3ZG69 | GH31 | glycoside hydrolase | 89 |
hemicellulose | 3.40 × 106 | 6.90 × 109 | 2.42 × 108 | XP_024755433.1 | GH10 | glycoside hydrolase | 57 |
hemicellulose | 1.49 × 106 | 3.32 × 107 | 2.49 × 107 | A0A6V8R3D3 | GH3 | xylan 1,4-β-xylosidase | 65 |
hemicellulose | 1.39 × 106 | 1.87 × 108 | 2.57 × 106 | A0A6V8QXM8 | GH67 | α-glucuronidase | 55 |
hemicellulose | 6.91 × 105 | 1.42 × 107 | 4.53 × 106 | A0A6V8QX14 | GH76 | mannan endo-1,6-α-mannosidase | 44 |
hemicellulose | 6.50 × 105 | 8.42 × 106 | 2.19 × 105 | A0A2T3YZP2 | GH79 | glycoside hydrolase | 97 |
lignin | 1.69 × 109 | 1.44 × 109 | 1.83 × 106 | A0A6V8QZK1 | AA3 | laccase | 70 |
oxygen | 1.25 × 108 | 4.76 × 107 | 8.71 × 105 | A0A6V8R4F9 | AA3 | FAD-dependent monooxygenase | 54 |
pectin | 1.26 × 1011 | 6.11 × 109 | 1.58 × 109 | A0A2T3YXQ4 | CE5 | carbohydrate esterase | 56 |
pectin | 3.20 × 1010 | 3.13 × 107 | 1.34 × 109 | A0A6V8R602 | GH28 | endopolygalacturonase | 56 |
pectin | 1.52 × 1010 | 1.12 × 109 | 2.57 × 108 | XP_024766320.1 | CE5 | carbohydrate esterase | 49 |
pectin | 5.45 × 109 | 4.68 × 108 | 6.53 × 108 | A0A2K0T4R7 | CE5 | cutinase | 48 |
pectin | 3.53 × 109 | 1.35 × 106 | 1.05 × 107 | A0A6V8QQH8 | PL7 | alginate lyase | 88 |
pectin | 2.31 × 109 | 1.04 × 107 | 3.93 × 107 | A0A6V8R557 | PL1 | polysaccharide lyase | 42 |
pectin | 1.53 × 109 | 4.76 × 107 | 5.34 × 108 | A0A2T3YYD8 | CE8 | pectinesterase | 36 |
pectin | 5.65 × 108 | 4.01 × 108 | 4.44 × 107 | A0A2T3YTH0 | GH28 | glycoside hydrolase | 65 |
pectin | 2.87 × 108 | 4.01 × 105 | 1.85 × 108 | A0A2T3YUA1 | GH28 | glycoside hydrolase | 34 |
pectin | 1.79 × 108 | 1.61 × 107 | 7.61 × 106 | A0A2T3ZG56 | GH28 | glycoside hydrolase | 56 |
pectin | 1.13 × 108 | 3.68 × 107 | 1.33 × 108 | A0A395NND2 | GH28 | glycoside hydrolase | 50 |
pectin | 8.22 × 107 | 6.60 × 107 | 1.40 × 107 | A0A2T3ZCA4 | CE16 | carbohydrate esterase | 26 |
pectin | 1.94 × 107 | 3.74 × 105 | 1.17 × 105 | A0A2T3YZM0 | GH18 | glycoside hydrolase | 39 |
pectin | 2.24 × 106 | 1.43 × 106 | 9.20 × 107 | A0A6V8RBF6 | PL1 | pectate lyase C | 68 |
pectin | 1.61 × 105 | 5.72 × 106 | 5.28 × 106 | A0A2T3YUJ2 | GH28 | glycoside hydrolase | 71 |
phosphate | 3.60 × 108 | 6.77 × 107 | 6.38 × 105 | A0A6V8QHF9 | CBM21 | acid phosphatase | 44 |
Degraded Biomass | iBAQ (a) Hemicellulose Simulation | Protein IDs (b) | Family | MS/MS View: Identified Proteins | Molecular Weight (kDa) (c) |
---|---|---|---|---|---|
amido | 6.46 × 107 | A0A2T4B8C2 | CE50 | amidase | 49 |
cellulose | 1.05 × 108 | A0A2T3Z508 | CBM1 | carbohydrate-binding module | 28 |
cellulose | 4.09 × 107 | G9P6M2 | CE5 | carbohydrate esterase | 53 |
cellulose | 3.37 × 107 | A0A2K0SW07 | CBM1 | carbohydrate-binding module | 78 |
cellulose | 2.07 × 107 | A0A2T3YUC4 | GH3 | β-glucosidase | 55 |
cellulose | 1.41 × 107 | A0A2T3YX19 | CBM1 | carbohydrate-binding module | 52 |
cellulose | 1.37 × 107 | A0A2T4BD17 | CBM1 | carbohydrate-binding module | 42 |
cellulose | 1.09 × 107 | A0A2T3Z5Y5 | CBM18 | carbohydrate-binding module | 55 |
cellulose | 9.31 × 106 | A0A6V8R0S9 | AA9 | lytic polysaccharide monooxygenase | 40 |
cellulose | 3.65 × 106 | G9NFW5 | GH5 | glycoside hydrolase | 50 |
cellulose | 2.95 × 106 | A0A395NJN7 | GH7 | cellobiohydrolase | 25 |
cellulose | 2.28 × 106 | A0A2K0TAX7 | AA9 | copper radical oxidase | 43 |
cellulose | 1.96 × 106 | G9N4X9 | GH5 | glycoside hydrolase | 115 |
chitin | 2.27 × 108 | A0A6V8R2F4 | GH18 | chitinase | 44 |
chitin | 7.82 × 106 | A0A2K0T4Z2 | GH18 | chitinase | 49 |
hemicellulose | 3.57 × 108 | A0A6V8QJU6 | CE6 | acetylxylan esterase | 46 |
hemicellulose | 8.52 × 107 | A0A2H2ZRV5 | CE5 | acetylxylan esterase | 36 |
hemicellulose | 7.56 × 107 | A0A0W7VKU2 | GH54 | α-L-arabinofuranosidase | 102 |
hemicellulose | 6.34 × 107 | G9N626 | GH27 | α-galactosidase | 32 |
hemicellulose | 4.66 × 107 | A0A395NVC4 | GH3 | xylan 1,4-β-xylosidase | 58 |
hemicellulose | 4.39 × 107 | A0A6V8QTS4 | GH16 | glucan endo-1,3-β-glucosidase | 44 |
hemicellulose | 3.29 × 107 | A0A6V8QPH8 | GH76 | mannan endo-1,6-α-mannosidase | 34 |
hemicellulose | 3.03 × 107 | KAH6604482.1 | GH11 | glycoside hydrolase | 56 |
hemicellulose | 3.01 × 107 | A0A2K0TP30 | GH16 | glycoside hydrolase | 49 |
hemicellulose | 2.69 × 107 | G9NUB8 | GH62 | α-L-arabinofuranosidase | 51 |
hemicellulose | 2.44 × 107 | A0A2T3YUG9 | GH3 | xylan 1,4-β-xylosidase | 25 |
hemicellulose | 1.82 × 107 | A0A2T4ASM6 | GH3 | xylan 1,4-β-xylosidase | 31 |
hemicellulose | 1.54 × 107 | G9MSH9 | GH3 | xylan 1,4-β-xylosidase | 15 |
hemicellulose | 1.40 × 107 | A0A2T3YT55 | GH54 | α-L-arabinofuranosidase | 40 |
hemicellulose | 1.24 × 107 | A0A395NS24 | GH54 | α-L-arabinofuranosidase | 27 |
hemicellulose | 9.94 × 106 | A0A2T4BTG8 | GH54 | α-L-arabinofuranosidase | 46 |
hemicellulose | 7.48 × 106 | G9MZ65 | GH54 | α-L-arabinofuranosidase | 28 |
hemicellulose | 6.24 × 106 | G9MV41 | GH27 | α-galactosidase | 69 |
hemicellulose | 5.24 × 106 | A0A6V8R9B0 | GH27 | α-galactosidase | 42 |
hemicellulose | 4.48 × 106 | A0A2K0UKQ2 | GH3 | xylan 1,4-β-xylosidase | 26 |
hemicellulose | 3.55 × 106 | G9P179 | GH3 | xylan 1,4-β-xylosidase | 55 |
hemicellulose | 2.72 × 106 | A0A395NKK0 | GH12 | glycoside hydrolase | 120 |
hemicellulose | 1.11 × 106 | G9NPZ0 | GH64 | glycoside hydrolase | 45 |
pectin | 1.20 × 108 | G9NBD3 | CE5 | carbohydrate esterase | 65 |
pectin | 4.64 × 107 | G9NXF6 | CE5 | carbohydrate esterase | 52 |
pectin | 1.60 × 106 | G9NPZ7 | CE5 | carbohydrate esterase | 49 |
Degraded Biomass | iBAQ (a) Sugarcane Bagasse | Protein IDs (b) | Family | MS/MS View: Identified Proteins | Molecular Weight (kDa) (c) |
---|---|---|---|---|---|
amido | 4.51 × 106 | B5BQC3 | GH13 | α-amylase | 57 |
carboxylic ester | 1.37 × 108 | A0A6V8QU70 | CE1 | carboxylic ester hydrolase | 56 |
carboxylic ester | 3.42 × 107 | A0A2T3ZJ05 | CE1 | carboxylic ester hydrolase | 26 |
carboxylic ester | 1.03 × 107 | A0A6V8R5C2 | CE1 | carboxylic ester hydrolase | 70 |
carboxylic ester | 8.95 × 106 | A0A2K0U229 | CE1 | carboxylic ester hydrolase | 60 |
cellulose | 9.08 × 107 | A0A6V8QSJ6 | GH3 | β-glucosidase F | 46 |
cellulose | 3.84 × 107 | A0A395N8R8 | GH2 | glycoside hydrolase | 25 |
cellulose | 1.99 × 107 | A0A6V8QPG8 | GH31 | α-glucosidase | 31 |
cellulose | 9.93 × 106 | G9P291 | GH3 | glycoside hydrolase | 25 |
cellulose | 4.39 × 106 | A0A2T4CHF3 | GH3 | β-glucosidase | 96 |
cellulose | 2.32 × 106 | A0A2T3YT78 | GH3 | β-glucosidase | 28 |
chitin | 2.29 × 107 | V9I0I2 | GH18 | chitinase | 42 |
chitin | 4.68 × 106 | A0A395NWN8 | GH75 | endo-chitanase | 88 |
fucose | 1.33 × 107 | A0A6V8QZS6 | GH95 | α-fucosidase A | 26 |
hemicellulose | 2.46 × 108 | A0A2T3ZFW9 | GH92 | glycoside hydrolase | 88 |
hemicellulose | 9.26 × 107 | A0A6V8QLJ6 | GH76 | mannan endo-1,6-α-mannosidase | 25 |
hemicellulose | 3.34 × 107 | A0A6V8QYK7 | GH43 | arabinoxylan arabinofuranohydrolase | 56 |
hemicellulose | 3.21 × 107 | A0A2T3ZL91 | GH16 | glycoside hydrolase | 72 |
hemicellulose | 1.86 × 107 | A0A6V8R1B3 | GH51 | α-L-arabinofuranosidase | 36 |
hemicellulose | 9.40 × 106 | A0A0F9XAZ2 | GH43 | glycoside hydrolase | 47 |
hemicellulose | 5.84 × 106 | A0A6V8R596 | GH5 | glucan endo-1,6-β-glucosidase B | 26 |
hemicellulose | 4.36 × 106 | A0A2T3YUM4 | GH55 | glycoside hydrolase | 80 |
hemicellulose | 4.34 × 106 | A0A2P4ZLF1 | GH6 | α-galactosidase | 27 |
hemicellulose | 2.56 × 106 | A0A395NYK8 | GH71 | glycoside hydrolase | 42 |
hemicellulose | 2.42 × 106 | A0A1T3CS19 | GH76 | mannan endo-1,6-α-mannosidase | 58 |
hemicellulose | 2.13 × 106 | G9PBD3 | GH72 | 1,3-β-glucanosyltransferase | 49 |
hemicellulose | 1.74 × 106 | G9NFR0 | GH93 | glycoside hydrolase | 49 |
hemicellulose | 1.67 × 106 | A0A2T3YT16 | GH17 | glycoside hydrolase | 23 |
hemicellulose | 1.49 × 106 | A0A2T3YQY4 | GH92 | glycoside hydrolase | 25 |
Degraded Biomass | iBAQ (a) Tamarind Seeds | Protein IDs (b) | Family | MS/MS View: Identified Proteins | Molecular Weight (kDa) (c) |
---|---|---|---|---|---|
cellulose | 3.03 × 108 | G9PBZ8 | GH5 | glycoside hydrolase | 88 |
cellulose | 3.01 × 106 | A0A2T3YZD8 | CBM1 | carbohydrate-binding module | 34 |
lignin | 1.07 × 108 | A0A2T3YR43 | AA3 | laccase | 45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contato, A.G.; Borelli, T.C.; de Carvalho, A.K.F.; Bento, H.B.S.; Buckeridge, M.S.; Rogers, J.; Hartson, S.; Prade, R.A.; Polizeli, M.d.L.T.d.M. Comparative Analysis of CAZymes from Trichoderma longibrachiatum LMBC 172 Cultured with Three Different Carbon Sources: Sugarcane Bagasse, Tamarind Seeds, and Hemicellulose Simulation. Clean Technol. 2024, 6, 994-1010. https://doi.org/10.3390/cleantechnol6030050
Contato AG, Borelli TC, de Carvalho AKF, Bento HBS, Buckeridge MS, Rogers J, Hartson S, Prade RA, Polizeli MdLTdM. Comparative Analysis of CAZymes from Trichoderma longibrachiatum LMBC 172 Cultured with Three Different Carbon Sources: Sugarcane Bagasse, Tamarind Seeds, and Hemicellulose Simulation. Clean Technologies. 2024; 6(3):994-1010. https://doi.org/10.3390/cleantechnol6030050
Chicago/Turabian StyleContato, Alex Graça, Tiago Cabral Borelli, Ana Karine Furtado de Carvalho, Heitor Buzetti Simões Bento, Marcos Silveira Buckeridge, Janet Rogers, Steven Hartson, Rolf Alexander Prade, and Maria de Lourdes Teixeira de Moraes Polizeli. 2024. "Comparative Analysis of CAZymes from Trichoderma longibrachiatum LMBC 172 Cultured with Three Different Carbon Sources: Sugarcane Bagasse, Tamarind Seeds, and Hemicellulose Simulation" Clean Technologies 6, no. 3: 994-1010. https://doi.org/10.3390/cleantechnol6030050
APA StyleContato, A. G., Borelli, T. C., de Carvalho, A. K. F., Bento, H. B. S., Buckeridge, M. S., Rogers, J., Hartson, S., Prade, R. A., & Polizeli, M. d. L. T. d. M. (2024). Comparative Analysis of CAZymes from Trichoderma longibrachiatum LMBC 172 Cultured with Three Different Carbon Sources: Sugarcane Bagasse, Tamarind Seeds, and Hemicellulose Simulation. Clean Technologies, 6(3), 994-1010. https://doi.org/10.3390/cleantechnol6030050