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Abstract: This study explored a novel method using fructose-derived carbon dots (FCDs) for anti-
tumor therapy in breast cancer (BC), marking a pioneering use of fructose as a carbon source for
nanoparticle synthesis. BC, known for its complexity and heterogeneity, was chosen as a model due
to its increasing mortality and incidence rates. The FCD synthesis involved the decomposition of fruc-
tose through microwave irradiation, followed by purification and characterization using techniques
such as transmission electron microscopy, dynamic light scattering, fluorescence spectrophotometry,
and Fourier-transform infrared spectroscopy. The FCDs, ranging in size from 2 to 6 nm, presented
a hydrodynamic diameter below 2 nm, a spherical morphology, and a crystalline structure. As
expected, FCDs were composed by carbon, oxygen, and hydrogen, and exhibited fluorescence with
absorption and emission spectra at 405 nm and around 520 nm, respectively. Cell-based assays on
breast epithelial and tumor cell lines demonstrated a dose-dependent response, with a decreased
viability rate more pronounced in breast tumor cells. In conclusion, FCDs showed significant potential
as selective antitumor agents for breast cancer therapy. The comprehensive characterization and
cell-based assay evaluations provided valuable insights into the applications of these nanoparticles
in breast cancer treatment, highlighting their selective toxicity and impact on tumor cells.

Keywords: carbon dots; breast cancer; fructose; fructose-derived carbon dots; nanotechnology

1. Introduction

Carbon nanomaterials, including carbon nanotubes, carbon quantum dots (CQDs) and
carbon nanoparticles, refer to nanoscale carbon-based materials. Fructose-derived carbon
dots (FCDs) are classified as carbon-based nanomaterials due to their derivation from the
carbohydrate precursor fructose [1]. Their characteristics include photoluminescence, good
biocompatibility, and a wide range of chemical and physical properties which have been
explored in drug delivery systems, bioimaging, biosensing, as well as microbial, photother-
mal, and photodynamic therapy [2]. Carbon dots have been the focus of academic research
in recent decades, with promising results, namely in cancer diagnosis and treatment.

In cancer therapy, the effectiveness of Photodynamic Therapy (PDT) and Photothermal
Therapy (PTT) can be significantly enhanced with CQDs, owing to their exceptional pho-
toluminescence properties. While PDT uses photosensitizers to generate reactive oxygen
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species, causing oxidative damage to cancer cells, PTT employs photothermal agents to
convert light energy into heat, leading to localized tumor destruction [3]. Markovic and
colleagues were the first to demonstrate the photodynamic cytotoxic effects of CDs on
cancer cells [4]. Since then, there has been increasing interest, leading to a vast body of
literature regarding research in CQD-associated phototherapies. Regarding PTT, a system
that utilizes lecithin-derived self-assembled carbon dots has been described. These types of
CQDs exhibit remarkable photothermal efficiency, red-shifted fluorescence, and enhanced
phototoxicity against cancer cells when combined with near-infrared light exposure [5].
Another interesting study improved PDT efficacy with a CQD agent and a high singlet
oxygen generation [4].

Also, CQDs are noted for their ability to stabilize, solubilize, encapsulate, and enhance
targeted cancer chemotherapy. Their excellent solubility and biocompatibility enable the
stabilization and solubilization of many hydrophobic chemotherapeutic agents, thereby
improving their efficacy [3]. Additionally, surface modifications of CQDs allow a more
precise targeting therapy to specific tumor cells. An interesting review by Bhattacharya
and colleagues described and summarized diverse carbon sources, synthesis methods,
nanodrug conjugations and complexation techniques in which CQDs resulted in promising
outcomes in numerous types of cancer [6].

Our study focused on breast cancer (BC) due to our group’s expertise and because BC
is one of the most prevalent cancers, particularly among women [7]. BC is a complex and
heterogeneous disease, with several clinical and pathological characterizations being the
receptor status the most decisive on the patient therapeutic strategy. BC can be molecularly
classified according to the status of the estrogen receptor (ER), progesterone receptor (PR)
and human epidermal growth factor receptor 2 (HER2) [8] into luminal A (ER+, PR+,
HER2−, Ki67+) and B (ER+, PR+, HER2+/HER2−, Ki67+), HER2-enriched (ER+, PR+,
HER2+) and triple-negative (ER−, PR−, HER2−) [9]. Receptor status helps direct treatment
decisions, enabling the implementation of more precise and effective therapies tailored to
the specific tumor characteristics. The introduction of CQDs in the diagnosis and treatment
of BC represents a promising approach that has the potential to restructure how this
devastating disease is addressed, encompassing prevention, early detection, and effective
treatment [10,11].

Our study aimed to develop, synthetize and characterized novel FCDs and evaluate
their therapeutic potential in breast cancer. This comprehensive characterization and
assessment in cell-based assays will allow for valuable insights into the potential therapeutic
application of these carbon nanomaterials in breast cancer treatment.

2. Materials and Methods
2.1. FCD Synthesis

FCDs were synthetized using a previously described protocol [12] with minor alter-
ations. In summary, 11 g of D-fructose (Panreac, Chicago, IL, USA) was added to 16 mL
of deionized water and 55 mL of polyethylene glycol 200 (DEG) (Scharlau, Barcelona,
Spain). From the final homogenized solution, 13 mL was allowed to react in a conventional
microwave (Becken, Matosinhos, Portugal) at med–high temperature (700 W) for 5 min.

2.2. FCD Purification

Dialysis was performed using a dialysis membrane (Spectra/Per Dialysis membrane
Biotech Ce Tubing MWCO: 100–500 Da) (Repligen, Waltham, MA, USA) against deionized
water for 24 h to remove the organic solvent. Dialyzed FCDs were centrifuged at 21,000× g
for 2 h. Afterwards, the supernatant was harnessed and filtered through a filter membrane
of 0.22 µm to remove larger particles. The obtained solution was filtered on a 3 kDa MWCO
centrifugal filter (Vivaspin, Littleton, MA, USA) to obtain homogeneous particles smaller
than 3 kDa. The sample was frozen at −80 ◦C for 24 h. It was then placed in the freeze-
dryer for 3 days at −86 ◦C and 200 mTorr. A caramel-like compound was obtained, easily
handled in characterization techniques and cellular assays.
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2.3. FCD Characterization

Fluorescence was measured by a fluorometer equipped with a detector USB 2000
Ocean Optics, an optic fiber connected to a cube tip QP600-2-VIS-BX-Ocean Optics (Cuv
Sample Holder of 4 pathways) (Hitachi, Abingdon, United Kingdom) and an excitation
LED of 405 nm. The absorbance measurement was performed in the spectrophotometer
(Nanocolor-Advance, Macherey-Nagel, Dueren, Germany) using a wavelength between
360 nm and 800 nm. Hydrodynamic diameter and zeta potential were performed using
a Malvern Zetasizer Nano ZS (Malvern panalytical, Malvern, UK). Measurements were
performed in triplicate at 25 ◦C, with light detection at 273◦ and electrophoretic light
scattering at 17◦. Morphology, size, and structure were determined by transmission electron
microscopy (TEM) Jeol JEM-2100-HT, 200 kV (Jeol, Freising, Germany). Fourier-transform
infrared spectroscopy (FTIR) was used to characterize surface functional groups. Infrared
spectrum was obtained by Nicolet 6700 FT-IR Spectrometer (Thermo Electron Corporation,
Waltham, MA, USA). A parallel technique using two circular NaCl windows was executed,
given the caramel consistency of the sample.

2.4. Cellular Culture

Human mammary, non-tumorigenic epithelial cell line MCF-10A (American Type
Culture Collection, Manassas, VA, USA) was cultured in Dulbecco’s Modified Eagle
Medium (DMEM)/Ham’s F-12 (GIBCO-Invitrogen, Carlsbad, CA, USA) supplemented
with 100 ng/mL cholera toxin, 20 ng/mL epidermal growth factor (EGF), 0.01 mg/mL
insulin, 500 ng/mL hydrocortisone, and 10% horse serum. All growth factors were pur-
chased from Sigma (St. Louis, MO, USA) [13]. The cells were used between passages 25
to 36.

Human breast carcinoma cell line BT474 was cultured in DMEM (Sigma–Aldrich,
St. Louis, MO, USA), supplemented with 20% Fetal Bovine Serum (FBS, Invitrogen Life
technologies, Carlsbad, CA, USA), 1% penicillin/streptomycin (Invitrogen Life technolo-
gies, Carlsbad, CA, USA) and 3.7 g/L sodium bicarbonate (Sigma-Aldrich, St. Louis, MO,
USA) and maintained at 37 ◦C in a humidified atmosphere containing 5% CO2. The cells
were used between passages 13 to 38. BT474 is an epithelial-like cell line characterized
by expressing both hormonal and HER2 receptors [14]. Being triple positive, they can be
particularly useful in research focusing on therapeutic strategies such as the use of CQDs
as drug delivery systems.

Treatments were performed using respective mediums, without supplementation, with
different concentrations of FCDs. No treatment was applied in the control condition. All
samples were assayed in triplicates of three replicates. The mean value for each experiment
was calculated. The results were given as mean ± standard deviation and are expressed as
a percentage of the control, which was considered to be 100%.

2.5. Cellular Viability (MTT Assay)

MCF-10A and BT474 (1 × 105 cells/mL) were seeded in a 96-well plate and allowed to
grow for 24 h. Afterwards, treatments were administered for 24 h in a serum-free medium
according to previous studies in carbon dots and breast cancer cell lines [15]. A FCD
concentration range of 1 to 10 mg/mL was used to assess the impact of FCD in cell behavior.
The concentration range was selected based on previous studies involving the application
of CQDs in breast cancer cell lines [16,17].

Cells were then subjected to MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetra-
zolium bromide] (Abcam, Cambridge, UK) at a final concentration of 0.5 mg/mL for 3 h
and then lysed in DMSO (Merck, Darmstadt, Germany). The MTT assay is a colorimetric
method used to evaluate cell metabolic activity. It relies on NAD(P)H-dependent cellular
oxidoreductase enzymes, which reduce the tetrazolium salts in the MTT compound to a
colored product, formazan (purple), thereby indicating cellular viability using spectropho-
tometry. Optical density was measured at 550/560 nm in a UV–VIS spectrophotometer
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(MultiSkan Ascent, Thermo Fisher, Waltham, MA, USA). The background absorbance
was subtracted.

2.6. Statistical Analysis

Results were expressed in mean ± SD (Standard Deviation). Data were analyzed by
one-way analysis of variance (ANOVA) using GraphPad Prism 8, and a p-value < 0.05 was
considered statistically significant.

3. Results
3.1. FCD Synthesis Process

FCDs were examined for their optical attributes through UV-vis absorption and flu-
orescence emission spectrum assessments. As illustrated in Figure 1A,B, FCDs exhibited
abundant absorption in the near-UV region and an emission spectrum with a broad band at
approximately 520 nm when irradiated at 405 nm. The characteristic decline in absorption
from the ultraviolet to the visible range was evident, aligning with the typical behavior of
carbon dots. Following the dialysis process, a reduction in fluorescence was noted, provid-
ing confirmation of the successful removal of DEG from the FCD mixture, as depicted in
Figure 1C–F. Following, FCD underwent further purification steps, involving centrifugation
and filtration through a 0.22 µm filter to exclude larger particles. Subsequently, a 3 kDa
molecular filter was utilized, resulting in particles smaller than 3 kDa with a consistent
size distribution, as shown in Figure 1G. All fluorescence spectra were initiated through
excitation at 405 nm.
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Figure 1. Optical properties of FCDs according to the absorption and emission spectra and purifi-
cation processes. (A) Spectral depiction of FCDs in terms of absorbance. (B) Spectral depiction of
FCDs in terms of fluorescence (B). (C,D) Absorbance and fluorescence profiles post-dialysis; (E,F) ab-
sorbance and fluorescence profiles of DEG dilution in deionized water; (G) schematic delineation
of FCD purification phases. Phases/result substances: dialysis (CD_D); centrifugation (CD_DC);
0.22 µm filtration (CD_DCF) and associated pellet (CD_DCF-P); and 3 kDa filtration (CD_DCF3) and
associated pellet (CD_DCF3-P).

3.2. FCD Characterization

Characterization techniques included dynamic light scattering (DLS), Fourier-transform
infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). DLS is able to
provide valuable information about size distribution and aggregation state, alongside TEM,
which, beyond size distribution and aggregation state, can also provide information about
morphology, size, structure and dispersion.

In DLS, FCDs exhibited a hydrodynamic diameter below 2 nm (Figure 2A) and a zeta
potential within the range of −20 to 18 mV (Figure 2B). FTIR displays the vibrational energy
of covalent bonds. Each covalent bond absorbs radiation at distinct wavelengths, and so
each peak in the spectrum corresponds to a functional group [18]. Figure 2C presents the
transmittance spectrum of FTIR. The peak observed at 3550–3200 cm−1 is the result of O-H
bonds, and further ahead in the spectrum we found more O-H bonds (3200–2700 cm−1;
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1390–1310 cm−1; 920 cm−1). A double covalent bound between carbons (C=C) is translated
into the absorption peak at 1658–1648 cm−1 and at 840–790 cm−1. Bending vibrations
from C-H bonds are observed at the absorption peak at 1450 cm−1. Vibrations from C-O
bonds were observed at 1275–1200 cm−1 and at 1085–1050 cm−1. Despite the low definition
of the spectrum, it is possible to induce that the FCD is a multiple hydroxyl–carbonyl
compound, given the repetition of O-H groups and the presence of C=O. According to
the results obtained from TEM, synthetized FCDs have a spherical morphology with a
size ranging from 2 to 6 nm, with an average size of 3.1 ± 1.8 nm, illustrated in Figure 2D.
Moreover, the FCD presents a crystal structure, as portrayed in Figure 2E. Despite the low
zeta potential presented by FCDs, they are dispersed in an aqueous medium (Figure 2D),
probably by the remaining DEG molecules, which is an unpolymerized monomer, from the
reaction medium that could have been coupled to the surface layer of the nanoparticles.
The expected size of these FCDs will be around 0.5, dialysis membrane tubing MWCO
100–500, and 3 kDa for the liquid filtered by centrifugation on a 3 kDa mesh.
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3.3. FCD Impact in Cellular Behavior

In order to establish the dose–response curve in both epithelial and tumor cell lines,
we assessed the impact of FCDs on cell viability with FCD concentrations ranging from
1 mg/mL to 10 mg/mL (Figure 3). Results showed that higher FCD concentrations exhib-
ited lower viability rates, with a more pronounced effect on the tumor cells.
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4. Discussion

Carbon dots have gained increasing attention in biomedicine due to their unique
characteristics, which include their nanoscale size, fluorescence, low cytotoxicity, and a
high integration rate into biological systems. In this study, we generated carbon dots
using fructose as a novel and pioneer carbon source and investigated its potential in onco-
therapeutics for breast cancer. Fructose is a glucose isomer, and its different structure results
in distinct properties like high solubility and different metabolization. Previous studies
found that dietary fructose intake is associated with cancer development [19], namely in
breast cancer [20,21]. The study performed by Fan and colleagues observed that fructose
intake was associated with increased proliferation rates in tumor cell lines, and on the
other hand, fructose did not support proliferation in non-tumor cells [20]. The authors
hypothesized that, since epithelial cells do not consume fructose, fructose can be specifically
and selectively used as an onco-therapeutic agent.

In our study, fructose was used as a carbon source to obtain FCDs using a bottom-up
method through microwave irradiation as a synthesis technique. We considered that FCDs
were successfully achieved through a combination of purification methods, which included
dialysis, centrifugation, filtration and lyophilization. The carbon structures were further
confirmed by TEM, DLS and FTIR. TEM showcased round CDs with crystalline structures
and sizes between 2 and 6 nm. DLS indicated a hydrodynamic diameter under 2 nm and
a zeta potential between −20 and 18 mV. Finally, FTIR identified functional groups (O-H,
C=C, C-H, C-O, C=O), characteristic of sugar-derived CDs.

Nanomedicines have demonstrated several benefits in comparison to free compounds.
It was already described that nanomedicines exhibit longer blood residence time and
improved drug distribution, leading to enhanced therapeutic efficacy [22]. Moreover,
features like size and shape can be engineered to improve biodistribution [23], body
clearance [24], and cellular uptake [25].

We used a cell-based approach to evaluate the effect of the FCDs in normal epithelial
(MCF-10A) and breast tumor (BT474) cell lines and observed that FCDs exhibited higher
toxicity in tumor cells. Since CDs typically exhibit antioxidant mechanisms, we evaluated
the oxidative stress status but observed no significant results. We hypothesize that our
findings may be linked to the specific fructose receptor GLUT5, which is overexpressed
in tumor cells [26–28] and could enhance FCD uptake by recognizing fructose on its
surface [26]. This leads to selective internalization of FCD through receptor-mediated
endocytosis [29]. Additionally, tumor microenvironment characteristics such as vascular
permeability and extracellular matrix alterations may further promote FCD accumulation
in tumor tissues [30].

We acknowledge the study’s limitations, particularly the high concentration of the
compound used in the cell-based assays. This high concentration could be attributed to



J 2024, 7 590

the low number of FCDs present in the caramel-like compound after purification. Further
research is necessary to better understand the impact of FCDs on normal tissues and to
identify the specific pathways affected by FCDs. Additionally, exploring the functional-
ization of FCDs with chemotherapeutics is an intriguing prospect, as it could potentially
reduce the adverse side effects of chemotherapy [31].

In conclusion, our study explored the potential of fructose-derived CDs as onco-
therapeutics for breast cancer, their characterization and cellular impact. Our study lays
the groundwork for future investigations, including the potential functionalization of
FCDs with clinically relevant drugs and their evaluation as antitumor agents. Further
research in this emerging field promises to advance our understanding of nanoparticle–cell
interactions, paving the way for innovative cancer treatment approaches.
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