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Abstract

:

The process of siting municipal solid waste landfills in Greece faces significant challenges due to land resource limitations, the country’s mountainous and water-permeable terrain, and strong public opposition. This study introduces a novel methodology for optimizing landfill sites on Lemnos Island in the North Aegean Sea using a Fuzzy Spatial Multiple Criteria Analysis (FSMCA) approach. By combining fuzzy sets theory, Geographic Information Systems (GIS), Analytic Hierarchy Process (AHP), spatial autocorrelation, spatial clustering and sensitivity analysis, this methodology addresses the uncertainties and complexities inherent in landfill siting. The decision problem is structured hierarchically into five levels to manage multiple criteria effectively. Criteria weights are determined using AHP, with discrete criteria graded according to Greek and EU guidelines, and continuous criteria evaluated through fuzzy sets theory. The region’s suitability is assessed using multiple criteria analysis, revealing that 9.7% of Lemnos Island is appropriate for landfill placement. Sensitivity analysis confirms the robustness of the methodology to changes in criteria weights. The case study demonstrates the practical application and benefits of FSMCA in a real-world scenario, underscoring its potential to improve sustainable waste management practices and inform policy making.
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1. Introduction


The mounting volume of municipal solid waste (MSW) poses a considerable challenge for waste management. With population expansion and evolving consumption habits, MSW production has surged in recent decades [1,2,3]. Despite waste management hierarchies emphasizing source reduction, recycling, and composting as sustainable choices, landfilling remains the predominant global disposal method [4]. Consequently, the reliance on landfills for MSW disposal carries significant environmental and social repercussions, underscoring the necessity to reassess current practices and transition to more sustainable approaches.



The persistent issue of MSW poses a significant global challenge. International initiatives such as the UN Sustainable Development Goals (SDGs) and the European Commission’s Circular Economy Package aim to reduce waste generation and promote recycling and composting [5,6]. Despite these efforts, landfills continue to be the primary method of waste disposal worldwide with 70% of waste ending up in dumps, which is a cause for concern [7]. Many landfills suffer from inadequate management, leading to serious environmental issues. While some landfills implement measures to reduce pollution, such as leachate collection and gas capture, they still contribute significantly to environmental degradation [8]. Consequently, a multi-faceted approach is necessary. While promoting waste reduction, reuse, and recycling is crucial for sustainable waste management, advancements in landfill siting strategies are also vital for minimizing the environmental and social impacts associated with landfilling. Even when waste reduction and recycling are prioritized, landfills remain a critical component of the municipal solid waste management system [9], and they require a thorough and scientifically sound site selection process due to their potential long-term environmental impacts [10,11]. It is crucial to carefully choose landfill sites due to potential long-term consequences such as soil and water contamination, air pollution, and risks to public health [12,13,14].



In Greece, recent early warning assessments, as reported by the European Environment Agency [15], have drawn attention to the 2025 targets for municipal solid waste (MSW) and highlighted a relatively stable trend in MSW generation. However, concerns have been raised due to Greece’s higher MSW generation per unit of GDP compared to the EU, indicating inefficiencies in resource utilization within the Greek economy. Despite minimal changes in overall MSW management practices over the past decade, waste disposal remains a significant challenge. Landfills continue to be the primary method of waste disposal in Greece, accounting for a substantial 80% in 2017, in stark contrast to the much lower EU average of 23.4%. This heavy reliance on landfills raises environmental and public health concerns. Furthermore, landfill site selection presents a significant challenge in Greece due to the ‘Not in My Back Yard’ (NIMBY) syndrome, which often arises in local communities where a landfill is proposed. The decision to place a landfill in an area with an exacerbated NIMBY syndrome by the residents usually leads to the failure of the landfill siting procedure due to the associated political costs.



In the past three decades, there has been a significant increase in research on landfill siting practices and techniques [16]. Geographic Information Systems (GIS) has emerged as a powerful tool, enabling the development of GIS-based approaches for landfill siting [17,18,19,20,21,22,23,24,25]. Additionally, the integration of Multi-Criteria Decision-Making (MCDM) methodologies with GIS capabilities has gained significant attention [26,27,28,29,30,31,32]. Several methods have been extensively used for landfill site selection within the MCDM framework, including the Analytic Hierarchy Process (AHP), Analytic Network Process (ANP), Weighted Linear Combination (WLC Weighted Average (WA), Weighted Product (WP), and fuzzy logic [33,34,35,36,37,38,39,40,41,42]. Landfill siting is inherently complex due to the multitude of influencing factors, including land use planning, environmental considerations, operational aspects, and economic feasibility [43,44,45,46]. The integration of fuzzy logic with MCDM has gained recognition due to its effectiveness [47,48,49,50,51,52].



Selecting a suitable location for a landfill is a complex process due to the uncertainties involved, such as determining the optimal distance from specific areas, analyzing the land’s slope, and considering its orientation. Zadeh’s introduction of fuzzy set theory in 1965 offers a robust approach to addressing this issue [53]. Its capability to handle intricate problems that are location-dependent and involve multiple criteria makes it particularly valuable for landfill siting. Integrating fuzzy sets with the functionalities of a GIS (geographic information system) provides the most contemporary method for choosing landfill locations. While there is evidence of the effectiveness of using fuzzy logic in this context, further research is essential to ensure the adoption of the most optimal selection process within our decision-making framework.



In response to these urgent challenges, this paper introduces a methodology for MSW landfill siting. The approach combines Geographic Information Systems (GIS) and Multi-Criteria Analysis (MCA) methods within a fuzzy environment. Specifically designed for the island of Lemnos, Greece, this method tackles the complexities of landfill siting within Greece’s intricate waste management landscape. The research question that underpins this study can be formulated as a dual inquiry as follows:




	–

	
“Is there a gap in the existing methodologies for evaluating the suitability of land for the siting of nuisance activities?”




	–

	
“What is the contribution of the proposed methodology to the advancement of land suitability assessment methodologies?”









Regarding the first part of the research question, it could be argued that there is no need for an additional methodology for evaluating land suitability for the siting of nuisance activities. This could be based on the rationale that with the existing methodologies, an area of study can be easily assessed using simple procedures. This assertion is largely valid; however, the simple procedures mentioned practically mean a significant amount of time (i.e., cost) required for field research, generalizations, simplifications, and minimal structuring of the multi-criteria problem using simple criteria based on legislation.



According to the literature, the resolution of the multi-criteria problem usually relies on the experience and knowledge of those involved in the process, without being based on a comprehensive theoretical framework of any multiple criteria analysis methodology, leading to a high degree of subjectivity. The outcome of applying the existing methodologies is broader areas whose suitability is either uniformly the same or slightly graded. Additionally, there is no further analysis of the results concerning their accuracy, and sensitivity analysis is rarely performed.



The gaps that this research attempts to address, which simultaneously answer the second part of the research question concerning the contribution of the proposed methodology, can be summarized as follows:




	–

	
Thorough structuring of the multiple criteria problem by creating a multi-level hierarchical structure diagram.




	–

	
Objectification of the multiple criteria problem, primarily by minimizing the subjective factor, by using (a) the Analytic Hierarchy Process (AHP), the most widely accepted method for weighting the importance coefficients, and (b) the fuzzy sets, which is the most modern theory for grading areas.




	–

	
Utilization of the methodological tools of Geoinformatics for the best possible processing and analysis of the results, using (a) spatial autocorrelation methods to check the relationship between areas and (b) spatial clustering methods to create suitability clusters in the study area.




	–

	
Sensitivity analysis both at the level of the final results and at the key points of the proposed methodology.









In this methodology, the whole study area is thoroughly evaluated using a grading scale from 0 to 1. A score of 0 indicates that a site is completely unsuitable for landfill siting, while a score of 1 means that a site is perfect for landfill siting. The criteria used for landfill siting are based on international practices as well as national and EU legislation. However, these criteria are adjusted using fuzzy sets to address spatial uncertainty. This methodological advancement aims to identify the most suitable areas for landfill siting based on the suitability index derived from the initial analysis. The approach represents significant progress in the landfill siting process by providing a robust framework for decision making. Sophisticated spatial analysis methods are introduced to enhance the analysis of results, highlighting the importance of GIS and spatial analysis tools. Additionally, sensitivity analysis is proposed as an effective tool to examine uncertainties arising from intermediate stages of the methodology. It is important to note that sensitivity analysis should always accompany any multiple-criteria problem. However, a review of the literature on MCA-aided landfill siting reveals a notable lack of sensitivity analysis in the relevant studies.



The present paper is organized as follows. In Section 2, some useful information about the island of Lemnos is presented. Additionally, there is a detailed description of the methodological concept, the hierarchical structure of the multiple criteria problem formed, and the spatial determination of the evaluation criteria. In Section 3, the application of the methodology and the results are presented. Finally, the conclusions from the application of the methodology and some remarks are presented in Section 4.




2. Materials and Methods


The island of Lemnos, situated in the northeast part of the Aegean Sea in Greece, spans 477 km2 and is inhabited by 15,352 individuals. It boasts a varied landscape and abundant natural features, as depicted in Figure 1. Approximately 48% (230 km2) of the island is utilized for agricultural purposes, primarily for vineyards and grain cultivation. Another 42% (200 km2) is designated for pastures, while the remaining areas encompass urban spaces, pine forests, rocky terrain, and wetlands. Lemnos experiences a meso-Mediterranean climate characterized by dry summers and mild winters with an average annual temperature of 16.1 °C and an average annual rainfall of 467 mm.



The Ministry of National Economy [54] has projected a 0.7% annual increase in municipal solid waste (MSW) production. With a population growth rate of approximately 0.4% per year, it was expected that the average annual per capita solid waste production would reach 412 kg by 2010. According to Eurostat data [55,56], Greece has seen a significant increase in municipal waste generation and treatment over recent years. In 2022, Greece generated approximately 560 kg of municipal waste per capita, which is closely aligned with the EU average of 513 kg per capita.



Despite this, Greece remains among the lower performers in terms of recycling with only about 90 kg per capita recycled compared to the EU average of 249 kg per capita. Eurostat’s detailed breakdown of waste management in Greece [57] also highlights specific waste categories, such as packaging waste. In 2021, Greece generated a significant amount of packaging waste but had one of the lowest recycling rates for plastic packaging waste in the EU, meeting only the minimum recycling target of 22.5%. The specific composition of solid waste on the island of Lemnos has not been directly measured. Instead, estimates and generalizations based on the average composition of solid waste in Greece are often used. Generally, Greek municipal solid waste includes a significant proportion of organic matter (often more than 45%) as well as paper (20%), plastic (10%), metal (5%), glass (5%), and other materials (15%).



Municipal solid waste on Lemnos includes residential and commercial waste as well as waste generated by tourist activities such as hotels and restaurants. The MSW is planned to be disposed of in a non-hazardous waste sanitary landfill, as specified in the EU’s 1999/31/EC directive [58]. The projected average annual solid waste generation in Lemnos for the next two decades, aligning with the planned lifespan of the landfill, is estimated to be around 9000 tons per year. Considering an average waste height of approximately 10 m and an average soil excavation depth of 2.5 m, the total minimum required landfill area should be 75 hectares, while the total area needed, including all necessary infrastructure, is approximately 10 hectares.



The approach outlined in this paper integrates Geographic Information Systems (GIS) and multiple criteria analysis (MCA) to assess the entire region based on specific decision criteria. GIS is employed to create a geodatabase through the use of spatial analysis tools. Various MCA techniques, including Weighted Average, Weighted Product, TOPSIS, and Compromise Programming, are examined for the evaluation of the final Suitability Index (SI). The proposed methodology comprises the steps illustrated in Figure 2. A Spatial Decision Support System (SDSS) has been developed using the modeling environment of ESRI ArcGIS 10.8.1 software to automate the landfill siting methodology. The SDSS facilitates the definition of evaluation criteria and subcriteria in both crisp and fuzzy environments, the creation of composite decision criteria, and the management of the MCA process. Additionally, Python 3.11 scripts were developed for determining criteria importance weights, conducting spatial autocorrelation and clustering algorithms, and performing sensitivity analysis of the results. The methodology outlined here initially considers all areas as suitable for further examination. A grading scale ranging from 0 to 1, with 0 indicating the least suitable areas and 1 indicating the most suitable areas for landfill siting, is used to create the criteria. Consequently, areas deemed unsuitable from a legal standpoint receive a low initial suitability grade, which leads to their exclusion from subsequent stages of the siting process. The primary outcome of this methodology is the evaluation of land suitability in terms of the Suitability Index, using the Analytic Hierarchy Process. The final result involves identifying the most suitable areas through spatial autocorrelation and spatial clustering analysis.



2.1. Determination of the Criteria Hierarchical Structure


The hierarchical arrangement of the criteria is a crucial component of the proposed methodology. Adhering to the principle of parsimony, which is fundamental in many scientific disciplines, certain general guidelines should be followed. These guidelines include simplifying the decision-making process, minimizing the number of parameters used, preferring linear models over non-linear ones, and avoiding collinearity. The hierarchical structure, illustrated in Figure 3, is an effective tool for analyzing complex multiple-criteria problems. It is developed based on relevant landfill siting literature [59,60,61] and the authors’ previous works [21,34,62,63,64].



When determining the location of a landfill, it is essential to consider various factors such as environmental impacts, public health risks, and financial feasibility [65,66,67]. The proposed hierarchical structure consists of five levels. The first level represents the primary objective of the decision problem (land suitability for landfill siting), the second level represents the decision criteria, the third level represents the evaluation criteria, the fourth level represents the evaluation subcriteria, and the fifth level represents the spatial or non-spatial attributes associated with the preceding criteria/subcriteria levels.



In this study, the decision criteria are divided into four main groups: Hydrological, Environmental, Social, and Technical. To establish these criteria, several additional parameters that influence them are considered and represented by the evaluation criteria. Each evaluation criterion is defined by corresponding spatial or non-spatial attributes or can be further subdivided into evaluation subcriteria and their respective attributes. For instance, the evaluation criterion of surface water includes the subcriteria of wetlands, water reservoirs/dams, and streams. The streams subcriterion is further defined by the distance from streams and watersheds.




2.2. Relative Importance Weights Assessment


One of the most crucial steps in solving problems with multiple criteria is accurately estimating the relative importance weights. Despite the availability of qualitative information regarding the significance of the criteria, quantifying it accurately remains challenging. The Analytic Hierarchy Process (AHP), introduced by Saaty in 1980 [68], is a widely accepted method for addressing multiple criteria problems. In this study, AHP is employed to tackle the decision-making issue of determining land suitability for landfill siting. The AHP method is effective for determining the relative importance weights of criteria through pairwise comparisons. Decision-makers express their opinions on the significance of the criteria by comparing pairs of criteria at a time, using the scale of relative importance shown in Table 1.



In the previous step, decision-makers created a Pairwise Comparison Matrix (PCM) with attributes aii = 1 and aij = 1/aji. The next step involves determining the relative importance weights of the criteria based on these comparisons. Saaty recommends estimating the principal eigenvector of the PCM and approximating it using the geometric mean of each row of the PCM. This approach, known as Multiplicative AHP, was utilized in this study. The calculated geometric means are then normalized to extract the relative importance weights. The AHP method accommodates slightly inconsistent pairwise comparisons. If the PCM was perfectly consistent, then aij = aik × akj for all possible combinations of comparisons. However, perfect consistency in a PCM is rare. AHP introduces an index known as the Consistency Ratio (CR), which measures the overall consistency of the PCM. According to Saaty, the CR should be less than 0.1, indicating that the matrix is consistent.



The decision problem addressed in this study is organized hierarchically into five levels: the final goal (land suitability), decision criteria, evaluation criteria, evaluation subcriteria, and spatial/non-spatial attributes. This hierarchical structure is highly beneficial for addressing the complex issue of landfill siting with multiple criteria. In total, 17 PCMs were created to assess the relative importance weights of all criteria and subcriteria. The pairwise comparisons used in this study are well-founded, based on a comprehensive review of relevant landfill siting literature [21,34,60,62,63,64]. However, varying judgments regarding the relative importance of the criteria may arise when comparing them in pairs. The decision-making process in multiple criteria problems is inherently subjective and influenced by the decision maker. Given the complexity of landfill siting, divergent viewpoints from the stakeholders involved are to be expected.




2.3. Spatial Determination of the Criteria


In the study, criteria were classified into two categories: continuous and discrete. The continuous criteria were calibrated using fuzzy sets theory [53], which offers a more nuanced method for defining sets. Discrete criteria refer to categorical factors, whereas continuous criteria pertain to measurable factors. The discrete criteria were calibrated using a deterministic approach based on the expertise of the individuals involved in the siting process, and then linear fuzzy membership functions were applied. Unlike traditional Boolean logic, which limits conditions to true or false, fuzzy sets theory allows for a range of possibilities. This flexibility is particularly useful for scenarios that are not strictly binary, such as evaluating the suitability of a location for landfill siting.



Fuzzy logic assumes that conditions can range from nearly true/false to nearly false/true. Generally, a fuzzy set F in a universe of discourse X is described by a membership function μF(x), which maps X to the membership space M ∈ [0, 1] and represents the degree of membership of x in F. The closer the value of μF(x) is to 1, the more x belongs to F. In this study, the membership functions shown in Figure 4 were used. These functions are referenced in the literature for assessing land suitability using fuzzy sets theory [47,69,70,71]. In the equations shown in Figure 4, μF(x) denotes the membership grade related to x, where x represents a measurable attribute such as distance, slope, area, or population, while xmin and xmax represent the minimum and maximum values of this attribute, respectively. The symbol ∫ represents the description of a fuzzy singleton, while U represents the union of fuzzy singletons. In Figure 4(c),(d), α is the point where the membership function begins to increase from a grade of 0 until it reaches β, where the membership grade is 1 [71].



The membership functions were applied not directly to the input features but to an intermediate dataset obtained from spatial analysis processes. In this study, the spatial processes Euclidean Distance (ED) and Euclidean Allocation (EA) were utilized. These processes calculate the direct distance in Cartesian space between two points. They partition the study area into cells and then determine the minimum distance for each cell from all input features. The key difference between the two spatial processes is how values are assigned. Specifically, Euclidean Distance assigns each cell the minimum distance to the nearest input feature, while Euclidean Allocation assigns a predefined attribute of the nearest input feature to each cell.



The membership functions and the values for α and β were carefully chosen to accurately represent the criteria. Two stages of sensitivity analysis were conducted: the first stage evaluated different membership functions, and the second stage tested various α and β values. The analysis showed that even with minor or moderate adjustments, the final fuzzy membership functions and their respective α and β values remained largely unaffected [64]. The spatial determination of the decision and evaluation criteria is described in detail in the following sections. Additional information about the parameters considered in the proposed methodology can be found in the author’s previous research [22,35].




2.4. Multiple Criteria Analysis Methods


To resolve the multiple criteria problem created based on the hierarchical structure of Figure 3, a bottom–up approach is applied, starting at the 5th level, which includes the spatial and non-spatial parameters considered. From there, each level is addressed progressively to calculate the Suitability Index (SI). For the SI calculation, the previous stages described must have been completed, namely scoring all considered parameters and calculating the weighting factors for all criteria and their subcriteria. A fundamental requirement for solving the multi-criteria problem is the selection of the SI scale. In this paper, the chosen scoring scale for the criteria follows the 0 to 1 scale of the membership grades of fuzzy sets. With this scale, areas unsuitable for activity location are rated 0, while the most suitable areas are rated 1. Additionally, the weighting factors, as mentioned in an earlier paragraph, follow the same scale, with the condition that their sum equals one. The methods selected for solving the multiple criteria problem in this study include the Weighted Mean, Weighted Product, TOPSIS, and Compromise Programming, as described in the following sections.



2.4.1. Weighted Average


The Weighted Average (WA) method is a multiple criteria decision-making approach that calculates an overall score for evaluating alternative options by considering various criteria with specific weights. Each criterion is rated on a defined scale, and the total score of an alternative is derived as the sum of the individual scores, which are each multiplied by their relative weight. This method is widely used due to its simplicity and its ability to incorporate different levels of importance for each criterion. It is especially useful in cases where criteria are independent [72]. The formula for the WA method described by Equation (1) was employed:


   V i    =     ∑  j = 1  m    w j    ×    v  i j     ,  



(1)




where




	
Vi, the final grade of area i, i ∈ [1, n];



	
vij, the grading value of area i under criterion j, vij ∈ [0, 1] and j ∈ [1, m];



	
wj, the relative importance weight of criterion j, wj ∈ [0, 1] and Σw = 1;



	
n, the total number of alternative areas;



	
m, the total number of criteria.









2.4.2. Weighted Product


The Weighted Product (WP) method is also a multiple criteria decision-making technique that evaluates alternatives by considering multiple criteria, which are each assigned a specific weight. Unlike the WA, which uses additive scoring, the WP method employs a multiplicative approach. Each criterion score is raised to the power of its corresponding weight, and then all weighted scores are multiplied to produce a final evaluation score for each alternative. This method is effective in cases where criteria are independent and normalized, as it handles varying units across criteria well by using a ratio scale. It is particularly beneficial in ranking alternatives when the criteria have multiplicative relationships [73,74]. The formula for the WP method described by Equation (2) was applied:


   V i    =     ∏  j = 1  m       w j      v  i j         ,  



(2)




where




	
Vi, the final grade of area i, i ∈ [1, n];



	
vij, the grading value of area i under criterion j, vij ∈ [0, 1] and j ∈ [1, m];



	
wj, the relative importance weight of criterion j, wj ∈ [0, 1] and Σw = 1;



	
n, the total number of alternative areas;



	
m, the total number of criteria.









2.4.3. TOPSIS


The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is a multiple criteria decision-making method that ranks alternatives based on their distance from an ideal solution. The approach assumes that the best alternative should have the shortest distance from a hypothetical positive ideal solution (PIS), representing the best performance across all criteria, and the farthest distance from a negative ideal solution (NIS), representing the worst performance across all criteria. TOPSIS is widely used due to its simplicity and rational approach to ranking, especially in cases where criteria are conflicting and have different units [75,76]. The steps for the TOPSIS method are outlined below.



	(a)

	
Normalization: Standardize scores across criteria to make them comparable, as described by Equation (3):


   r  i j     =       s  i j         ∑  j = 1  m       s  i j     2         ,  



(3)




where



rij, the normalized score of area i under criterion j, i ∈ [1, n] and j ∈ [1, m];



wj, the relative importance weight of criterion j, wj ∈ [0, 1] and Σw = 1;



sij, the grading value of area i under criterion j, sij ∈ [0, 1];



n, the total number of alternative areas;



m, the total number of criteria.







	(b)

	
Weighted Normalization: Calculate the weighted normalized scores (vij), multiplying each normalized score (rij) by the criterion’s weight (wj), as shown in Equation (4):


   v  i j     =    r  i j   ×  w j  ,  



(4)











	(c)

	
Identify Ideal Solutions: Determine the PIS and NIS by selecting the best and worst scores for each criterion, as shown in Equation (5):


     A  +  =     v  1 +  ,   v  2 +  , … ,   v  m +        and     A  −  =     v  1 −  ,   v  2 −  , … ,   v  m −     ,  



(5)











	(d)

	
Calculate Distances: Compute the Euclidean distance of each alternative from the PIS (Di+) and NIS (Di−), as described by Equation (6):


     D  i +  =     ∑  j = 1  m         v  i j   −   v  j +      2        and     D  i −  =     ∑  j = 1  m         v  i j   −   v  j −      2       ,  



(6)











	(e)

	
Calculate Relative Closeness: The closeness of each alternative to the ideal solution is calculated, and alternatives are ranked accordingly, as described by Equation (7). The relative closeness score (Ci*) can range from 0 to 1, where 0 corresponds to the worst solution, and 1 corresponds to the optimal solution.


    C  i ∗  =      S  i −      S  i +  +   S  i −     ,  



(7)












2.4.4. Compromise Programming


Compromise Programming (CP) is a multiple criteria decision-making technique that identifies a solution by minimizing the distance from an ideal point, where the ideal point represents the best possible values for each criterion. This method is based on the concept of finding a compromise solution that may not achieve the best score on every criterion individually but offers a balanced performance across all criteria, accounting for potential trade-offs. The CP approach uses a distance metric to measure the closeness of each alternative to the ideal solution. The general formula for the distance metric is described by Equation (8):


  L i   =          ∑  j = 1  m     w  j           v  j ∗  −   v   i j       p       1 / p   ,  



(8)




where




	
Li, the distance metric of area i, i ∈ [1, n];



	
vij, the grading value of area i under criterion j, vij ∈ [0, 1] and j ∈ [1, m];



	
vj*, the ideal (best) value for criterion j;



	
wj, the relative importance weight of criterion j, wj ∈ [0, 1] and Σw = 1;



	
n, the total number of alternative areas;



	
m, the total number of criteria;



	
p, determines the sensitivity to deviations (1 for linear sensitivity, 2 for quadratic sensitivity), 1 ≤ p ≤ ∞.








Commonly, values of p = 1 and p = 2 are used, corresponding to different emphases on deviations from the ideal. This technique is particularly useful when decision-makers seek to achieve an overall balanced performance across conflicting criteria [77].





2.5. Spatial Autocorrelation Methods


Spatial autocorrelation is a statistical property describing how similar or dissimilar values are for a variable across geographic space based on both attribute similarity and spatial proximity. In essence, spatial autocorrelation assesses whether values observed at nearby locations are more alike (positive spatial autocorrelation) or more different (negative spatial autocorrelation) than values observed at distant locations. This phenomenon is crucial in fields like geography, environmental science, and economics, as it allows researchers to understand the spatial patterns in data, which can reflect underlying processes such as resource distribution, urbanization, or climate variability [78]. Positive spatial autocorrelation suggests the clustering of similar values, which might indicate regional concentrations or areas of shared characteristics, while negative spatial autocorrelation implies a checkerboard pattern where neighboring values are dissimilar. The study of spatial autocorrelation is fundamental in spatial analysis, as it helps with detecting spatial dependence and improves the accuracy of spatial modeling [79].



Global spatial autocorrelation measures, such as Moran’s I and Geary’s C, are fundamental tools for assessing spatial patterns across an entire study area. Moran’s I provides a global summary of spatial dependence by indicating if similar values are clustered (positive spatial autocorrelation), dispersed (negative spatial autocorrelation), or randomly distributed. Values of Moran’s I range from −1 to +1, where values close to +1 suggest a clustering of similar values, values near −1 indicate a checkerboard pattern, and values around zero suggest spatial randomness [80]. In contrast, Geary’s C focuses on the similarity between adjacent areas, making it more sensitive to local variations; values of Geary’s C close to 1 indicate spatial randomness, with values below 1 representing positive spatial autocorrelation and values above 1 reflecting negative spatial autocorrelation [81]. The Moran scatterplot is a useful visualization that pairs each observation’s value with the average of its neighbors’ values, helping to reveal the structure of spatial association. This scatterplot divides data into four quadrants with high–high and low–low quadrants indicating positive spatial autocorrelation and high–low or low–high quadrants indicating negative spatial autocorrelation [82]. Together, Moran’s I, Geary’s C, and the Moran scatterplot provide powerful insights for exploring spatial dependencies in diverse fields, such as epidemiology, urban planning, and environmental sciences.



Local spatial autocorrelation measures, such as Local Moran’s I, Local Geary’s C, G-Statistics, and Local Spatial Entropy, are valuable tools for detecting spatial patterns and clusters at a localized level within a study area. Local Moran’s I, or Local Indicators of Spatial Association (LISA), allows for the identification of specific clusters of similar or dissimilar values, highlighting “hot spots” (high–high clusters) and “cold spots” (low–low clusters) as well as spatial outliers (high–low or low–high areas) [82]. Local Geary’s C focuses on the similarity of neighboring values and is particularly sensitive to fine-scale local variations, helping to pinpoint subtle differences that may be missed by global measures [83]. Local G-Statistics, or Getis-Ord Gi*, extend the traditional G-Statistic to capture clusters of extreme values, providing a means to identify significant high-value and low-value clusters [84]. Local Spatial Entropy measures the degree of spatial disorder within a localized area, where higher entropy suggests more spatial randomness or heterogeneity, and lower entropy reflects more ordered, structured patterns [85]. These local measures are frequently applied in fields like urban studies, environmental monitoring, and public health, allowing researchers to analyze spatial heterogeneity, detect clusters, and reveal outliers that may require targeted intervention.




2.6. Spatial Clustering Methods


Spatial clustering is a process used in spatial analysis to identify and group together locations or objects in geographic space based on their similarity or proximity. This technique is valuable for recognizing patterns, as it helps reveal underlying spatial structures such as hotspots or clusters of specific characteristics. Spatial clustering methods often rely on statistical measures to determine whether the observed clusters are significant, distinguishing true patterns from random distributions. Different techniques, such as K-means clustering, hierarchical clustering, and density-based methods like DBSCAN, are commonly applied depending on the dataset’s characteristics and the analysis goal [86,87]. In the present work, the Iterative Self-Organizing Data Analysis Technique Algorithm (ISODATA) and the Fuzzy C-Means (FCM) were utilized, which are popular clustering techniques that extend traditional clustering by offering flexibility in data organization.



ISODATA is an iterative clustering method that merges and splits clusters based on predefined criteria, allowing for dynamic adjustments to the number of clusters as the algorithm processes the data. This adaptability makes ISODATA effective for handling complex spatial data with variable distributions [88]. FCM is a clustering approach based on fuzzy logic, which assigns data points to clusters with varying degrees of membership rather than enforcing strict, binary assignments. FCM is particularly beneficial for spatial datasets where cluster boundaries are not well defined, as it allows for overlapping clusters and can better represent spatial phenomena with gradual transitions, such as urban to rural landscapes [89]. Both ISODATA and FCM are widely used in Geographic Information Systems (GIS), remote sensing, and environmental studies to analyze spatial patterns in complex, heterogeneous datasets.





3. Results


To identify suitable areas for landfill siting, the multiple criteria analysis methods described in the previous paragraphs should be applied. Initially, the four decision criteria, namely Hydrological, Environmental, Social, and Technical, must be calculated according to the methodology outlined below.



The hydrological decision criterion is designed to protect surface water and groundwater from potential pollution [90]. This criterion incorporates four assessment factors: water permeability (H1), underground water sources (H2), surface water (H3), and faults (H4), using the PCM shown in Table 2.



The hydrological decision criterion was established using the hierarchical structure shown in Figure 5. This figure provides additional information beyond the hierarchical structure, including the relative importance weights utilized (e.g., 0.9 for the distance from water sources and 0.1 for flow direction) and the membership function applied for continuous spatial information (e.g., for the distance from faults, the trapezoidal increasing (TI) function was utilized with parameters α = 500 and β = 2000).



The classification of the entire area into hydrogeological zones on Lemnos Island is based on the evaluation criterion for water permeability. This criterion depends on the values of hydraulic conductivity (k) measured in meters per second. The categorization of the hydrogeological zones and areas with brine water on the island is based on estimates and field observations conducted by local geology experts.



A landfill site must not be adjacent to any groundwater source such as springs or groundwater wells. According to Greek legislation [91], a minimum distance of 500 m from any water source is required for a landfill site. Additionally, a period of 50 to 60 days is required for the inactivation of pathogens, while groundwater has an average linear velocity ranging from a few centimeters to 10 m per day [92]. The water sources evaluation criterion also considers the groundwater flow direction from any water source to delineate upstream and downstream areas. The surface water evaluation criterion encompasses wetlands, water reservoirs/dams, and streams. Each evaluation subcriterion was formulated using two parameters: distance from surface water evaluation subcriterion and basins. Finally, the faults evaluation criterion was developed using the Euclidean distance from faults. In order to evaluate the hydrological decision criterion, the relative importance weights shown in Table 2 were utilized, resulting in the map shown in Figure 6a.



The environmental decision criterion is designed to protect areas of significant ecological value. This criterion includes three evaluation criteria: sensitive ecosystems (E1), land cover (E2), and coastal areas (E3), using the PCM shown in Table 3.



The hierarchical structure for the environmental criterion is depicted in Figure 7, which also provides additional details, such as the relative importance weights assigned (e.g., for the surface water evaluation criterion, equal importance of 0.3333 was given to each of the three subcriteria) and the membership functions used for continuous spatial data (e.g., the linear increasing (LI) function for distances from the coastline).



The assessment of sensitive ecosystems focuses on areas of ecological significance, including those within the NATURA 2000 European Biotopes Network, as well as wetlands and water reservoirs/dams. The evaluation of distances from NATURA 2000 zones, wetlands, and water reservoirs/dams employs specific membership functions and parameters, as illustrated in Figure 7. Land cover assessment is not governed by legal constraints and can vary by region. The importance of different vegetation types is assessed based on the ecological value of the vegetation and its spatial distribution. To assess the environmental decision criterion, the relative importance weights outlined in Table 3 were applied, producing the results shown in Figure 6b.



The social decision criterion is designed to safeguard residential areas and preserve cultural heritage within the study area. It encompasses three evaluation factors: urban areas (S1), cultural and historical landmarks (S2), and visibility from key locations (S3), using the PCM shown in Table 4. The hierarchical structure of the social criterion is illustrated in Figure 8. This figure provides details beyond the hierarchy, including the relative importance weights assigned (e.g., for the visibility evaluation criterion, weights of 0.6667 and 0.3333 were allocated to the subcriteria of visibility from residential areas and visibility from roads, respectively) and the membership functions used for continuous spatial data (e.g., for urban area population, the linear decreasing (LD) function was applied).



The evaluation criterion for urban areas addresses both inhabited areas and the airport. This subcriterion incorporates two parameters: proximity to urban areas and their population. Protecting cultural areas is a critical aspect of the landfill siting process due to Greece’s rich cultural heritage. This criterion aims to preserve national cultural assets, including paleontological, archaeological, and historical sites. In accordance with Greek Government Ministry Decision 114218 [93], landfill siting is prohibited in areas of archaeological or cultural interest. Construction is strictly limited near archaeological sites, while it may be allowed under specific conditions in the broader vicinity of such sites. Lastly, the visibility evaluation criterion assesses visibility from both urban areas and roads. The subcriteria consider the frequency of visibility and distance. The evaluation of the social decision criterion utilized the relative importance weights detailed in Table 4, resulting in the map presented in Figure 6c.



The technical decision criterion addresses factors that influence both the construction and operation of landfills. This criterion comprises four evaluation criteria: centrality (T1), morphology (T2), wind exposure (T3), and land uses (T4), using the PCM shown in Table 5. The hierarchical structure used to define this criterion is depicted in Figure 9.



This figure offers additional details beyond the hierarchical structure, including the relative importance weights assigned (e.g., for the centrality evaluation criterion, weights of 0.25 and 0.75 were allocated to the distance from roads and overall centrality, respectively) and the membership functions applied to continuous spatial data (e.g., for morphology, the trapezoidal increasing (TI) function was employed on the slope map with parameters α = 10 and β = 45).



The centrality evaluation criterion includes two parameters: the distance from any point in the study area to the road network and the centrality of the road network itself. To calculate road network centrality, the algorithm shown in Figure 10 was implemented using Python. This algorithm identifies central areas of the road network based on lower weighted distances.



Land morphology is a crucial parameter for landfill site selection. This study assessed land morphology using slope gradients, which were expressed in degrees. The grading is based on the principle that flatter areas are preferable for landfill construction even though international standards permit landfills on steeper terrain with proper techniques. The wind exposure criterion, while not legally restricted, aims to minimize exposure to prevailing winds. The morphological and wind orientation data for Lemnos were considered, reflecting that areas with less frequent wind exposure are more suitable for landfill construction, with flat areas exposed to all wind directions receiving the lowest grade of 0. The land uses evaluation criterion, while not governed by legal restrictions, that aims to safeguard sensitive areas, such as those undergoing economic development that could be affected by nearby landfills. To evaluate the technical decision criterion, the relative importance weights shown in Table 5 were applied, resulting in the map presented in Figure 6d.



The final step of the proposed methodology involved assessing the land’s suitability for a landfill site. This was accomplished by calculating the Suitability Index (SI) using the multiple criteria analysis (MCA) methods Weighted Average (WA, Figure 11a), Weighted Product (WP, Figure 11b), TOPSIS (Figure 11c) and Compromise Programming (CP, Figure 11d) with equal importance assigned to all decision criteria. This means that each criterion had a relative importance weight of 0.25. The resulting maps are shown in Figure 11, where land suitability increases as the SI increases. Areas with SI values less than 0.4 are generally unsuitable for landfill siting, whereas sites with grades higher than 0.8 are considered the most suitable for landfill siting.



To compare the results of the Suitability Index derived from the application of the different methods shown in Figure 11, a statistical analysis was conducted, calculating the correlation matrix and the variance/covariance matrix for all possible combinations. Table 6 presents the results for correlation, variance, and covariance. The main diagonal elements display the variance of each calculation method’s values. The elements below the main diagonal represent the covariance of values between methods. Finally, the elements above the main diagonal in the table indicate the correlation coefficients between the various calculation methods.



As shown in Table 6, there is a very high correlation among the results produced by the application of the four MCA methods. Regarding the comparison of the WA method with the other methods, it shows a positive correlation with the WP results, a very high positive correlation with the TOPSIS results, and a very high negative correlation with the CP results. The WP method demonstrates a fairly high positive correlation with the TOPSIS method and a substantial negative correlation with CP. Lastly, the TOPSIS method has a very strong negative correlation with CP. Some points to note regarding the results from the statistical comparison of the calculation methods include the lower correlation of the WP method compared to the others and the negative correlation of CP with the other methods. The WP method, due to the multiplicative form of its index, naturally shows variations in values, often resulting in many areas with a zero value. This is expected since, as previously mentioned, this index is particularly useful for nullifying values in areas that have a zero value in at least one of the decision criteria. The negative correlation of CP with the other methods is also expected due to the opposite direction of its scale compared to the other methods. The WA and WP methods calculate the suitability index on a reference scale from 0 to 1, meaning from unsuitable to suitable, respectively. The TOPSIS method also calculates a similarity index on a 0 to 1 scale in a manner similar to the suitability index. However, the metric distance resulting from CP has a scale from 0 to 1, representing suitable to unsuitable, respectively. Therefore, what should be observed from the statistical analysis is a strong, albeit negative, correlation between CP method and the results of the other methods.



To identify suitable areas for landfill siting, the procedure included calculating spatial autocorrelation indices and applying spatial clustering methods, as previously described. It should be noted that this process was performed on all maps resulting from the application of different MCA methods shown in Figure 11 with similar outcomes from the analysis. For simplicity, this study presents only the results from the application of the weighted average method.



Several methods for spatial autocorrelation using the Suitability Index as a spatial random variable were applied. For global autocorrelation, Moran’s I and Geary’s C indices were calculated, yielding values of 0.9831 and 0.0198, respectively, which indicate strong spatial autocorrelation in the suitability map [94]. For local autocorrelation, the Local Indicators of Spatial Association (LISA) Moran’s I (Figure 12a), Geary’s C (Figure 12b), G-Statistics (Figure 12c) and Local Spatial Entropy (Figure 12d) were applied [82,83,84,95], and the results were generated using the spatial weights matrix of the queen’s neighborhood case with a one-pixel neighbor.



The areas that will be considered as the most suitable in the subsequent process of identifying the most suitable regions are those that exhibit strong spatial autocorrelation. Practically, this means that the neighboring areas of a cell have values similar to that of each cell. Therefore, in the results shown in Figure 12, attention should be focused only on those areas that appear in green on the maps.



For spatial clustering, the Iterative Self-Organizing Data Analysis Technique Algorithm (ISODATA, Figure 13a) and Fuzzy C-Means (FCM, Figure 13b) were applied, and we arranged the Suitability Index (SI) values into 10 clusters. Therefore, in the results shown in Figure 13, attention should be focused only the areas associated with the highest SI cluster that appear in green on the maps.



To identify the most suitable areas, two logical rules are applied in conjunction. The first rule specifies that the most suitable areas are those belonging to the cluster with the highest centroid value resulted using the Fuzzy C-Means method. The second rule defines the most suitable areas as those within the top 20% of values in the spatial autocorrelation results derived from the application of the G-Statistics method. This application of logical criteria highlights 158 distinct areas. For landfill installation and infrastructure, a minimum area of 10 hectares is required. After applying this minimum area criterion, 28 distinct areas are identified, as shown in Figure 14. These areas have a suitability index value greater than 0.8 and cover 9.7% of the island’s total area.



In the final stage of the proposed methodology, a sensitivity analysis was performed to evaluate the robustness of the suitability map by adjusting the weighting factors in the WA (Weighted Average) method. This process involved applying four different sets of relative importance weights for the decision criteria, as shown in Table 7, to determine how sensitive the model is to changes in weight values. Each weight set assumes that one decision criterion is assigned double the importance of the others, while the remaining criteria are considered equally significant.



The application of the first set of weights produced the suitability map shown in Figure 11a, which was used as the baseline for comparison. Suitability maps derived from the application of weight sets 2–5 are displayed in Figure 15, providing visual insights into the spatial variations resulting from different weighting schemes. By analyzing these variations, the sensitivity analysis enhances our understanding of how specific criteria influence the spatial suitability outcomes and aids in identifying the most resilient areas under different prioritization scenarios. Additionally, spatial autocorrelation based on G-Statistics and spatial clustering using FCM were calculated for weight sets 2–5, and the results are displayed in Figure A1 and Figure A2, respectively.



To compare the results of the Suitability Index derived from applying the different weight sets, a correlation matrix and a variance/covariance matrix were calculated for all possible combinations. As shown in Table 8, the results indicate a strong correlation between the maps resulting from the different weight sets.



For the sensitivity analysis of this specific process, a matrix of logical rules is created to identify widely suitable areas, as shown in Table 9. It is essential to highlight that values are selected in such a way as to ultimately yield acceptable areas based on the rules governing each of the processing level outcomes. Specifically, for the Moran’s I index, the logical rule applied corresponds to the top 10%, 20%, 25%, and 33% cumulative frequency of the highest values of the index. Regarding the Geary’s C index, the rule used is based on the bottom 10%, 20%, 25%, and 33% cumulative frequency of the lowest values of the index. For the G-Statistics index, the logical rule applied is the top 10%, 20%, 25%, and 33% cumulative frequency of the highest values. As for the Local Spatial Entropy, the rule used corresponds to the bottom 10%, 20%, 25%, and 33% cumulative frequency of the lowest values of the index. For the spatial clustering results derived from the application of the ISODATA and Fuzzy C-Means methods, the logical rule selects the two clusters exhibiting the highest centroid values.



All possible combinations of logical rules are then executed, each time using at least one result of spatial autocorrelation and one result of spatial clustering. This process demonstrated that 85% of the areas shown on Figure 14 appear across all scenarios that were executed. This finding is sufficient to characterize these specific areas as the most suitable locations for a landfill site.



In conclusion, based on the combined analysis using multiple criteria analysis, fuzzy sets, spatial autocorrelation, spatial clustering, and sensitivity analysis, it is evident that the areas proposed in Figure 14 are predominantly located in the island’s northwest, with smaller regions identified in the southwest, and more fragmented regions found in both the southeast and southwest. This study recommends the northwestern areas, where essential infrastructure like the road network is already in place, providing better access to Myrina, the island’s capital and the largest waste producer. In contrast, the other identified regions are significantly more fragmented, isolated, and lack essential infrastructure, making them less suitable for the intended development.




4. Discussion


The objectives set for this study are clear and are considered to have been achieved. Initially, an exploration of existing methodologies was conducted to identify their gaps or shortcomings. The aim of the proposed methodology is to develop methodological and analytical tools that address the deficiencies of existing approaches. The literature review reveals that the subject of siting does not attract significant research interest for the development of contemporary methodological tools, which is potentially because the methodologies currently applied are relatively straightforward.



The proposed methodology provides an effective approach for landfill siting, leveraging the evaluative strengths of multiple criteria analysis (MCA) and the spatial analytical power of Geographic Information Systems (GIS). The Analytic Hierarchy Process (AHP) was utilized to structure the siting problem within a five-level decision hierarchy and to estimate the relative importance of each criterion at each level. A range of MCA methods were applied to calculate the Suitability Index (SI) and address the siting issue; after analysis, we recommended the Weighted Average (WA) method for future use due to its simplicity. GIS was instrumental in spatially defining evaluation criteria and producing the land suitability map. Additionally, GIS facilitated spatial autocorrelation and clustering analyses to identify the most optimal landfill sites.



By comparing the key aspects with corresponding applications found in the literature, the following observations can be made. Regarding the hierarchical structure of multiple criteria problems, the literature typically applies structures of up to three levels, whereas the proposed methodology implements a five-level structure. The Analytic Hierarchy Process (AHP) is usually applied only at the final level of the hierarchical structure, specifically for calculating the suitability index, while in the proposed methodology, it is applied at each hierarchical level. Concerning the use of fuzzy sets for scoring spatial parameters, common parameters derived mainly from legal constraints are typically used for land suitability evaluation. In contrast, the proposed methodology develops spatial tools with specific capabilities for spatial analysis. Additionally, this study presents for the first time in the literature the potential of spatial autocorrelation and spatial clustering processes in addressing land suitability issues. The results highlight the critical importance of these methods in the stage of identifying suitable areas.



The final stage of the proposed methodology involves sensitivity analysis. It is crucial to emphasize that sensitivity analysis should always be performed in any multi-criteria problem to ensure that subjective judgments made at all stages of the process do not significantly affect the final outcome. The literature review reveals that sensitivity analysis is rarely conducted, as few studies have employed it at the final stage of the suitability index. Sensitivity analysis was conducted at three levels. First, it was used in the calculation of the Suitability Index, where the application of four MCA methods yielded nearly identical results. Additionally, the impact of weight coefficients on the Suitability Index calculation was investigated. The results are notable, as the creation of four alternative scenarios, with an average change in weight coefficients by 60%, produced almost identical outcomes. Finally, the sensitivity of the technique used to identify the most suitable areas was examined. The process indicates that 85% of the areas deemed most suitable by the proposed methodology also appear in all five alternative scenarios. This finding supports the classification of the areas in Figure 14 as the most suitable for landfill siting.



The proposed methodology is expected to assist decision-makers in addressing locally unacceptable land uses (LULUs). Future updates to the methodology could include the integration of various multiple criteria methods, such as ELECTRE [96] and PROMETHEE [97], as well as incorporating spatial optimization techniques [98]. The further development of fuzzy sets theory could enhance the spatial determination of criteria. It is important to note that the presented methodology is a tool to aid decision-makers rather than be relied on to calculate and present the correct decision. The final decision on landfill siting remains as much a political decision as a scientific one, being significantly influenced by public opposition.
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Figure A1. Spatial autocorrelation maps based on G-Statistics using (a) weight set 2, (b) weight set 3, (c) weight set 4 and (d) weight set 5. 






Figure A1. Spatial autocorrelation maps based on G-Statistics using (a) weight set 2, (b) weight set 3, (c) weight set 4 and (d) weight set 5.
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Figure A2. Spatial clustering maps based on FCM using (a) weight set 2, (b) weight set 3, (c) weight set 4 and (d) weight set 5. 






Figure A2. Spatial clustering maps based on FCM using (a) weight set 2, (b) weight set 3, (c) weight set 4 and (d) weight set 5.
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Figure 1. The island of Lemnos. 
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Figure 2. Methodology workflow. 
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Figure 3. Hierarchical structure of the decision problem. 
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Figure 4. Fuzzy membership functions: (a) linear increasing (LI), (b) linear decreasing (LD), (c) trapezoidal increasing (TI), and (d) trapezoidal decreasing (TD). 
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Figure 5. Hydrological decision criterion hierarchical structure. 
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Figure 6. Decision criteria maps: (a) Hydrological, (b) Environmental, (c) Social and (d) Technical. 






Figure 6. Decision criteria maps: (a) Hydrological, (b) Environmental, (c) Social and (d) Technical.



[image: J 07 00031 g006]







[image: J 07 00031 g007] 





Figure 7. Environmental decision criterion hierarchical structure. 
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Figure 8. Social decision criterion hierarchical structure. 
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Figure 9. Technical decision criterion hierarchical structure. 
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Figure 10. Workflow for the calculation of road network’s centrality. 
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Figure 11. Suitability maps based on MCA methods (a) WA, (b) WP, (c) TOPSIS and (d) CP. 
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Figure 12. Local indicators of spatial association maps (a) Moran’s I, (b) Geary’s C, (c) G-Statistics and (d) Local Spatial Entropy. 
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Figure 13. Spatial clustering maps: (a) ISODATA and (b) FCM. 






Figure 13. Spatial clustering maps: (a) ISODATA and (b) FCM.



[image: J 07 00031 g013]







[image: J 07 00031 g014] 





Figure 14. The island of Lemnos. 
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Figure 15. Suitability maps based on WA using (a) weight set 2, (b) weight set 3, (c) weight set 4 and (d) weight set 5. 
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Table 1. Scale of relative importance in the Analytic Hierarchy Process.
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	Intensity Importance
	Definition
	Explanation





	1
	Equal importance
	Two activities contribute equally to the objective



	3
	Weak importance of one over another
	Experience and judgment slightly favor one activity over another



	5
	Essential or strong importance
	Experience and judgment strongly favor one activity over another



	7
	Demonstrated importance
	An activity is strongly favored and its dominance demonstrated in practice



	9
	Absolute importance
	The evidence favoring one activity over another is of the highest possible order of affirmation



	2, 4, 6, 8
	Intermediate values between the two adjacent judgments
	When compromise is needed



	Reciprocals

of above
	If comparison of criteria i and j (aij) has one of the above numbers assigned, then the aji has the reciprocal value
	-










 





Table 2. PCM and relative importance weights of hydrology evaluation criteria.






Table 2. PCM and relative importance weights of hydrology evaluation criteria.





	Criterion
	H1
	H2
	H3
	H4
	Weight





	H1
	1
	1
	2
	7
	0.3735



	H2
	1
	1
	2
	7
	0.3735



	H3
	1/2
	1/2
	1
	5
	0.2042



	H4
	1/7
	1/7
	1/5
	1
	0.0488










 





Table 3. PCM and relative importance weights of environmental evaluation criteria.
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	Criterion
	E1
	E2
	E3
	Weight





	E1
	1
	4
	9
	0.7085



	E2
	1/4
	1
	5
	0.2311



	E3
	1/9
	1/5
	1
	0.0603










 





Table 4. PCM and relative importance weights of social evaluation criteria.
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	Criterion
	S1
	S2
	S3
	Weight





	S1
	1
	3
	7
	0.6491



	S2
	1/3
	1
	5
	0.2790



	S3
	1/7
	1/5
	1
	0.0719










 





Table 5. PCM and relative importance weights of technical evaluation criteria.
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	Criterion
	T1
	T2
	T3
	T4
	Weight





	T1
	1
	5
	7
	5
	0.6323



	T2
	1/5
	1
	3
	1
	0.1530



	T3
	1/7
	1/3
	1
	1/3
	0.0617



	T4
	1/5
	1
	3
	1
	0.1530










 





Table 6. Correlation, variance, and covariance matrix of the different MCA methods.
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	Method
	WA
	WP
	TOPSIS
	CP





	WA
	0.01338
	0.83600
	0.96145
	−0.95544



	WP
	0.02751
	0.08095
	0.87683
	−0.86754



	TOPSIS
	0.01391
	0.03121
	0.01565
	−0.93437



	CP
	−0.00632
	−0.01412
	−0.00669
	0.00327










 





Table 7. Relative importance weights of the decision criteria.






Table 7. Relative importance weights of the decision criteria.













	
	Weight Set 1
	Weight Set 2
	Weight Set 3
	Weight Set 4
	Weight Set 5





	Hydrological
	0.25
	0.4
	0.2
	0.2
	0.2



	Environmental
	0.25
	0.2
	0.4
	0.2
	0.2



	Social
	0.25
	0.2
	0.2
	0.4
	0.2



	Technical
	0.25
	0.2
	0.2
	0.2
	0.4










 





Table 8. Correlation, variance, and covariance matrix of the different weight sets using WA method.
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	Weight Set 1
	Weight Set 2
	Weight Set 3
	Weight Set 4
	Weight Set 5





	Weight Set 1
	0.01338
	0.97750
	0.95879
	0.95879
	0.97785



	Weight Set 2
	0.01347
	0.01420
	0.91568
	0.93165
	0.95055



	Weight Set 3
	0.01264
	0.01243
	0.01298
	0.88209
	0.94435



	Weight Set 4
	0.01733
	0.01717
	0.01554
	0.02392
	0.92119



	Weight Set 5
	0.01007
	0.01009
	0.00958
	0.01269
	0.00793










 





Table 9. Logical rules matrix.
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	Moran’s I
	Geary’s C
	G-Statistics
	Spatial Entropy
	ISODATA
	Fuzzy C-Means





	Rule 1
	-
	-
	-
	-
	-
	-



	Rule 2
	Most {10%}
	Less {10%}
	Most {10%}
	Most {10%}
	Cluster 1
	Cluster 1



	Rule 3
	Most {20%}
	Less {20%}
	Most {20%}
	Most {20%}
	Clusters 1 and 2
	Clusters 1 and 2



	Rule 4
	Most {25%}
	Less {25%}
	Most {25%}
	Most {25%}
	-
	-



	Rule 5
	Most {33%}
	Less {33%}
	Most {33%}
	Most {33%}
	-
	-
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