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Abstract

:

The examination of fungal secretomes has garnered attention for its potential to unveil the repertoire of secreted proteins, notably CAZymes (Carbohydrate-Active enzymes), across various microorganisms. This study presents findings on categorizing the secretome profile of CAZymes by their function and family, derived from the filamentous fungus Trichoderma longibrachiatum LMBC 172. The cultivation was performed through submerged fermentation with three distinct carbon sources: sugarcane bagasse, tamarind seeds, and a control simulating hemicellulose containing 0.5% beechwood xylan plus 0.5% oat spelt xylan. The secretome analysis revealed 206 distinct CAZymes. Each carbon source showed particularities and differences. Of these, 89 proteins were produced simultaneously with all the carbon sources; specifically, 41 proteins using only the hemicellulose simulation, 29 proteins when sugarcane bagasse was used as a carbon source, and only 3 when tamarind seeds were used. However, in this last condition, there was a high intensity of xyloglucanase GH74 production, thus reaffirming the richness of xyloglucan in the constitution of these seeds. When evaluating the proteins found in two conditions, 18 proteins were shown between the simulation of hemicellulose and sugarcane bagasse, 11 proteins between the simulation of hemicellulose and tamarind seeds, and 15 proteins between sugarcane bagasse and tamarind seeds. Among the proteins found, there are representatives of different families such as glycosyl hydrolases (GHs) that cleave cellulose, hemicellulose, pectin, or other components; carbohydrate esterases (CEs); polysaccharide lyases (PLs); carbohydrate-binding modules (CBMs); and auxiliary activity enzymes (AAs). These results demonstrate the importance of analyzing CAZymes secreted by microorganisms under different culture conditions.
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1. Introduction


The rise in agro-industrial operations has resulted in the accumulation of substantial quantities of lignocellulosic residues sourced from diverse origins, including wood and various agricultural byproducts globally [1,2,3]. Annually, approximately 146 billion tons of waste are generated worldwide [4]. There has been a notable surge in economic interest in these residues in recent years due to their renewability and cost-effectiveness, offering substantial potential for chemical and bioenergy production, such as bioethanol [5,6,7].



Plant biomass is composed of intricately structured polymeric materials, including proteins, lignin, holocellulose (a composite of cellulose fibers enveloped in hemicellulose-pectin), ash, salts, and minerals [8,9]. The polysaccharide framework within the plant cell wall represents one of the most intricate structures, with its lignocellulosic constitution varying depending on its source [10,11]. These cell wall polysaccharides serve as energy reservoirs, which, upon efficient extraction, can be utilized to produce second-generation ethanol, particularly through the hydrolysis of sugarcane bagasse [12].



The process of converting lignocellulosic biomass into ethanol and other chemical compounds often relies on a multienzyme system that operates synergistically [5,13,14]. It is crucial to investigate various microorganisms and comprehend how they secrete enzymes relevant to these processes [15]. Consequently, examining the secretomes of various fungi has garnered attention. These studies offer insights into the secreted proteins, notably the CAZymes (Carbohydrate-Active enzymes), released by diverse microorganisms cultivated under different conditions [16,17,18,19]. CAZymes encompass numerous enzyme protein families, each classified based on protein sequence similarities and distinctive three-dimensional folding structures [20]. They are classified between glycosyl hydrolases (GHs) that cleave cellulose, hemicellulose, pectin, or other components; carbohydrate esterases (CEs); polysaccharide lyases (PLs); carbohydrate-binding modules (CBMs); and auxiliary activity enzymes (AAs). These analyses allow a better understanding of the ideal way to obtain proteins of industrial interest, in addition to enabling the discovery of proteins not yet described in the literature for the studied microorganisms [21].



One particularly intriguing microorganism is Trichoderma longibrachiatum, especially in the context of biotechnology and biomass bioconversion. T. longibrachiatum is distributed globally, with a predominant presence in warmer climates. Its colonies usually exhibit an initial off-white colony, which later transitions to a shade of greyish green with age [22]. The members of this clade have gained significant attention across different sectors due to their remarkable capacity to excrete substantial quantities of proteins and metabolites [23,24]. The enzymes produced by T. longibrachiatum are used in various industries, including food, beverages, textiles, and paper, due to their ability to degrade complex plant polysaccharides [25,26]. Additionally, some strains of Trichoderma, including T. longibrachiatum, are used as biocontrol agents, antagonizing plant pathogens and offering an eco-friendly alternative to chemical pesticides [27,28]. The study of the CAZymes from the secretome of T. longibrachiatum provides valuable insights into the molecular mechanisms of enzyme production and adaptation to different carbon sources, essential for engineering more efficient strains and understanding their ecological interactions. T. longibrachiatum can grow on a variety of substrates, including agro-industrial residues like sugarcane bagasse and tamarind seeds, making it an ideal model for biomass bioconversion studies and the development of sustainable biotechnological processes [23,26,29,30]. Moreover, the use of T. longibrachiatum in the degradation of agricultural residues not only adds value to these residues but also helps reduce the environmental impact associated with their improper disposal.



Sugarcane (Saccharum sp.) is classified as a monocotyledonous grass [31,32], with Brazil currently holding the title of the world’s largest sugarcane producer, primarily concentrated in the central-southern region of the country [33]. Following Brazil, other significant sugarcane-producing countries include India, China, Thailand, and Pakistan. In 2022, global sugarcane production reached a total of 1.92 billion tons, with Brazil producing 38% of the world total, India with 23%, and China producing 5%. These values make it the third-most produced commodity worldwide [34]. Therefore, given that each ton of sugarcane results in approximately 270 kg of bagasse, the global sugarcane crop in 2022 generated more than 500 million tons of bagasse. This significant quantity highlights the necessity of utilizing this abundant byproduct in countries with extensive sugarcane production [35]. Characterized by a secondary cell wall, sugarcane bagasse typically comprises approximately 32–45% cellulose, 20–32% hemicellulose, 17–32% lignin, and 1–9% ash, along with other constituents [36,37,38].



On the other hand, tamarind (Tamarindus indica L.) is a tropical fruit tree indigenous to equatorial Africa, India, and Southeast Asia, featuring both pulp and seeds encased in a tough shell [39]. The biggest tamarind producers in the world are countries such as India, Malaysia, Myanmar, Bangladesh, Sri Lanka, Thailand, the United Arab Emirates, and South American countries. When processing 1 kg of fresh tamarind, it will give 55% pulp, 30–40% seed, 6% peel, and 5% fiber. The seed is the main and underutilized byproduct of the tamarind pulp industry and contains approximately (70%) kernel and (30%) hard brown testa [40,41,42]. The processing techniques, particularly the removal of pulp from the pod or seeds from the pulp, as well as the handling and storage of the seed and pulp, are traditionally practiced in the growing region or country. However, the most common processing method involves completely removing the testa from the kernel. The testa is separated from the kernels either by roasting or by soaking the seeds in water. Given that the mineral content of the seed coat is higher than that of the cotyledon, it is expected that their thermal properties and behaviors differ, resulting in varying degrees of expansion and contraction. This difference aids in detaching the seed coat from the seed [42]. According to Gonçalves et al. [43], tamarind seed composition includes approximately 1.82 ± 0.01% ash, 33.07 ± 1.40% lignin, 33.31 ± 3.56% cellulose, and 10.45 ± 1.45% hemicellulose. Additionally, these seeds boast a significant xyloglucan content, accounting for roughly 40% of their dry mass [44], making them a promising resource for CAZymes exploration.



Due to their composition, sugarcane bagasse and tamarind seeds have been employed in cultivating microorganisms to generate microbial enzymes capable of breaking down lignocellulosic biomass [2,19,24,26,45]. In this context, the present study unveils the categorization of CAZymes by function and family within the secretome profile of the filamentous fungus T. longibrachiatum LMBC 172. The fungus was cultured via submerged fermentation with three distinct carbon sources: sugarcane bagasse, or tamarind seeds, or a control simulating hemicellulose. The hemicellulose simulation was chosen to be used because hemicellulose is the part of lignocellulose that needs a larger framework of enzymes for degradation [46]. The global annual production of hemicellulose is approximately 60 billion tons, making it the second-most abundant renewable component of lignocellulosic biomass, after cellulose [47].




2. Material and Methods


2.1. Maintenance of the Fungus and Culture Medium


The fungi T. longibrachiatum LMBC 172 used in this work were isolated from tree trunks in Ribeirão Preto, SP, Brazil. The identification and deposition with the GenBank accession code OQ255882.1 were detailed by Contato et al. [45]. Microorganism maintenance involved spore inoculation on potato dextrose agar medium (PDA) (Sigma-Aldrich, Saint Louis, MO, USA), with subsequent transfers performed in glass tubes containing the same medium. Incubation occurred at a temperature of 30 °C. Afterwards, the tubes were kept under refrigeration for up to 30 days. In addition, they were cryopreserved at −80 °C to maintain the strain for long periods of time.




2.2. Plant Material


The sugarcane bagasse originated from Pedra Agroindustrial S/A sugarcane mill (Serrana, SP, Brazil) and comprised a blend of straw, leaves, and culms from various sugarcane varieties (CTC-4, CTC-7, CTC-20, IAC95500, RB867515, and RB966928). To sanitize the material, it was immersed in 92 °GL ethanol for 1 h, followed by rinsing with distilled water. Subsequently, the material underwent drying in an oven at 50 °C for 3 days and was then milled using a 25-mesh sieve knife mill (SL-32-SOLAB).



Tamarind (Tamarindus indica, Fabaceae) seeds were sourced from the campus of the University of Sao Paulo, Ribeirão Preto, SP, Brazil. The seeds underwent boiling in water for 1 h, followed by drying in an oven at 50 °C for 3 days to ensure sanitary quality and prevent the growth of other fungi. The seeds were milled using a 20-mesh sieve knife mill (SL-32-SOLAB).




2.3. Submerged Culture of T. longibrachiatum LMBC 172 for Protein Secretion Induction


The submerged culture procedure followed the methodology outlined by Contato et al. [45]. A spore solution containing 106–107 spores/mL was prepared from the fungus. The fungus was cultured in test tubes, suspended in sterile distilled water, and spore counts were conducted using a microscope and a Neubauer chamber. This suspension was then inoculated into 125 mL Erlenmeyer flasks containing 25 mL of Khanna medium (comprising Khanna’s salt solution [20×]: NH4NO3 (2.0 g), KH2PO4 (1.3 g), MgSO4·7H2O (0.362 g), KCl (0.098 g), ZnSO4·H2O (0.007 g), MnSO4·H2O (0.0138 g), Fe2(SO4)3·6H2O (0.0066 g), CuSO4·5H2O (0.0062 g), with distilled water q.s. (100 mL) (5.0 mL); yeast extract (0.1 g); carbon source (1.0 g); distilled water q.s. to 100 mL) [48]. The media were supplemented, individually, with 1% (w/v) of two different lignocellulosic residues: sugarcane bagasse and tamarind seeds. Additionally, a control simulating hemicellulose was performed, individually, using a mixture containing 0.5% beechwood xylan and 0.5% oat spelt xylan (Sigma-Aldrich, Saint Louis, MO, USA). The 1% (w/v) ratio of lignocellulosic residues and hemicellulose simulation was chosen to evaluate the impact on CAZymes because this concentration was usually reported in studies that successfully evaluated the secretome profile of filamentous fungi [19,49,50]. After, the Erlenmeyer flasks were incubated at 30 °C under static conditions for up to 72 h, as optimal conditions for protein induction as described by Contato et al. [45].




2.4. Sample Processing


The culture supernatant of T. longibrachiatum cultivated in the residues under submerged conditions was harvested through filtration with Whatman filter paper Grade 1 in a vacuum pump following a 72 h period. Subsequently, it was concentrated using ultrafiltration (10,000 MWCO, PES membrane, Vivaspin, Littleton, CO, USA), then washed twice with 5 mL of 50 mM sodium acetate buffer at pH 5.0. The proteins were then subjected to separation via SDS-PAGE electrophoresis [51].




2.5. Characterization of the T. longibrachiatum LMBC 172 by Liquid Chromatography–Tandem Mass Spectrometry (LC–MS/MS)


For secretome LC–MS/MS analysis, 15–20 μg of total secretome proteins was loaded onto an SDS-PAGE on 12% separation gel. The gel electrophoresis employed preparative PAGE to isolate the protein secretomes from complex carbohydrate and phenolic species present in the supernatant. Electrophoresis ceased once the bromophenol blue tracking dye had migrated 2–3 cm into the separating gel. Subsequently, the gel was stained with Coomassie blue, and the entire protein banding profile was excised for processing via LC–MS/MS [52].



Isolated gel bands underwent reduction with Tris (2-carboxyethyl) phosphine, followed by alkylation using 2-iodoacetamide, and overnight digestion with 8 μg/mL trypsin in ammonium bicarbonate buffer. Peptides were extracted from the gel segments and desalted using C18 pipet tips following the manufacturer’s guidelines (Agilent P/N A57003100, Agilent Technologies, Santa Clara, CA, USA). The desalted peptides were then dissolved in 0.1% aqueous formic acid and injected onto a 75-micron × 50 cm capillary HPLC column packed with 2-micron C18 particles (Thermo P/N 164942, ThermoFisher Scientific, Waltham, MA, USA) with a vented trap column setup. Peptide separation was achieved using a 60 min gradient of formic acid/acetonitrile and ionization was performed in a Nanospray Flex ion source equipped with stainless-steel emitters linked to a quadrupole-Orbitrap mass spectrometer (ThermoFisher Scientific, Waltham, MA, USA).



Peptide ions were subjected to analysis using a “high-low” “top-speed” data-dependent MS/MS strategy. Precursors were initially analyzed at high resolution in the Orbitrap sector, followed by MS/MS selection in the quadrupole sector, fragmentation by HCD in the ion routing multipole, and subsequent analysis of fragment ions in the ion trap sector.



Each sample underwent LC-MS/MS analysis twice, with the two RAW data files merged into a single sample for database searching using MaxQuant (version v2.0.1.0, Max-Planck-Institute of Biochemistry, Planegg, Germany) [53]. Spectra were searched against a database containing 402,135 protein sequences obtained from the NCBI on 27 May 2022, using “Trichoderma” as the genus search term. Searches were annotated using Python version v3.11 (Python Software Foundation, Wilmington, DE, USA) to annotate NCBI T. longibrachiatum IDs by transferring annotations from related curated proteins at Uniprot (https://www.uniprot.org/ accessed on 18 December 2022). Sequences with a false discovery rate (FDR or q-value) greater than 0.00 were removed from the analysis. Finally, we identified conserved CAZy domains using Hidden Markov Model (HMM) profiles available on the dbCAN2 web platform (https://bcb.unl.edu/dbCAN2/index.php accessed on 18 December 2022). Only domains with e-values > 10−17 and coverage > 0.35 were considered.





3. Results and Discussion


Secretome Protein Composition


To elucidate the secretome of T. longibrachiatum LMBC 172, we gathered the culture supernatants and subjected them to LC-MS/MS analysis. Protein identifications were conducted by searching against a database of Trichoderma sequences obtained from the NCBI, and subsequent annotation was performed on these identified proteins. Our analyses identified 206 distinct proteins on the sum of the three different conditions (supplemented with sugarcane bagasse, or tamarind seeds, or the hemicellulose simulation) in the secretome of T. longibrachiatum LMBC 172 (all non-anchored extracellular proteins), of which 159 proteins were shown in the control simulating hemicellulose, 151 proteins when 1% sugarcane bagasse was used for the culture, and 118 proteins when the residue used was 1% tamarind seeds (Figure 1A). Although many proteins were coincident in the analyzed experimental conditions, there were differences in the number of proteins found, principally due to the use of beechwood xylan plus oat spelt xylan, simulating the constitution of hemicellulose, where there is a strong presence of xylan [54] (Figure 1B). The sugarcane bagasse, as demonstrated by Scarcella et al. [14], has a constitution of 159.44 ± 23.81 of xylose as the main sugar, 11-fold more than glucose (14.08 ± 4.07), the second-most abundant non-cellulosic monosaccharide. These values show the high content of hemicellulose in the structure of sugarcane bagasse. The tamarind seed is rich in xyloglucan, one of the most abundant hemicellulose polymers after xylan [44,55], thus justifying a smaller number of proteins found in the secretome when this lignocellulosic residue was used.



As can be seen in Figure 1B, of these 206 proteins found, 89 are found in all culture conditions (hemicellulose simulation, or sugarcane bagasse, or tamarind seeds). The 89 proteins found with the three different carbon sources and which biomass they degrade are shown in Table 1. Among the proteins found, there are representatives of different families such as glycosyl hydrolases (GHs) that cleave cellulose, hemicellulose, pectin, or other components; carbohydrate esterases (CEs); polysaccharide lyases (PLs); carbohydrate-binding modules (CBMs); and auxiliary activity enzymes (AAs).



Taking into analysis only the use of the hemicellulose simulation, the major proteins produced according to their iBAQ value (sum of all the peptide intensities divided by the number of observable peptides of a protein) were endo-1,4-β-xylanases, xylan 1,4-β-xylosidase, α-L-arabinofuranosidase, and α-galactosidase (Table 1). However, it was shown that 41 proteins were produced when only this carbon source was used (Figure 1B, Table 2). Most of these proteins are responsible for the degradation of xylan and its ramifications [56].



On the other hand, it was shown that T. longibrachiatum LMBC 172 secreted 29 unique proteins with the use of sugarcane bagasse as the carbon source (Figure 1B, Table 3), with emphasis on 2 glycosyl hydrolases of the GH92 family, a family recognized to belong to α-mannosidases [57], in addition to 2 more mannan endo-1,6-α-mannosidases from the GH76 family, in agreement with the study by Scarcella et al. [14], who showed a mannose composition in sugarcane bagasse. Another enzyme found that agrees with the study by Scarcella et al. [14] is the α-fucosidase A of the GH95 family, given the existence of fucose in the constitution of this residue. Another interesting finding when using sugarcane bagasse for the culture was the great iBAQ shown in the production of a glycosyl hydrolase from the GH93 family: the GH93 family hydrolyses linear α-1,5-L-arabinan [58].



A different analysis was shown when tamarind seeds were used for the culture, since only three proteins were produced exclusively with the use of this lignocellulosic residue (Figure 1B), which were a carbohydrate-binding module CBM1, a glycosyl hydrolase of the GH5 family, and curiously a laccase, an enzyme recognized for being a polyphenol oxidase [59] (Table 4). However, an interesting verification is the fact of the great iBAQ shown in the production of a xyloglucanase of the GH74 family when using tamarind seeds in comparison with the other conditions (Table 1), thus reaffirming the richness of xyloglucan in the constitution of these seeds.



Other important data to be analyzed are the proteins found in only two of the three conditions tested and the reasons for this. When using the simulation of hemicellulose and sugarcane bagasse for the culture, 18 proteins in common are shown, which are not found when the culture was made with tamarind seeds (Figure 1B). Among the most interesting are a lysozyme of the GH25 family, which promotes the hydrolysis of the β-1,4 glycosidic bonds between residues of N-acetylmuramic acid (Mur2Ac) and N-acetyl-D-glucosamine (GlcNAc) in a peptidoglycan [60]; and a β-glucuronidase of the GH79 family (Table S1—Supplementary Material). However, the great majority of these 18 proteins are enzymes that cleave xylan, a polysaccharide seen in smaller amounts in tamarind seeds.



The correlation of the CAZymes shown in the secretome of T. longibrachiatum LMBC 172 when cultivated with the hemicellulose simulation or with tamarind seeds was performed, and it was seen that 11 proteins are found (Figure 1B); specifically, α-L-arabinofuranosidases belonging to the GH54 family were investigated. These enzymes are responsible for hydrolyzing terminal α-1,5-glycosidic linkages to arabinofuranosides in arabinan, as well as α-1,2 and α-1,3-linkages to arabinofuranosides of arabinan, arabinoxylan, and arabinogalactan. They operate synergistically with other hemicellulolytic enzymes, effectively removing L-arabinose side chains that might otherwise impede the activity of backbone-degrading enzymes [61]. Other proteins found are the glycosyl hydrolases of the GH7 family that cleave β-1,4 glycosidic bonds in cellulose/β-1,4-glucans [62] (Table S2—Supplementary Material). It is agreement the presence, simultaneous between these conditions (hemicellulose simulation and tamarind seeds), of enzymes that cleave cellulose existing in the medium.



Analyzing the CAZymes shown simultaneously among the cultures performed with lignocellulosic residues, sugarcane bagasse, or tamarind seeds, 15 proteins are found in common (Figure 1B), especially a feruloyl esterase C, a mannosyl-oligosaccharide α-1,2-mannosidase of the GH47 family, an AA9 lytic polysaccharide monooxygenase, and a glycosyl hydrolase from the GH39 family, recognized to belong to β-xylosidase [63] (Table S3—Supplementary Material). However, the great majority are CAZymes from the GH3 family, which currently groups together exo-acting β-D-glucosidases, α-L-arabinofuranosidases, and β-D-xylopyranosidases [64], enzymes known to be hemicelluloses.



The secreted enzymes of T. longibrachiatum differ when using sugarcane bagasse, or tamarind seeds, or hemicellulose simulation due to the distinct composition of the polysaccharides present in these carbon sources. Sugarcane bagasse primarily consists of cellulose, hemicellulose, and lignin, with cellulose being the most abundant polysaccharide [36,37,38]. As a result, the secretome of T. longibrachiatum grown on sugarcane bagasse is rich in cellulases, such as GH3, GH5, GH6, and GH7, which are crucial for breaking down cellulose into glucose monomers (Table 1 and Table 3). Additionally, the presence of hemicellulose and lignin in sugarcane bagasse stimulates the production of hemicellulases (e.g., xylanases, GH10) and lignin-degrading auxiliary activity enzymes (AAs) like AA3 and AA9 (Table 1 and Table S3—Supplementary Material), facilitating the comprehensive degradation of this complex biomass.



In contrast, tamarind seeds contain high levels of xyloglucans, which are polysaccharides composed of a cellulose backbone with xylose, galactose, and fucose side chains [43,44]. The unique structure of xyloglucans in tamarind seeds necessitates the production of specific enzymes, such as xyloglucanases (GH74), to effectively hydrolyze these complex sugars [19]. Consequently, the secretome of T. longibrachiatum cultured with tamarind seeds is particularly enriched in enzymes that target xyloglucans (Table 1), reflecting the adaptation of the fungus to the predominant polysaccharides in this carbon source.



Hemicellulose simulation, which likely includes a mixture of various hemicellulosic sugars such as xylans, mannans, and arabinogalactans, prompts the secretion of a diverse array of hemicellulases tailored to these components. Enzymes such as xylanases (GH11), mannosidases (GH76), and arabinofuranosidases (GH54) are produced to degrade the heterogeneous polysaccharide structure of hemicellulose into fermentable sugars (Table 1 and Table 2; and Tables S1 and S2—Supplementary Material) [46,47].



The differences in secreted enzymes when using sugarcane bagasse, or tamarind seeds, or hemicellulose are thus directly influenced by the specific polysaccharide compositions of these substrates. The fungus adapts its enzymatic machinery to efficiently break down the available sugars, producing a tailored set of CAZymes that correspond to the structural complexity and specificities of the given carbon source. This adaptive enzyme production ensures the optimal utilization of the provided biomass, demonstrating the metabolic versatility of T. longibrachiatum.



These results demonstrate the importance of analysis studies of CAZymes secreted by microorganisms in different culture conditions, since their abundance in relation to protein intensity can present different results [65]. In addition, they agree with previous works published by our group, such as that of Contato et al. [45], which provides, under the same culture conditions, the catalytic activity of the enzymes found in the T. longibrachiatum LMBC 172 secretome shown in this study. The research identified a total of 206 distinct CAZymes in the secretome of T. longibrachiatum LMBC 172, with 89 proteins consistently produced across all three conditions (sugarcane bagasse, or tamarind seeds, or hemicellulose simulation). Notably, specific proteins were uniquely produced depending on the carbon source, including 41 proteins for hemicellulose simulation, 29 for sugarcane bagasse, and 3 for tamarind seeds. Tamarind seeds, specifically, induced a high production of xyloglucanase GH74, reflecting their high xyloglucan content [44].



The identified CAZymes belong to various families, such as glycosyl hydrolases (GHs), carbohydrate esterases (CEs), polysaccharide lyases (PLs), carbohydrate-binding modules (CBMs), and auxiliary activity enzymes (AAs). The study underscores the adaptive mechanisms of T. longibrachiatum in secreting differential enzymes based on the carbon source, which is crucial for the degradation of specific components of lignocellulosic biomass. This differential enzyme secretion highlights the fungus’s ability to utilize diverse carbon sources effectively [23,24,26,29,66,67].



From a biotechnological perspective, the detailed secretome analysis of T. longibrachiatum can drive the development of efficient enzyme cocktails for biomass conversion processes, thereby enhancing the production of biofuels and biochemicals [24,68,69]. The specific enzymes identified in this study hold potential for further engineering or optimization for various industrial applications, including the food, beverage, textile, and paper industries [25,68,70,71]. Additionally, utilizing agricultural residues like sugarcane bagasse and tamarind seeds as carbon sources for enzyme production promotes sustainable biomass utilization, reducing environmental waste and supporting circular bioeconomy initiatives [14,26,45,72]. The ability of T. longibrachiatum to produce different enzymes tailored to specific substrates suggests potential for customized enzyme production to meet specific industrial needs.



Environmentally, this study supports efforts to mitigate the impact of waste disposal by leveraging agro-industrial residues, thus promoting the efficient use of renewable resources. The findings advocate for eco-friendly alternatives to traditional chemical processing methods, reducing reliance on non-renewable resources and minimizing environmental pollution. Furthermore, this research advances the understanding of molecular mechanisms behind enzyme production and secretion in fungi, contributing significantly to the field of fungal biotechnology. Insights gained from this study can inform future research on other fungal species and their potential applications in various biotechnological processes.



In summary, this study provides a comprehensive analysis of the CAZyme secretome of T. longibrachiatum under different conditions, highlighting significant biotechnological advancements and sustainable industrial applications. The research emphasizes the potential for developing efficient and tailored enzyme solutions to meet the growing demand for sustainable biomass conversion and industrial bioprocessing.





4. Conclusions


The analysis of the secretome of T. longibrachiatum LMBC 172 cultured under submerged fermentation in two different lignocellulosic residues, sugarcane bagasse or tamarind seeds, in addition to a hemicellulose simulation as the control, revealed a total of 206 CAZymes. Each carbon source showed particularities and differences. Of these, 89 proteins were produced simultaneously with all the carbon sources, 41 proteins using only the hemicellulose simulation, 29 proteins when sugarcane bagasse was used as a carbon source, and only 3 when tamarind seeds were used. Among the proteins found, there are representatives of different families such as glycosyl hydrolases (GHs) that cleave cellulose, hemicellulose, pectin, or other components; carbohydrate esterases (CEs); polysaccharide lyases (PLs); carbohydrate-binding modules (CBMs); and auxiliary activity enzymes (AAs). These results demonstrate the importance of analysis studies of CAZymes secreted by microorganisms in different culture conditions, since their abundance in relation to protein intensity can present different results. However, it has limitations that need addressing. The secretome analysis, though detailed, was based on a limited number of carbon sources, and expanding the range of substrates could provide a broader understanding of the enzyme production capabilities of T. longibrachiatum. Future research should explore the genetic and metabolic pathways involved in enzyme regulation and secretion, as well as investigate the synergistic effects of mixed carbon sources on enzyme profiles.
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Figure 1. CAZymes from secretome analysis of T. longibrachiatum LMBC 172 in culture condition: hemicellulose simulation, or sugarcane bagasse, or tamarind seeds. (A) Total CAZymes found. (B) Venn plot correlating the CAZymes found in each culture condition. 
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Table 1. Comprehensive LC-MS/MS secretome analysis for 89 proteins found in cultures with hemicellulose simulation, sugarcane bagasse, and tamarind seeds, classified according to which substrates they degrade.
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	Degraded Biomass
	iBAQ (a) Hemicellulose Simulation
	iBAQ (a) Sugarcane Bagasse
	iBAQ (a) Tamarind Seeds
	Protein IDs

(b)
	Family
	MS/MS View: Identified Proteins
	Molecular Weight (kDa) (c)





	amido
	4.13 × 1010
	8.41 × 108
	9.24 × 108
	A0A2T3YUD7
	GH15
	glucoamylase
	8



	amido
	1.78 × 1010
	7.88 × 108
	2.24 × 108
	A0A2T3ZF22
	GH15
	glucoamylase
	33



	amido
	1.62 × 108
	1.18 × 107
	1.29 × 107
	A0A2T3YUB0
	GH13
	α-amylase
	112



	carboxylic ester
	1.69 × 107
	6.71 × 107
	1.76 × 106
	A0A6V8QQW9
	CE1
	carboxylic ester hydrolase
	36



	cellulose
	5.20 × 1010
	3.98 × 109
	1.50 × 1010
	Q6QTF2
	GH12
	endoglucanase I
	36



	cellulose
	2.32 × 1010
	5.84 × 108
	7.30 × 109
	A0A6V8R3W7
	GH6
	exoglucanase 2
	64



	cellulose
	1.48 × 1010
	2.46 × 109
	2.25 × 1010
	A0A6V8QY83
	GH7
	exoglucanase 1
	28



	cellulose
	5.55 × 109
	3.75 × 107
	6.87 × 107
	A0A6V8R5D3
	GH3
	β-glucosidase A
	26



	cellulose
	3.06 × 109
	3.40 × 108
	4.86 × 109
	A0A142C169
	GH7
	1,4-β-D-glucan cellobiohydrolase
	33



	cellulose
	2.10 × 109
	1.57 × 108
	3.46 × 108
	A0A2T3YQZ3
	GH5
	glycoside hydrolase
	45



	cellulose
	1.04 × 109
	7.80 × 108
	8.69 × 107
	KAH8124777.1
	CBM35
	carbohydrate-binding module
	44



	cellulose
	4.81 × 108
	2.78 × 108
	1.20 × 109
	A0A2T3ZAP7
	CBM1
	carbohydrate-binding module
	88



	cellulose
	1.69 × 108
	9.14 × 106
	4.78 × 107
	A0A2T3ZMC2
	CBM1
	carbohydrate-binding module
	33



	cellulose
	2.96 × 107
	1.90 × 108
	2.20 × 108
	A0A6V8R7F2
	GH5
	endoglucanase II
	56



	cellulose
	2.16 × 107
	4.65 × 106
	7.80 × 106
	A0A0W7VDH7
	GH6
	exoglucanase
	45



	cellulose
	3.16 × 106
	1.85 × 109
	3.86 × 108
	A0A6V8R5M5
	GH3
	β-glucosidase celA
	57



	chitin
	2.00 × 108
	1.74 × 108
	3.72 × 106
	XP_024756832.1
	GH18
	glycoside hydrolase
	56



	chitin
	7.88 × 107
	1.66 × 107
	3.31 × 105
	A0A2T3YRL6
	GH18
	glycoside hydrolase
	46



	chitin
	6.24 × 107
	5.66 × 107
	6.51 × 106
	A0A2K0U0B3
	GH18
	chitinase
	26



	chitin
	2.28 × 106
	1.78 × 108
	2.20 × 106
	A0A0B5AH01
	GH18
	chitinase
	98



	cutin
	1.59 × 109
	2.00 × 107
	2.33 × 107
	A0A2T3ZC81
	CE5
	cutinase
	42



	ester carboxylic
	1.05 × 108
	1.65 × 108
	1.42 × 108
	A0A6V8R506
	CE1
	carboxylic ester hydrolase
	55



	GMC
	2.17 × 107
	1.33 × 108
	2.46 × 107
	A0A6V8R691
	AA3
	glucose–methanol–choline GMC oxidoreductase
	57



	hemicellulose
	2.38 × 1011
	9.25 × 109
	3.25 × 108
	A0A6V8RCI3
	GH3
	xylan 1,4-β-xylosidase
	32



	hemicellulose
	1.93 × 1011
	1.27 × 1010
	3.18 × 1010
	A0A6V8R417
	GH54
	α-L-arabinofuranosidase
	85



	hemicellulose
	1.72 × 1011
	1.88 × 109
	6.96 × 109
	A0A6V8R4W9
	GH11
	endo-1,4-β-xylanase
	34



	hemicellulose
	1.35 × 1011
	6.71 × 108
	4.40 × 108
	A0A6V8QYX8
	GH27
	α-galactosidase
	57



	hemicellulose
	1.27 × 1011
	2.83 × 1010
	6.35 × 109
	A0A088MAZ4
	GH11
	endo-1,4-β-xylanase
	38



	hemicellulose
	3.10 × 1010
	1.02 × 108
	3.73 × 109
	A0A2T3YZH0
	GH11
	endo-1,4-β-xylanase
	55



	hemicellulose
	1.27 × 1010
	4.52 × 108
	4.59 × 108
	A0A6V8R480
	GH72
	1,3-β-glucanosyltransferase
	105



	hemicellulose
	1.03 × 1010
	1.33 × 108
	1.20 × 107
	G9NNL4
	GH12
	glycoside hydrolase
	55



	hemicellulose
	6.63 × 109
	6.27 × 108
	1.97 × 108
	A0A6V8QQS5
	GH54
	α-L-arabinofuranosidase
	88



	hemicellulose
	5.49 × 109
	2.57 × 108
	3.19 × 106
	A0A6V8QVE6
	GH16
	endo-1,3(4)-β-glucanase
	31



	hemicellulose
	4.93 × 109
	2.29 × 108
	3.19 × 109
	A0A2T3Z959
	GH62
	α-L-arabinofuranosidase
	66



	hemicellulose
	4.40 × 109
	3.00 × 107
	1.36 × 108
	A0A6V8R688
	GH72
	1,3-β-glucanosyltransferase
	33



	hemicellulose
	2.17 × 109
	4.19 × 106
	5.16 × 105
	G9N9X8
	GH11
	glycoside hydrolase
	24



	hemicellulose
	1.71 × 109
	1.60 × 109
	1.86 × 109
	A0A6V8QV79
	GH43
	arabinoxylan arabinofuranohydrolase
	26



	hemicellulose
	1.28 × 109
	7.97 × 107
	1.97 × 106
	A0A6V8R523
	GH2
	β-mannosidase A
	88



	hemicellulose
	1.24 × 109
	2.84 × 107
	8.89 × 107
	A0A2P4ZDF2
	GH27
	α-galactosidase
	67



	hemicellulose
	1.09 × 109
	4.23 × 108
	8.82 × 106
	A0A6V8R4Z6
	GH30
	xylanase
	52



	hemicellulose
	9.44 × 108
	6.64 × 108
	4.68 × 108
	A0A6V8QNB0
	GH16
	glycoside hydrolase
	50



	hemicellulose
	8.42 × 108
	4.51 × 108
	5.59 × 109
	UKZ86534.1
	GH74
	xyloglucanase
	78



	hemicellulose
	8.41 × 108
	2.62 × 107
	3.68 × 107
	A0A6V8QP12
	CE5
	acetylxylan esterase 2
	53



	hemicellulose
	7.38 × 108
	2.48 × 108
	1.65 × 108
	A0A6V8QM46
	GH17
	glucan endo-1,3-β-glucosidase eglC
	88



	hemicellulose
	7.33 × 108
	1.03 × 107
	4.09 × 107
	G9NGV2
	GH27
	α-galactosidase
	60



	hemicellulose
	3.32 × 108
	3.81 × 108
	1.23 × 107
	A0A2T3ZAU0
	GH30
	glycoside hydrolase
	56



	hemicellulose
	2.74 × 108
	1.65 × 108
	1.44 × 106
	A0A6V8R899
	GH64
	glucan endo-1,3-β-glucosidase
	56



	hemicellulose
	2.48 × 108
	2.79 × 108
	9.46 × 106
	A0A6V8QQA1
	GH72
	1,3-β-glucanosyltransferase
	9



	hemicellulose
	1.38 × 108
	5.95 × 106
	3.06 × 106
	A0A2N1L3Y3
	CE5
	acetylxylan esterase
	46



	hemicellulose
	1.32 × 108
	5.86 × 106
	3.99 × 106
	A0A0F9XN15
	GH27
	α-galactosidase
	57



	hemicellulose
	1.11 × 108
	3.25 × 105
	3.10 × 107
	A0A6V8R5J5
	GH55
	glucan 1,3-β-glucosidase
	57



	hemicellulose
	1.07 × 108
	5.67 × 106
	5.74 × 106
	A0A6V8RC59
	GH27
	α-galactosidase
	36



	hemicellulose
	7.91 × 107
	1.10 × 107
	4.34 × 107
	A0A2T4B0H5
	GH54
	α-L-arabinofuranosidase
	102



	hemicellulose
	7.85 × 107
	3.88 × 106
	1.98 × 105
	Q6QNU8
	GH11
	endo-1,4-β-xylanase
	88



	hemicellulose
	6.42 × 107
	5.76 × 108
	1.14 × 108
	A0A6V8QJT1
	GH55
	glucan 1,3-β-glucosidase
	79



	hemicellulose
	5.74 × 107
	2.15 × 107
	3.48 × 106
	A0A6V8QPF0
	GH2
	β-mannosidase A
	125



	hemicellulose
	5.66 × 107
	6.36 × 107
	4.29 × 106
	A0A2T3YZN9
	GH78
	glycoside hydrolase
	40



	hemicellulose
	4.26 × 107
	2.35 × 107
	1.44 × 107
	A0A2T3YYK7
	GH71
	glycoside hydrolase
	27



	hemicellulose
	2.47 × 107
	1.06 × 1010
	5.93 × 108
	A0A6V8QIP8
	GH10
	endo-1,4-β-xylanase C
	49



	hemicellulose
	2.12 × 107
	3.21 × 107
	1.65 × 106
	A0A2T4C2Y0
	GH72
	1,3-β-glucanosyltransferase
	51



	hemicellulose
	1.92 × 107
	1.59 × 106
	7.44 × 105
	A0A2T4AVU1
	GH17
	glycoside hydrolase
	88



	hemicellulose
	1.85 × 107
	5.82 × 108
	1.93 × 107
	A0A2T3YYG3
	GH30
	glycoside hydrolase
	63



	hemicellulose
	1.13 × 107
	8.23 × 106
	3.68 × 104
	G0RWY3
	GH18
	endo-1,4-β-xylanase
	77



	hemicellulose
	8.92 × 106
	6.19 × 108
	3.87 × 107
	A0A6V8R5H6
	GH35
	β-galactosidase
	60



	hemicellulose
	8.60 × 106
	1.64 × 106
	1.88 × 105
	A0A2T3Z3S2
	GH27
	α-galactosidase
	87



	hemicellulose
	3.74 × 106
	2.33 × 108
	2.02 × 106
	A0A2T3ZG69
	GH31
	glycoside hydrolase
	89



	hemicellulose
	3.40 × 106
	6.90 × 109
	2.42 × 108
	XP_024755433.1
	GH10
	glycoside hydrolase
	57



	hemicellulose
	1.49 × 106
	3.32 × 107
	2.49 × 107
	A0A6V8R3D3
	GH3
	xylan 1,4-β-xylosidase
	65



	hemicellulose
	1.39 × 106
	1.87 × 108
	2.57 × 106
	A0A6V8QXM8
	GH67
	α-glucuronidase
	55



	hemicellulose
	6.91 × 105
	1.42 × 107
	4.53 × 106
	A0A6V8QX14
	GH76
	mannan endo-1,6-α-mannosidase
	44



	hemicellulose
	6.50 × 105
	8.42 × 106
	2.19 × 105
	A0A2T3YZP2
	GH79
	glycoside hydrolase
	97



	lignin
	1.69 × 109
	1.44 × 109
	1.83 × 106
	A0A6V8QZK1
	AA3
	laccase
	70



	oxygen
	1.25 × 108
	4.76 × 107
	8.71 × 105
	A0A6V8R4F9
	AA3
	FAD-dependent monooxygenase
	54



	pectin
	1.26 × 1011
	6.11 × 109
	1.58 × 109
	A0A2T3YXQ4
	CE5
	carbohydrate esterase
	56



	pectin
	3.20 × 1010
	3.13 × 107
	1.34 × 109
	A0A6V8R602
	GH28
	endopolygalacturonase
	56



	pectin
	1.52 × 1010
	1.12 × 109
	2.57 × 108
	XP_024766320.1
	CE5
	carbohydrate esterase
	49



	pectin
	5.45 × 109
	4.68 × 108
	6.53 × 108
	A0A2K0T4R7
	CE5
	cutinase
	48



	pectin
	3.53 × 109
	1.35 × 106
	1.05 × 107
	A0A6V8QQH8
	PL7
	alginate lyase
	88



	pectin
	2.31 × 109
	1.04 × 107
	3.93 × 107
	A0A6V8R557
	PL1
	polysaccharide lyase
	42



	pectin
	1.53 × 109
	4.76 × 107
	5.34 × 108
	A0A2T3YYD8
	CE8
	pectinesterase
	36



	pectin
	5.65 × 108
	4.01 × 108
	4.44 × 107
	A0A2T3YTH0
	GH28
	glycoside hydrolase
	65



	pectin
	2.87 × 108
	4.01 × 105
	1.85 × 108
	A0A2T3YUA1
	GH28
	glycoside hydrolase
	34



	pectin
	1.79 × 108
	1.61 × 107
	7.61 × 106
	A0A2T3ZG56
	GH28
	glycoside hydrolase
	56



	pectin
	1.13 × 108
	3.68 × 107
	1.33 × 108
	A0A395NND2
	GH28
	glycoside hydrolase
	50



	pectin
	8.22 × 107
	6.60 × 107
	1.40 × 107
	A0A2T3ZCA4
	CE16
	carbohydrate esterase
	26



	pectin
	1.94 × 107
	3.74 × 105
	1.17 × 105
	A0A2T3YZM0
	GH18
	glycoside hydrolase
	39



	pectin
	2.24 × 106
	1.43 × 106
	9.20 × 107
	A0A6V8RBF6
	PL1
	pectate lyase C
	68



	pectin
	1.61 × 105
	5.72 × 106
	5.28 × 106
	A0A2T3YUJ2
	GH28
	glycoside hydrolase
	71



	phosphate
	3.60 × 108
	6.77 × 107
	6.38 × 105
	A0A6V8QHF9
	CBM21
	acid phosphatase
	44







(a) The iBAQ corresponds to the sum of all the peptide intensities divided by the number of observable peptides of a protein. (b) Accession number with protein information and family information were obtained from UniProt/Swiss-Prot database or NCBI database. (c) Hypothetical molecular weight of the proteins.













 





Table 2. Comprehensive LC-MS/MS secretome analysis for 41 proteins found only in the hemicellulose simulation conditions classified according to which biomass they degrade.






Table 2. Comprehensive LC-MS/MS secretome analysis for 41 proteins found only in the hemicellulose simulation conditions classified according to which biomass they degrade.





	Degraded Biomass
	iBAQ (a)

Hemicellulose Simulation
	Protein IDs

(b)
	Family
	MS/MS View:

Identified Proteins
	Molecular Weight (kDa) (c)





	amido
	6.46 × 107
	A0A2T4B8C2
	CE50
	amidase
	49



	cellulose
	1.05 × 108
	A0A2T3Z508
	CBM1
	carbohydrate-binding module
	28



	cellulose
	4.09 × 107
	G9P6M2
	CE5
	carbohydrate esterase
	53



	cellulose
	3.37 × 107
	A0A2K0SW07
	CBM1
	carbohydrate-binding module
	78



	cellulose
	2.07 × 107
	A0A2T3YUC4
	GH3
	β-glucosidase
	55



	cellulose
	1.41 × 107
	A0A2T3YX19
	CBM1
	carbohydrate-binding module
	52



	cellulose
	1.37 × 107
	A0A2T4BD17
	CBM1
	carbohydrate-binding module
	42



	cellulose
	1.09 × 107
	A0A2T3Z5Y5
	CBM18
	carbohydrate-binding module
	55



	cellulose
	9.31 × 106
	A0A6V8R0S9
	AA9
	lytic polysaccharide monooxygenase
	40



	cellulose
	3.65 × 106
	G9NFW5
	GH5
	glycoside hydrolase
	50



	cellulose
	2.95 × 106
	A0A395NJN7
	GH7
	cellobiohydrolase
	25



	cellulose
	2.28 × 106
	A0A2K0TAX7
	AA9
	copper radical oxidase
	43



	cellulose
	1.96 × 106
	G9N4X9
	GH5
	glycoside hydrolase
	115



	chitin
	2.27 × 108
	A0A6V8R2F4
	GH18
	chitinase
	44



	chitin
	7.82 × 106
	A0A2K0T4Z2
	GH18
	chitinase
	49



	hemicellulose
	3.57 × 108
	A0A6V8QJU6
	CE6
	acetylxylan esterase
	46



	hemicellulose
	8.52 × 107
	A0A2H2ZRV5
	CE5
	acetylxylan esterase
	36



	hemicellulose
	7.56 × 107
	A0A0W7VKU2
	GH54
	α-L-arabinofuranosidase
	102



	hemicellulose
	6.34 × 107
	G9N626
	GH27
	α-galactosidase
	32



	hemicellulose
	4.66 × 107
	A0A395NVC4
	GH3
	xylan 1,4-β-xylosidase
	58



	hemicellulose
	4.39 × 107
	A0A6V8QTS4
	GH16
	glucan endo-1,3-β-glucosidase
	44



	hemicellulose
	3.29 × 107
	A0A6V8QPH8
	GH76
	mannan endo-1,6-α-mannosidase
	34



	hemicellulose
	3.03 × 107
	KAH6604482.1
	GH11
	glycoside hydrolase
	56



	hemicellulose
	3.01 × 107
	A0A2K0TP30
	GH16
	glycoside hydrolase
	49



	hemicellulose
	2.69 × 107
	G9NUB8
	GH62
	α-L-arabinofuranosidase
	51



	hemicellulose
	2.44 × 107
	A0A2T3YUG9
	GH3
	xylan 1,4-β-xylosidase
	25



	hemicellulose
	1.82 × 107
	A0A2T4ASM6
	GH3
	xylan 1,4-β-xylosidase
	31



	hemicellulose
	1.54 × 107
	G9MSH9
	GH3
	xylan 1,4-β-xylosidase
	15



	hemicellulose
	1.40 × 107
	A0A2T3YT55
	GH54
	α-L-arabinofuranosidase
	40



	hemicellulose
	1.24 × 107
	A0A395NS24
	GH54
	α-L-arabinofuranosidase
	27



	hemicellulose
	9.94 × 106
	A0A2T4BTG8
	GH54
	α-L-arabinofuranosidase
	46



	hemicellulose
	7.48 × 106
	G9MZ65
	GH54
	α-L-arabinofuranosidase
	28



	hemicellulose
	6.24 × 106
	G9MV41
	GH27
	α-galactosidase
	69



	hemicellulose
	5.24 × 106
	A0A6V8R9B0
	GH27
	α-galactosidase
	42



	hemicellulose
	4.48 × 106
	A0A2K0UKQ2
	GH3
	xylan 1,4-β-xylosidase
	26



	hemicellulose
	3.55 × 106
	G9P179
	GH3
	xylan 1,4-β-xylosidase
	55



	hemicellulose
	2.72 × 106
	A0A395NKK0
	GH12
	glycoside hydrolase
	120



	hemicellulose
	1.11 × 106
	G9NPZ0
	GH64
	glycoside hydrolase
	45



	pectin
	1.20 × 108
	G9NBD3
	CE5
	carbohydrate esterase
	65



	pectin
	4.64 × 107
	G9NXF6
	CE5
	carbohydrate esterase
	52



	pectin
	1.60 × 106
	G9NPZ7
	CE5
	carbohydrate esterase
	49







(a) The iBAQ corresponds to the sum of all the peptide intensities divided by the number of observable peptides of a protein. (b) Accession number with protein information and family information were obtained from UniProt/Swiss-Prot database or NCBI database. (c) Hypothetical molecular weight of the proteins.













 





Table 3. Comprehensive LC-MS/MS secretome analysis for 29 proteins enzymes found only in the sugarcane bagasse culture classified according to which biomass they degrade.






Table 3. Comprehensive LC-MS/MS secretome analysis for 29 proteins enzymes found only in the sugarcane bagasse culture classified according to which biomass they degrade.





	Degraded Biomass
	iBAQ (a)

Sugarcane Bagasse
	Protein IDs

(b)
	Family
	MS/MS View:

Identified Proteins
	Molecular Weight

(kDa) (c)





	amido
	4.51 × 106
	B5BQC3
	GH13
	α-amylase
	57



	carboxylic ester
	1.37 × 108
	A0A6V8QU70
	CE1
	carboxylic ester hydrolase
	56



	carboxylic ester
	3.42 × 107
	A0A2T3ZJ05
	CE1
	carboxylic ester hydrolase
	26



	carboxylic ester
	1.03 × 107
	A0A6V8R5C2
	CE1
	carboxylic ester hydrolase
	70



	carboxylic ester
	8.95 × 106
	A0A2K0U229
	CE1
	carboxylic ester hydrolase
	60



	cellulose
	9.08 × 107
	A0A6V8QSJ6
	GH3
	β-glucosidase F
	46



	cellulose
	3.84 × 107
	A0A395N8R8
	GH2
	glycoside hydrolase
	25



	cellulose
	1.99 × 107
	A0A6V8QPG8
	GH31
	α-glucosidase
	31



	cellulose
	9.93 × 106
	G9P291
	GH3
	glycoside hydrolase
	25



	cellulose
	4.39 × 106
	A0A2T4CHF3
	GH3
	β-glucosidase
	96



	cellulose
	2.32 × 106
	A0A2T3YT78
	GH3
	β-glucosidase
	28



	chitin
	2.29 × 107
	V9I0I2
	GH18
	chitinase
	42



	chitin
	4.68 × 106
	A0A395NWN8
	GH75
	endo-chitanase
	88



	fucose
	1.33 × 107
	A0A6V8QZS6
	GH95
	α-fucosidase A
	26



	hemicellulose
	2.46 × 108
	A0A2T3ZFW9
	GH92
	glycoside hydrolase
	88



	hemicellulose
	9.26 × 107
	A0A6V8QLJ6
	GH76
	mannan endo-1,6-α-mannosidase
	25



	hemicellulose
	3.34 × 107
	A0A6V8QYK7
	GH43
	arabinoxylan arabinofuranohydrolase
	56



	hemicellulose
	3.21 × 107
	A0A2T3ZL91
	GH16
	glycoside hydrolase
	72



	hemicellulose
	1.86 × 107
	A0A6V8R1B3
	GH51
	α-L-arabinofuranosidase
	36



	hemicellulose
	9.40 × 106
	A0A0F9XAZ2
	GH43
	glycoside hydrolase
	47



	hemicellulose
	5.84 × 106
	A0A6V8R596
	GH5
	glucan endo-1,6-β-glucosidase B
	26



	hemicellulose
	4.36 × 106
	A0A2T3YUM4
	GH55
	glycoside hydrolase
	80



	hemicellulose
	4.34 × 106
	A0A2P4ZLF1
	GH6
	α-galactosidase
	27



	hemicellulose
	2.56 × 106
	A0A395NYK8
	GH71
	glycoside hydrolase
	42



	hemicellulose
	2.42 × 106
	A0A1T3CS19
	GH76
	mannan endo-1,6-α-mannosidase
	58



	hemicellulose
	2.13 × 106
	G9PBD3
	GH72
	1,3-β-glucanosyltransferase
	49



	hemicellulose
	1.74 × 106
	G9NFR0
	GH93
	glycoside hydrolase
	49



	hemicellulose
	1.67 × 106
	A0A2T3YT16
	GH17
	glycoside hydrolase
	23



	hemicellulose
	1.49 × 106
	A0A2T3YQY4
	GH92
	glycoside hydrolase
	25







(a) The iBAQ corresponds to the sum of all the peptide intensities divided by the number of observable peptides of a protein. (b) Accession number with protein information and family information were obtained from UniProt/Swiss-Prot database or NCBI database. (c) Hypothetical molecular weight of the proteins.













 





Table 4. Comprehensive LC-MS/MS secretome analysis for three proteins found only in the tamarind seeds condition classified according to which biomass they degrade.






Table 4. Comprehensive LC-MS/MS secretome analysis for three proteins found only in the tamarind seeds condition classified according to which biomass they degrade.





	Degraded

Biomass
	iBAQ (a)

Tamarind Seeds
	Protein IDs

(b)
	Family
	MS/MS View:

Identified Proteins
	Molecular Weight

(kDa) (c)





	cellulose
	3.03 × 108
	G9PBZ8
	GH5
	glycoside hydrolase
	88



	cellulose
	3.01 × 106
	A0A2T3YZD8
	CBM1
	carbohydrate-binding module
	34



	lignin
	1.07 × 108
	A0A2T3YR43
	AA3
	laccase
	45







(a) The iBAQ corresponds to the sum of all the peptide intensities divided by the number of observable peptides of a protein. (b) Accession number with protein information and family information were obtained from UniProt/Swiss-Prot database or NCBI database. (c) Hypothetical molecular weight of the proteins.
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