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Abstract: Quantum-secure cryptography is a dynamic field due to its crucial role in various domains.
This field aligns with the ongoing efforts in data security. Post-quantum encryption (PQE) aims to
counter the threats posed by future quantum computers, highlighting the need for further improve-
ment. Based on the learning with error (LWE) system, this paper introduces a novel asymmetric
encryption technique that encrypts entire messages of n bits rather than just 1 bit. This technique
offers several advantages including an additive homomorphic cryptosystem. The robustness of
the proposed lightweight public key encryption method, which is based on a new version of LWE,
ensures that private keys remain secure and that original data cannot be recovered by an attacker from
the ciphertext. By improving encryption and decryption execution time—which achieve speeds of
0.0427 ms and 0.0320 ms, respectively—and decreasing ciphertext size to 708 bits for 128-bit security,
the obtained results are very promising.

Keywords: learning with error; homomorphic encryption; post-quantum technique; data privacy;
information security

1. Introduction

Alongside advancements in homomorphic encryption (HE), the field of post-quantum
encryption (PQE) is rapidly evolving due to the impending threat quantum computing
poses to current cryptographic standards [1]. PQE aims to develop techniques capable
of withstanding the computational power of future quantum computers, which could
potentially compromise widely used encryption schemes such as RSA and elliptic curve
cryptography (ECC). These traditional encryption methods are prevalent in numerous
critical domains, including encryption, authentication, data integrity, IoT applications,
secure measurement, and cloud computing applications. For instance, RSA and ECC are
integral to the encryption protocols used to safeguard sensitive data during transmission.
Similarly, these cryptographic techniques underpin authentication processes, ensuring that
only authorized users can access specific systems or information [2]. Moreover, maintaining
data integrity through these methods is crucial, as it verifies that data has not been tampered
with or altered during storage or transmission [3].

The importance of PQE extends to the rapidly growing Internet of Things (IoT) sector,
where secure communication between connected devices is paramount to prevent unautho-
rized access and cyber-attacks [4]. In secure measurement systems, robust encryption is
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necessary to protect sensitive data collected from various sensors and devices, ensuring its
confidentiality and accuracy. Furthermore, the shift towards cloud computing has high-
lighted the need for enhanced cryptographic methods to protect data stored and processed
in the cloud from potential quantum threats. The development and implementation of
PQE are essential for ensuring the security and integrity of digital communication and
data in the quantum era [5]. As quantum computing continues to advance, the urgency
to adopt PQE measures increases, aiming to preemptively address the vulnerabilities that
quantum computers could exploit. This proactive approach is vital for safeguarding the
digital infrastructure that underpins modern society, including financial systems, healthcare
data, governmental communications, and personal information. One of these strategies is
learning with errors (LWE).

LWE is a fundamental problem in computational mathematics that underpins many
cryptographic constructions believed to be secure against quantum attacks [6]. The princi-
ple behind LWE-based encryption techniques involves introducing controlled errors into
computations, making decryption possible only with the secret key. Without the key, these
errors render it computationally infeasible to recover the original message. Essentially,
the LWE problem requires solving linear equations obscured by small random errors [7],
making the original system of equations difficult to decipher. This complexity is what
makes LWE an attractive foundation for cryptographic schemes in the quantum era [8], as
quantum computers are expected to break many traditional cryptographic protocols but
not those based on LWE [9].

Fully homomorphic encryption, another application of LWE, permits computations to
be carried out on encrypted data without needing to decrypt it first, thereby preserving data
confidentiality throughout the processing stages. This capability is particularly valuable for
cloud computing services, where data is often processed and stored on remote servers [10].
Digital signatures based on LWE provide a way to verify the authenticity and integrity of
digital messages or documents, ensuring that they have not been altered and are indeed
from the purported sender. The robustness of these signatures against quantum attacks
makes them essential for secure online communications and transactions.

Many LWE-based approaches are not yet compatible with homomorphic encryption
(HE). This limitation has posed significant challenges for integrating LWE-based crypto-
graphic methods with the capabilities of HE, which allows computations to be performed
on encrypted data without needing to decrypt it first. Despite the robust security that LWE
offers against quantum attacks, its incompatibility with HE has restricted its application in
scenarios where data privacy and computational capabilities need to coexist seamlessly.

This paper introduces a new quantum-resistant, lightweight public cryptosystem
that bridges this gap. The proposed cryptosystem is designed to be quantum resistant,
leveraging the security advantages of LWE while ensuring compatibility with HE. This
compatibility enables an untrusted third party to perform operations on encrypted data,
maintaining the confidentiality of the data throughout the computational process. The
innovation lies in the ability of this system to facilitate secure and private computations
without exposing the underlying data, thereby enhancing its applicability in various real-
world scenarios.

Moreover, the cryptosystem provides mechanisms for the data owner to easily verify
the integrity of the results obtained from the third party. This verification process is crucial,
as it ensures that the operations performed on the encrypted data yield accurate and reliable
outcomes, despite being handled by an untrusted entity. The lightweight nature of this
cryptosystem makes it particularly suitable for applications where computational efficiency
and resource constraints are critical considerations.

The development of this new cryptosystem represents a significant advancement in
the field of post-quantum cryptography. By addressing the compatibility issues between
LWE and HE, it opens up new possibilities for secure data processing in environments
such as cloud computing, where data often needs to be processed by external servers
while remaining protected against potential breaches. Additionally, the ability to verify the
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correctness of results enhances trust and reliability in outsourced computations, making it
a valuable tool for industries that require high levels of data integrity and security.

In summary, this paper’s contribution lies in presenting a novel solution that combines
the advantages of LWE and HE, providing a quantum-resistant, efficient, and verifiable
cryptographic framework. This advancement not only bolsters the security of encrypted
data against quantum threats but also extends the practical utility of LWE-based encryption
by decreasing ciphertext size and execution time.

The rest of the paper is structured as follows: Section 2 presents the related work to
the field, while Section 3 highlights the quantum key distribution solutions and their
shortcomings. In Section 4, the proposed LWE cryptosystem is presented, while in
Section 5, a security analysis is conducted. Finally, in Section 6, the conclusions of this work
are presented.

2. Related Work

LWE has become a fundamental strategy for post-quantum cryptography, supporting
the development of secure encryption, secure multiparty computation, fully homomorphic
encryption, and digital signatures. These cryptographic constructs are crucial for securing
communications, data storage, and digital transactions in the quantum era. For instance,
secure encryption based on LWE ensures that sensitive information remains confidential
even in the face of quantum computing advances, providing a robust defense against
potential decryption attempts by powerful quantum algorithms. Additionally, LWE-based
secure multiparty computation allows multiple parties to jointly compute a function over
their inputs while keeping those inputs private, enabling collaborative data analysis without
compromising individual privacy [11].

In the sector of homomorphic encryption and post-quantum cryptography, the authors
in [12] introduced a privacy-protective method for data collection via the mobile cloud,
allowing individuals to securely submit personal information. This technique ensures the
safe storage of user data, minimizing the risk of unauthorized modifications by employing
an advanced privacy-preserving homomorphic encryption system as described in [13]. Al-
though this scheme has a lower computational complexity, it is still based on a factorization
problem, rendering it vulnerable to quantum computer attacks.

In [14], a homomorphic encryption scheme was presented, which was tailored to meet
the requirements of the cryptosystem of Paillier. The public key is determined as the least
common prime factor of the Euler’s totient function values for two large prime numbers p
and q. The issue with this technique is its reliance on the discrete logarithm (DL) problem’s
difficulty, which renders it ineffective in the quantum era.

In [15], Iqra et al. introduced a lattice-based RSA (LB-RSA) designed for IoT-based
cloud applications to secure data and information sharing. This technique was implemented
in a 60-dimensional space. The key size is approximately 115,200 bits, with a generation
time of 0.8 h. Despite these features, the research has a significant drawback: It requires
the use of a parallel Gauss–Sieve algorithm [16] to find the shortest vector, an NP-hard
problem. The problem here is the size and execution time.

The authors of [17] proposed a single-bit public key encryption technique based on a
new variant of learning parity with noise (LPN). They extended the technique to a multi-bit
public key encryption system. Even though the encoding error rate of this scheme is
negligible, it is based on single-bit encryption. The paper [18] demonstrated that non-black-
box schemes are not necessary for basic laconic cryptography primitives. The authors
presented a completely algebraic construction of laconic encryption, a concept that they
introduced; it served as the cornerstone of their model.

In [19], the authors presented a new family of public key encryption (PKE) and key
encapsulation mechanism (KEM) techniques based on LWE. Two new design schemes were
adopted and named SCloud (sampling method and the error-reconciliation mechanism).
The scheme is secure against dual attacks. Afterwards, an error-reconciliation approach
was constructed by combining the binary linear codes and Gray codes. Despite that, the
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implementation has to be a constant time in order to avoid timing attacks, which will
slightly affect the efficiency.

In [20], the authors presented a multi-bit leveled FHE technique by utilizing multivari-
ate polynomial evaluations. The security of this technique depends on the robustness of
the LWE problem. Unfortunately, the addition and multiplication are conducted bitwise,
which increases the computation cost (O(n2L2)).

To counter some of the eavesdropping attacks, the authors in [21] utilized a coherently
driven quantum dot to illustrate a modified Ekert QKD protocol with two quantum channel
manners: a 250 m-long single-mode fiber both in free space and linking two buildings.
However, the extreme requirements of the photon source have limited its use.

The authors of [22] presented an encryption technique based on the multiplication of
the plaintext by a dynamic key making a one-time pad system [23]. The technique uses
probabilistic and linear encryption. Assuming that the cloud is a non-trust entity, this
technique ensures data integrity within homomorphic operations. The drawback of this
system is that it relies on factorization problem hardness, which makes it vulnerable to
quantum computers.

To address these issues, including quantum vulnerability due to relying on factoriza-
tion/discrete logarithm problems, non-feasibility due to the large size of the key/ciphertext,
and effects on efficiency due to the increased computation cost or implementation in a
constant time, etc., this work introduces a lightweight post-quantum encryption technique
based on the LWE system, which has proven its efficiency for the quantum era. One of the
most important factors in the proposed method is encrypting the entire message in one
ciphertext rather than each bit separately.

3. Quantum Key Distribution (QKD) Solutions and Its Shortcomings

Quantum key distribution is a cryptographic protocol designed for establishing a
shared secret between two parties communicating over an unsecured channel. This shared
secret typically serves to create a common cryptographic key, enabling the parties to se-
cure their communications with symmetric encryption. Unlike traditional cryptographic
protocols, which rely on the presumed difficulty of certain computational problems, quan-
tum key distribution derives its security from the fundamental principles of quantum p
hysics [24]. A key aspect of this method is the no-cloning theorem, which states that it is
impossible to perfectly copy a particle in an unknown state, thus potentially allowing for
the detection of interception attempts. This approach forms a specific branch of quantum
cryptography [25].

3.1. Quantum Key Exchange Protocols

The BB84 protocol, introduced in 1984 by Charles Bennett and Gilles Brassard [26],
marked the first quantum key exchange method. It operates on a “preparation and mea-
surement” basis, where a quantum object, such as a photon, is prepared in a secret state
(often a polarization state) by one participant. The other participant, or a potential adver-
sary, guesses the state and measures it. Due to the collapse of the wave packet during
measurement, the original state cannot be restored, and any interference by an adversary
leads to detectable disturbances. This allows participants to either halt communication or
use techniques to amplify the signal and create a secure key despite the adversary’s partial
knowledge [27].

In contrast, the E91 protocol, developed by Artur Ekert in 1991 [28], leverages quantum
entanglement. Here, the exchanged quantum objects are always in a state of superposition,
with their specific states kept confidential. While the exact polarization state cannot
be determined when photons are used, statistical correlations remain intact unless an
adversary intervenes. Such an intervention disrupts these correlations, detectable through
the violation of Bell’s inequalities, indicating potential eavesdropping [21].
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3.2. Implementations

Quantum key exchange depends on the rapid generation, measurement, and transmis-
sion of quantum objects in specific states over considerable distances. A notable milestone
was reached in 2015 when polarized photons were transmitted through optical fiber over a
distance of 307 km at a rate of 12.7 kbit/s [29]. Further advancements were showcased in
June 2017 by the QUESS experiment, which successfully demonstrated key exchange over
distances exceeding 1000 km using satellites [30]. Noteworthy achievements include the
DARPA QKD network with ten nodes since 2004, NIST’s 2007 success with an optical fiber
reaching 148.7 km [31], and the SECOCQ QKD network using 200 km of standard optical
fibers implemented in 2008 [32].

However, these achievements are not sufficient due to the material constraints and
difficulty of implementation, as creating such secure lines is not available to everyone, as is
the case in the exchange of keys based on computational power.

3.3. Protocol Security

The security of quantum key exchange protocols primarily relies on the no-cloning the-
orem of quantum physics, which prevents adversaries from copying the state of a quantum
particle before its measurement. This contrasts with traditional key exchange protocols,
which depend on the mathematical complexity of problems. However, quantum key ex-
change protocols face vulnerabilities due to practical limitations in device performance,
decoherence phenomena, and potential auxiliary channels that attackers might exploit.
Some vulnerabilities are fundamental and potentially affect all quantum key exchange
protocols [33]:

• Without proper authentication, all quantum key exchange protocols are susceptible
to man-in-the-middle attacks. Even with authentication, there remains a risk that an
adversary may not be detected, appearing merely as noise in the system.

• Denial of service attacks are a risk for all quantum key exchange protocols since the
communication channel can be disrupted by an adversary. Standard countermeasures
like data copying and redundancy, which help preserve data integrity in traditional
systems, are not applicable in quantum systems due to the need to maintain the
integrity of the quantum state.

• Attacks exploiting the detection of measurement states are a concern, particularly in
protocols like BB84 where polarizing filters are used. An attacker might use back-
propagation techniques to determine the polarization axis, thereby predicting the
quantum states being communicated [34].

• Quantum key exchange protocols that depend on random bit sequences can be compro-
mised if the randomness source lacks sufficient entropy or predictability. Employing a
hardware-based random number generator is a common countermeasure.

• Protocol-specific attacks also exist, such as the photon number-splitting (PNS) attack, which
exploits photon generation devices that occasionally emit multiple photons with identical
polarization. This allows an attacker to intercept photons without detection [35].

• Some attacks manipulate the communication channel itself, involving phase manipu-
lation, timing shifts, or the insertion of false quantum states. These tactics have been
demonstrated against some commercial quantum key exchange systems [36–38].

It can be noted here that most of these types of attacks cannot be applied to techniques
that rely on computational power.

4. LWE Cryptosystem
4.1. Original LWE Technique

The learning with errors (LWE) cryptosystem is a post-quantum cryptographic scheme
based on the difficulty of solving linear equations with noisy terms. In LWE, the security
relies on the difficulty of distinguishing between randomly generated linear equations and
those with small, deliberately introduced errors. This problem is believed to be resistant



J 2024, 7 411

to attacks by both classical and quantum computers, making LWE a strong candidate for
secure communication in a post-quantum world. The basic Ring-LWE encryption can be
described as follows:

4.1.1. Basic Setup

1. LWE Problem Definition : Given a a vector in Zn
q and a noisy inner product

b = ⟨a, s⟩+ e mod q, where

• a is a random vector from Zn
q ;

• s is a secret vector from Zn
q ;

• e is a small error sampled from a discrete Gaussian distribution or another error
distribution over Zq;

• q is a prime modulus.

2. Search Problem: The goal of LWE is to find the secret vector s given several pairs
(ai, bi = ⟨ai, s⟩+ ei).

3. Decision Problem: The decision version of LWE is to distinguish between pairs (ai, bi)
generated as described above and pairs (ai, bi) where bi is uniformly random in Zq.

4.1.2. LWE Encryption Scheme

1. Key Generation:

• Choose a secret vector s ∈ Zn
q .

• The public key consists of several pairs (A, b) where

– A is an m× n matrix with entries from Zq;
– b = As + e mod q;
– e is a small error vector from a discrete Gaussian distribution.

2. Encryption:

• To encrypt a bit m ∈ {0, 1},
– Choose a random binary vector x ∈ {0, 1}m.
– Compute u = ATx mod q.
– Compute v = bTx + m

⌊ q
2
⌋

mod q.
– The ciphertext is (u, v).

3. Decryption:

• Given ciphertext (u, v),

– Compute v′ = v− uTs mod q.
– If v′ is closer to 0 than to

⌊ q
2
⌋
, decrypt as 0; otherwise, decrypt as 1.

4.1.3. Security

The security of the LWE cryptosystem relies on the difficulty of the LWE problem,
which is believed to be hard for both classical and quantum computers. Specifically, the
problem can be reduced to certain worst-case lattice problems, such as the shortest vector
problem (SVP) and the bounded distance-decoding (BDD) problem, which are conjectured
to be difficult.

4.2. Proposed LWE Cryptosystem

Table 1 illustrates the used notations.
The proposed cryptosystem replaces the small errors e1 and e2 in (u, v) with two

random fragments of m, which are m1 and m2 (Equation (1)).

m = m1 + m2 (1)

Key Generation :
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The key generation process in the proposed technique is similar to that used in the
basic LWE system. This function generates the number a and the secret keys s and e, then
computes the public key as shown in Equation (2).

(a, b = a× s + e) (2)

therefore the public key is (a, b).
Encryption:
To encrypt a plaintext m, the system generates r ∈ Z and randomly fragments m to m1

and m2, multiplies r by a and b in u and v, respectively, then adds m1 and m2 as follows:
Enc(m): {

u = r× a−m1
v = r× b + m2

(3)

Therefore, the ciphertext of a t-bit binary plaintext is represented by only one pair
(u, v), where u, v ∈ Z.

The cryptosystem in this representation is vulnerable to the chosen ciphertext attack
(CCA) as illustrated below.

Table 1. Used Notations.

Notation Description

⌊, ⌋ integer rounded down

◦ operation, namely “+” or “×”

← gets

→ gives

· scalar product

RNG random number generator

Enc Encryption

Dec Encryption

↚ random value from

/ integer division that returns the quotient

In the hypothesis that the attacker has (u, v), it is enough to add a value x to v (or
subtract x from u) to get m + x. Therefore, the attacker can easily distinguish between the
encryptions of any two chosen messages.

vattacker = v + x → vattacker = r× b + m2 + x = r× b + m2attacker. So Dec(u, vattacker) =
m1 + m2attacker = m1 + m2 + x = m + x.

To ensure IND-CCA security level, a new part w is introduced into the ciphertext
(Equation (4)).

w = mm2
1 (4)

Therefore, the new representation of the ciphertext is (u, v, w). Algorithm 1 describes
the encryption function.
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Algorithm 1 Encryption

Require: m, p, a, b

1: function ENC
2: f ragments(m)
3: r ↚ Z
4: u← (r× a−m1) mod p
5: v← (r× b + m2) mod p
6: w← mm2

1 mod p
7: return (u, v, w)
8: end function

Decryption:
The decryption process is shown in Algorithm 2.

Algorithm 2 Decryption

Require: u, v, w, p, s, e

function DEC
2: z← (v− u× s) mod p

r← z/e
4: z1 ← z mod e

m1 ← z1/s
6: m2 ← z1 mod s

m← m1 + m2
8: w′ ← mm2

1 mod p
if w = w′ then

10: return m
else

12: return err
end if

14: end function

4.3. Parameter Selection

To insure correct decryption and prevent the enemy from getting any sensitive infor-
mation, the following conditions must be satisfied. We will see that any breach of these
conditions will affect the performance of the proposal.

1. m < s: This is to get m2 from z1 = m2 + m1 × s.
In decryption, we have z← (v− u× s) mod p, then z = e× r+m2 +m1× s; if z1 = z
mod e, z1 = m2 + m1 × s. Suppose that m > s; it might give m2 > s because m is
fragmented randomly. To get m2, it must compute z1 mod s, meaning (m2 + m1 × s)
mod s, which will not give a correct m2. Therefore, m must be less than s.

2. m× s < e: This is to get z1 = m2 + m1 × s from z = e× r + m2 + m1 × s.
Suppose that m× s > e, so z mod e will not give exactly m2 + m1× s, which we need
to extract m1 and m2. The same thing occurs when computing z/e; it leads to setting
e > m× s.

3. e× r < p: This is to get r and (m1, m2) from z.
If e× r > p, we cannot extract exactly z = (e× r + m2 + m1 × s) mod p, so z must
be less than p in order to neglect mod p, and it is enough to put e× r < p.

4. p < a: This is to make sense for the modulus when calculating b = (a× s+ e) mod p.
If a < p, b will be less than p because s << p, so b will be exactly equal to
(a× s + e) without mod , which makes it more vulnerable, and the attacker might
get one of these secret values (a, s, ande) due to modulus operation increasing the
computational complexity.
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4.4. Enc-Dec Correctness

To eliminate the value r× a× s which is hidden in both u and v, the function starts
with computing z as follows: z← (v− u× s) mod p
=⇒ z = r× b + m2 − s× (r× a−m1)
=⇒ z = r× a× s + r× e + m2 − r× a× s + s×m1
as a result, z = r× e + m2 + s×m1;

then, it starts to extract values r, m1, and m2.
r ← z/e

Since m2 + s×m1 < e, z/e −→ r;
we put z1 ← z mod e

=⇒ z1 = m2 + s×m1
compute m1 ← z1/s.

Since m2 < s, z1/s −→ m1.
Compute m2 ← z1 mod s

⇐⇒ m2 = (m2 + s×m1) mod s.
Finally, m← m1 + m2 is obtained.

4.5. Homomorphic Addition

An encryption scheme supports homomorphic addition if there exists an operation ⊕
on ciphertexts such that for any plaintext m and n with their respective ciphertexts cm and
cn, it holds that (Equation (5))

Dec(sk, cm ⊕ cn) = mm + mn (5)

where Dec is the decryption function, sk is the secret key, and + denotes the addition
operation in the plaintext space.

Let m and n be two messages.
We have (um, vm) = (rm × a − m1, rm × b + m2) and (un, vn) = (rn × a − n1, rn ×

b + n2) (um + un, vm + vn) = ((rm + rn)× a− (m1 + n1), (rm + rn)× b + (m2 + n2)), then
(umn, vmn) = (rmn× a−mn1, rmn× b+mn2), so Dec(Enc(m)⊕ Enc(n))→ (m+ n). There-
fore, the proposed technique supports the homomorphic addition property.

5. Security Analysis and Performance

Learning with errors (LWE) is a foundational problem in post-quantum cryptography.
The security of LWE-based cryptographic schemes hinges on the presumed hardness of
the LWE problem, which remains difficult even for quantum computers. Considering the
hardness assumption, lattice problems like SVP and GapSVP are believed to be difficult for
both classical and quantum computers, providing a strong foundation for the difficulty of
LWE. The objective is to achieve IND-CCA security.

5.1. IND-CCA Security Definition

An encryption scheme is said to be IND-CCA secure (indistinguishability under
chosen ciphertext attack) if an adversary cannot distinguish between the encryptions
of any two chosen plaintexts, even with access to a decryption oracle, except for the
challenge ciphertext.

5.2. Security Game

1. Setup:

• The challenger generates a key pair (pk, sk).
• The public key pk is given to the adversary.

2. Phase 1 (Decryption Queries):

• The adversary can query the decryption oracle with any ciphertext c except for
the challenge ciphertext c∗.

• The oracle returns the plaintext m such that c = Enc(pk, m).
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3. Challenge:

• The adversary chooses two plaintexts m and m′.
• The challenger randomly selects a value b ∈ {m, m′} and computes the challenge

ciphertext c∗ = Enc(pk, b).
• The challenge ciphertext c∗ is given to the adversary.

4. Phase 2 (Decryption Queries):

• The adversary can continue to query the decryption oracle with any ciphertext c
except c∗.

5. Guess:

• The adversary outputs a guess b′ ∈ {m, m′}.
• The adversary wins if b′ = b.

The encryption scheme is IND-CCA secure if for any probabilistic polynomial-time
adversary A, the probability of winning the above game is at most negligibly better than
1
2 , i.e.,

Pr[b′ = b] ≤ 1
2
+ negl(n) (6)

where negl(n) is a negligible function in the security parameter n.
To reach a successful attack, let us suppose the following scenario:
Initially, the attacker needs to know m1, the first fragment of the challenger’s ran-

domly selected value b ∈ {m, m′}, knowing that the attacker has only the given ciphertext
c∗ = Enc(pk, b) = (u, v, w) computed by the challenger. By multiplying w by mx

1 , x is a
number chosen by the attacker. He can get w′ = mx

1 ×mm2
1 = mm2+x

1 , then he can easily
add x to v as v = r× b + (m2 + x); finally, he gets valid decryption. Therefore, without
knowing exactly m1, the random fragment of b, it is impossible to calculate a correct w′ and
then to make a successful attack.

Figure 1 (u-CCA and v-CCA) shows that the Dec algorithm always returns 0 because
w is different from w′, then even for any polynomial q, the scheme is semantically secure
against a q-bounded CCA2 attack (for q queries). Return to Phase 2 (decryption queries) in
the security game, where the adversary can continue to query the decryption oracle with
any ciphertext c except c∗. The attacker has to try all possibilities of fragments of m to reach
a probability of 1/2 because he does not know b is m and m′, so the attacker cannot tell if
the decryption of a ciphertext concerns m or m′, with a probability of more than 1/2 + ϵ.
As a result, the proposed technique is IND-CCA secure.

For quantum CCA security (qCCA), ensuring privacy in the presence of quantum
decryption queries, when an adversary can query a superposition of ciphertexts and receive
a superposition of their decryption, Navid and Varun [39] proved that “the single-bit qCCA-
secure scheme is sufficient to realize a multi-bit scheme with qCCA security”. Therefore,
the proposal is IND-qCCA.

Primal attacks construct a lattice with the unique shortest vector from an instance of an
LWE system and then use the BKZ algorithm to solve the unique shortest vector problem.
With our variant of LWE, the attacker cannot construct a d-dimensional lattice, and the
BKZ algorithm cannot be used.

In the Ajtai–Dwork Theorem, the LWE problem can be reduced from certain worst-
case lattice problems such as the shortest vector problem (SVP) and the gap shortest vector
problem (GapSVP). This reduction implies that an efficient algorithm solving LWE would
also solve these hard lattice problems. Regarding the proposal, smaller errors e1 and e2
in (u, v) were replaced by relatively large values (m1, m2) [40]. This means that efficient
algorithms solving LWE would not solve the proposed version of lattice problems.

Against classical attacks, in lattice reduction attacks, techniques like the LLL algorithm
and BKZ reduction are used to attempt to solve the underlying lattice problem. However,
the parameter choices for LWE (Section 4.3) are set to ensure these lattice reduction algo-
rithms remain inefficient. In distinguishing attacks, given the difficulty of the decision
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LWE problem, distinguishing between LWE samples and random noise is computationally
impossible (Figures 1 and 2) [41].

Figure 1. Illustration of uv-CCA.

Figure 2. Illustration of uv-CPA.

The security of LWE is specifically designed to withstand quantum attacks. Known
quantum algorithms like Grover’s search or Shor’s algorithm do not provide efficient
solutions to LWE. In quantum reduction, the worst-case to average-case reduction for
LWE holds in the quantum setting as well, implying that LWE remains hard for quantum
computers under standard assumptions. Hybrid attacks combine classical and quantum
techniques, like using quantum algorithms to speed up parts of classical lattice reduction
methods. Despite these advancements, the parameter settings for LWE can be adjusted to
maintain security against such hybrid attacks. Besides selecting the true random numbers
generator, an illustrated parameter selection in Section 4.3, the proposed technique realizes
a high level of security. It should be noted that the most efficient way to obtain a true RNG
is by employing a quantum-RNG, whereas pseudo-RNGs offer in principle the possibility,
for Eve, of retrieving the generation algorithm. Therefore, we suggest the employment of
QRNGs, which are inherently random and therefore non-replicable [42–44].

Compared with the classical LWE version, the authors’ proposal does not rely on
increasing the dimension of n or on error distribution. In basic LWE, larger dimensions
increase security but affect the size; also, the choice of the error distribution (often Gaussian)
and its parameters must ensure sufficient noise to prevent easy solving of the equations
but not too much to make the scheme impractical.

The security of the proposed LWE-based encryption method is supported by reduc-
tions from worst-case lattice problems, making them robust against both classical and
quantum attacks. The careful selection of parameters and consideration of implementation
strategies ensure their practical security and efficiency.

Table 2 shows the chosen settings for comparison. Reference [17] used 128-bit security
and n = 9000. Reference [19] chose the following parameters: public key(bit) = 9.88× 104,
secret key(bit) = 9.86× 104, and message(bit) = 256; and Reference [45] chose the following
parameters: message size = 128 bits and ciphertext degree n = 1024.

Table 3 provides a comprehensive comparison between the encryption and decryp-
tion times as well as the ciphertext sizes of the proposed technique and those found in
other studies employing the LWE (learning with errors) method. Notably, the proposed
technique significantly outperforms its peers in terms of efficiency. It records an encryp-
tion time of merely 0.0427 ms compared to substantially higher times of 102.10 ms in
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Reference [17] and 1.71× 107 ms in Reference [19]. Similarly, for decryption, the proposed
technique achieves a rapid 0.0320 ms, starkly faster than the 0.258 ms of Reference [17] and
again, the exceedingly slower 1.71× 107 ms in Reference [19].

Table 2. Parameter sizes and conditions.

Parameter Size (bit) Condition Satisfaction

m 64 / /

s 128 m < s 64 < 128

e 196 m× s < e 192 < 196

r 32 / /

p 236 e× r < p 228 < 236

a 267 p < a 236 < 267

Table 3. Performance comparison of different techniques.

Scheme Enc (ms) Dec (ms) CT Size Enc/Dec Complexity

[17] 102.10 0.258 2× n2 bits O(n3)/O(n2)

[19] 1.71× 107 1.71× 107 8.2× 104 bits O(n×m)/O(n×m)

[45] 55 (public key) / 60 kbit O(n)/O(n)

Ours 0.0427 0.0320 708 bits O(1)/O(1)

The proposed encryption technique not only advances performance in terms of ex-
ecution speed but also makes significant strides in reducing the size of the ciphertext, a
critical aspect of cryptographic efficiency. The results illustrate that the technique com-
presses the ciphertext to a mere 708 bits. This represents a profound improvement when
juxtaposed with the sizes reported in other studies: 2× n2 bits in Reference [17], which can
grow exponentially with the parameter n; 82,000 bits in Reference [19]; and 60 kilobits in
Reference [45]. Such reductions in ciphertext size are pivotal, especially in contexts where
bandwidth and storage are at a premium.

This remarkable decrease in ciphertext size not only implies a more efficient use of
storage space but also enhances the speed at which encrypted data can be transmitted
across networks. Smaller ciphertexts mean that less data needs to be sent over the network,
reducing transmission time and potentially decreasing the likelihood of transmission errors.
This becomes increasingly important in environments like mobile computing and Internet
of Things (IoT) devices, where bandwidth and storage capabilities are often limited. More-
over, the reduction in ciphertext size contributes directly to lowering the computational
overhead involved in the encryption and decryption processes. By producing smaller en-
crypted outputs, the proposed technique alleviates the burden on system resources, thereby
facilitating quicker processing and less energy consumption. This is particularly beneficial
for battery-operated devices and for applications that require real-time or near-real-time
data processing.

The substantial gains in both time and space efficiency stem from the methodological
innovation of encrypting the entire message as a whole rather than encrypting each bit
individually. This holistic approach reduces the computational burden by minimizing the
number of necessary calculations. Consequently, this leads to faster execution times and
results in much smaller ciphertexts, thus enhancing the overall performance and practicality
of the encryption technique. These results demonstrate the effectiveness of the proposed
method in leveraging the strengths of the LWE method while mitigating its computational
demands and storage requirements.
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6. Conclusions

This paper introduces a lightweight encryption technique that utilizes random frag-
mentation of messages and linear arithmetic operations. The proposed cryptosystem has
several key advantages, notably its ability to perform homomorphic addition on encrypted
data, making it highly applicable in critical areas such as data mining. A standout feature of
the proposal is its resistance against quantum computers, achieved through a new learning
with errors (LWE) variant. This paper provided comprehensive details of the proposed
technique. The results obtained are very promising, as encryption/decryption times equal
to 0.0427 ms and 0.0320 ms, respectively, were achieved, with a ciphertext size of 708 bits
corresponding to a message of 64 bits and 128 bits security.
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