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Abstract: Understanding the relationship between muscle activation and deformation
is essential for analyzing arm movement dynamics in both daily activities and clinical
settings. Accurate characterization of this relationship impacts rehabilitation strategies,
prosthetic development, and athletic training by providing deeper insights into muscle
functions. However, direct analysis of raw neuromuscular and biomechanical signals
remains limited due to their complex interplay. Traditional research implicitly applied
this relationship without exploring the intricacies of the muscle behavior. In contrast,
in this study, we explored the relationship between neuromuscular and biomechanical
signals via a motion classification task based on a proposed deep learning approach,
which was designed to classify arm motions separately using muscle activation patterns
from surface electromyography (sEMG) and muscle thickness deformation measured by
A-mode ultrasound. The classification results were directly compared through the chi-
square analysis. In our experiment, six participants performed a specified arm lifting
motion, creating a general motion dataset for the study. Our findings investigated the
correlation between muscle activation and deformation patterns, offering special insights
into muscle contraction dynamics, and potentially enhancing applications in rehabilitation
and prosthetics in the future.

Keywords: arm movements; sEMG; A-mode ultrasound; muscle contraction dynamics;
muscle activation; muscle deformation

1. Introduction
In daily activities, we use our arms to complete various motor tasks. When arms are

raised to act, arm muscles thus activate, generating motor unit action potentials (MUAPs)
that are typically associated with certain levels of muscle deformation [1–3]. This muscle
contraction dynamics involves a correlation between muscle deformation and activation,
which is essential for various daily activities. For example, patients with fasciculohumeral
dystrophy (FSHD) exhibit reduced muscle strength and altered contraction dynamics [4].
Detecting changes in the muscle activation–deformation pattern can enable early diagnosis
and timely treatment.

Similarly, recognizing muscle contraction dynamics (the correlation between muscle
activation and deformation) is critical in robotic prosthesis control, as it helps optimize the
system for more intuitive and natural user interactions [5,6]. In athletic training, monitoring
the correlation between muscle characteristics enables the optimization of movements and
postures [7], thereby improving performance and reducing injury risk. Furthermore,
therapeutic protocols can benefit from balanced muscle activation and deformation, which
helps prevent muscle under-stimulation or overexertion [8].
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To deepen the understanding of this relationship between muscle activation (induced
by neuroelectrical signals) and the associated muscle deformation (representing the biome-
chanical signal), and also gain insight into the dynamics of the interaction, researchers
have used torque, force, or motion classification as prediction targets from muscle acti-
vation or deformation signals and then applied these predictions to address real-world
challenges. For example, the differences in muscle contraction onset detected by ultrasound
and electromyography could be used to assess neuromuscular control and joint stability [9].
Ref. [10] compared the efficacy of gesture classification and muscle contraction force esti-
mation from ultrasound and sEMG independently, and later combined the two modalities
for enhanced task performance [11]. Similarly, Ref. [12] evaluated the performance of
analyzing muscle fatigue from muscle activation and deformation, while [13] examined the
identification of muscle fasciculation. Although these studies worked on the application of
the relationship between muscle deformation and activation, there was limited research
directly exploring this relationship using only raw neuromuscular signals and original
muscle deformation data to provide more compelling evidence.

Therefore, an alternative approach to exploring this relationship is directly investigat-
ing the correlation between muscle activation and deformation. Signals generated by mus-
cle activation (in the form of MUAPs) can be captured directly through sEMG devices [14].
In contrast, muscle deformation, as a mechanical parameter, is normally measured by
the ultrasound device [15,16]. Among various ultrasound techniques, Amplitude mode
(A-mode) has demonstrated good accuracies for biometric depth measurement [17,18].
To investigate the relationship between signals measured by the two devices (sEMG and
ultrasound) is important, as these signals are the intact biological signals generated by
the human body. This relationship may provide an important basis for the exploration of
muscle contraction dynamics at a higher level.

In summary, this study aimed to compare the classification results of the motion
types separately from sEMG signals (muscle activation patterns) and ultrasound signals
(muscle thickness deformation), which is beneficial to understanding the correlations
between two muscle features. This comparison is critical because many studies rely on this
relationship for various functional muscle applications, such as assessing muscle fatigue,
performing functional muscle analysis, or diagnosing muscle diseases (such as FSHD [4]).
By establishing this comparison, this work could be beneficial in establishing qualitative or
even quantitative correlations to relate muscle deformation and activation in the future.

2. Materials and Methods
In this section, the devices used and the designed experiments are described for

collecting the required datasets. After that, the details and rationale of the proposed
attention UNets are illustrated, together with the evaluation methods, which analyze the
correlations between muscle activation and deformation.

2.1. Overview of the Study

The overview of this study is illustrated in Figure 1. To collect the muscle activity
dataset, six healthy participants were invited to perform specific movements. Each par-
ticipant wore an sEMG device and an A-mode ultrasound transducer on their arm while
performing the specified arm movement. A stereo camera was positioned in front of the
participants to record the trajectory of the moving arm. During the experiment, a repeatable
continuous movement of lowering and lifting the arm was recorded.
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Figure 1. The overview of this study for exploring the relationship between muscle activation
and deformation. Several participants were invited to join the arm movement experiment and the
recorded sEMG and A-mode ultrasound signals were collected. The joint angles were also recorded
via an additional stereo camera (not displayed here). The arm motions were divided into two phases
(lifting and putting down the arm), and the models were trained to classify motion phases from the
separate recorded signals. The correlation between the two classifications was analyzed.

After the experiment, the synchronized sEMG and ultrasound signals were pre-
processed and fed into two separate networks to segment the motion phases. The motion
phases were labeled on the basis of changes in joint angles corresponding to the lifting or
lowering of the arm. The models were trained to learn the correlations between muscle
features and the phases of joint angle changes. Initially, a dataset from five participants was
used to train the model to capture general muscle-motion phase mappings. Subsequently,
the model was fine-tuned using a small portion (20%) of the data from the sixth participant
to adjust for individual muscle characteristics. Finally, the learned mappings were evalu-
ated using the remaining 80% of data from the same participant. This approach ensured
that the network learned the muscle characteristics (activation or deformation) rather than
overfitting the data of a specific participant.

During evaluation, in addition to analyzing the classification accuracy, the classifica-
tions derived from the two signals were statistically compared to assess their correlation.
This analysis validated whether the muscle activation and deformation patterns were
significantly correlated.

2.2. Human-Related Experiments
2.2.1. Participant Recruitment Strategy

In this experiment, six participants were recruited to produce sEMG and ultrasound
datasets. The participants were mainly graduate students (aged 20–30) from our Robotics
and Mechatronics research group. The recruitment process was totally random and based
on personal willingness. However, participants could not have a history of arm injuries or
discomfort. Also, due to the limitations of measurement devices, overweight or strong per-
sons had been excluded due to the potential over-thick or fatty arms which were difficult for
the measurement. The collected datasets were used to validate if the correlations between
two types of neuromuscular features indeed existed. This human-related experiment was
approved by the Ethics Committee of Information & Computer Science at the University
of Twente (Application No. 240688). Each participant was informed of the experimental
details from the informed consent form before the experiments.
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2.2.2. EMG Preparation and Setup

The sEMG device used in this study is shown in Figure 2. It consisted of a custom-
designed, 3D-printed system with eight channels of dry electrodes and a custom-developed
amplifier [19]. Among the eight channels, three electrodes were attached to the biceps
brachii and another three to the triceps brachii. These six electrodes, each with a diameter
of 20 mm, were fabricated from PI-ETPU 85-700+ (Palmiga Innovations, Jonstorp, Sweden)
and connected to the amplifier via CI-1036 stretchable silver-ink (Engineered Conductive
Material, Delaware, OH, USA). Each set of three electrodes was arranged in a triangular
configuration and integrated into a stretchable fabric band 3D-printed with X60 Ultra-
Flexible Filament. The remaining two electrodes served as references for average and
ground-level voltage measurements. Signal amplification was achieved using an ADS1298
analog front-end IC from Texas Instruments, with common-mode and differential input
impedances of approximately 1.5 GΩ and 0.5 GΩ at 50 Hz. Raw signals were recorded
without filtering to preserve subtle features that might correlate with motion cycles or
muscle deformation.

Figure 2. Three devices used in this study and their typical signals. The sEMG recorded muscle
activation patterns. The A-mode ultrasound recorded the bone movements, which later were trans-
formed to muscle deformation. The stereo camera recorded the RGBD images first (the image had
been blurred and processed for privacy issues), then recognized the 3D joint movements through an
algorithm, and calculated the joint angle from the joint positions in the end.

To ensure proper attachment and signal quality, participants rested in a cool environ-
ment for 5 min before electrode placement to allow any sweat on the skin to evaporate,
ensuring a dry surface. The skin areas where the electrodes were placed were then thor-
oughly cleaned to remove dirt and oil, ensuring optimal signal quality. Cleaning was
performed using alcohol wipes, which effectively removed the oils and debris. The mus-
cle bellies of the biceps brachii and triceps brachii on the right upper arm were visually
identified based on the participants’ arm movements. Three electrodes were carefully
placed on the belly of the biceps brachii and another three on the belly of the triceps brachii,
with the amplifier box oriented toward the wireless receiver to optimize signal transmission.
A stretchable fabric band was used to firmly secure the electrodes. Before the experiment,
participants were asked to wave their arms repeatedly while monitoring the sEMG signals
to confirm consistent patterns and ensure reliable signal acquisition.

2.2.3. Ultrasound Preparation and Setup

The A-mode ultrasound device was the OPBOX version 2.1 (OPTEL Ultrasonic Tech-
nology, Wrocław, Poland). The device was set to 100 MHz sampling frequency, 4 to 25 MHz
bandwidth analog filters, +30 dB constant gain, and +24 dB pre-amplifier to increase the
peak visibility of raw signals. The x-axis (distance) of ultrasound signals had been shifted a
personalized amount of time to only focus on the area where the bone peaks most likely
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appeared. This was determined in the following way: For each participant, the recorded
A-mode ultrasound signals were compared with the B-mode ultrasound images to find
the approximate range of muscle contraction, i.e., where the bone peak mostly existed (see
Figure 3, demonstrated by examples of two participants). As most tissues between the bone
and the skin were skeletal muscles [20], we treated this distance as the approximated mus-
cle thickness. The technique using ultrasound to track the bone positions and movement
followed [16,21–24].

Figure 3. The preparation of each participant’s experiment. Six different participants (A–F) were
invited to wear the sEMG device and A-mode ultrasound. The positions of the devices were first
put on the approximate positions, then were adjusted to check the clear pattern locations. The right
figure demonstrates how we validated the bone peak positions in A-mode signals, using the example
from Participant B and Participant C.

2.2.4. Stereo Camera Preparation and Joint Movement Recording

The stereo camera was a LiDAR camera (L515 product from Realsense series, Intel,
Mountain View, CA, USA). It specifically uses time-of-flight (ToF) technology to calculate
the 3D space distance, which inherently avoids the need for geometric calibration typically
required in the systems with two monocular cameras. As the L515 generated both point
clouds and RGB images simultaneously using ToF, additional camera calibration was
not performed.

To track the arm movement positions from a camera, we first obtained the RGB videos
from the camera, then recognized the joint positions through the OpenPose algorithm ([25]).
This is demonstrated in the right side of Figure 2. The OpenPose algorithm has been used
in many previous studies for identifying 3D joint movements [26–28]. As the RGB images
corresponded to the depth images for each pixel, we directly extracted 3D coordinates
from the depth images. The changes in these coordinates were used as the 3D positions
of the arm movements. After knowing the 3D positions of arms, joint angles could be
further calculated through the cosine theory in the 3D space [29–31]. This was achieved via
Equation (1):

cos θ =
v1 · v2

∥v1∥∥v2∥
(1)

while the limb vectors v1 and v2 were calculated as follows. The pshoulder, pelbow, and pwrist

represent the 3D positions of shoulder, elbow, and wrist of the participant.

v1 = pelbow − pshoulder

v2 = pwrist − pelbow
(2)
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2.2.5. Summary of Devices Setup and Movement Description

Before the arm movement experiment started, the participants wore the sEMG device
on the right upper arm and attached an A-mode ultrasound transducer around the right
elbow. The placement of the A-mode ultrasound and sEMG devices is illustrated in Figure 3.
At these positions, A-mode ultrasound provided clear bone peaks in the recorded signals,
which had been confirmed using the B-mode ultrasound. These bone peak movements were
interpreted as indicators of muscle mechanical deformation. The sEMG device placement
enabled precise recording of bicep and tricep muscle activation. Additionally, with the
Octopus device oriented towards the laptop, Bluetooth communication was stable, ensuring
uninterrupted signal transmission. During the experiments, participants did not report any
discomfort or issues related to wearing the ultrasound or sEMG devices.

In the front of participants, the stereo camera was put on a high platform to track the
movements. The participants stood at a place where the stereo camera could capture the
whole upper body via video streams, which made it easy for OpenPose to recognize the
movement of the right arm. The whole setup is on the left side of Figure 4. During the
experiment, the participants performed the defined motion cycle illustrated on the right
side of Figure 4. The participants lifted their right arm from the downside to above the
shoulder, then bent the elbow so that the fist could towards the head (motion phase 1).
After that, the participants returned the arms gradually to their original positions (motion
phase 2). The full motion cycle (phases 1 and 2) lasted for around six to nine seconds. This
time varied both between different participants and between different motion cycles of the
same participant. The whole recording lasted for five minutes. This motion of raising the
arm focused on shoulder and elbow movements that are commonly seen in daily tasks (e.g.,
lifting, reaching, or manipulating objects overhead). It involves abduction/adduction of
the glenohumeral joint and flexion/extension of the elbow. Thus, it can partially represent
the arm movements in daily activities.

Figure 4. The experiment’s setup and the specified movement of participants. In the left figure, the rel-
ative positions between the three devices are demonstrated, together with the participant’s position.
In the right figure, the participant’s specified movement and the motion phases are demonstrated.

Noticed that since there was no requirement for the exact positions that the arm
movement should reach, the participant’s arm could move to any position (towards the
head) freely in different motion cycles. Thus, this dataset could evaluate the correlations
between muscle activation and deformation even when they had large variance patterns
within a single participant’s movement.

2.3. Signal Processing

For the signals recorded in the experiments, the sEMG signals were sampled at
1000 Hz, the A-mode ultrasound was run at 30 Hz, and the arm tracking algorithm was at



J 2025, 8, 5 7 of 18

10 Hz. After experiments, the signals of all devices were collected and pre-processed for
effective network training.

For each channel of sEMG signals, the amplitude was normalized to range (0, 1)
to improve the visibility of tiny features. For A-mode ultrasound, peak detection was
used in the bone peak appearance range to find the highest peak movement [16,21–24,32].
The trajectory of the bone peak movement was used as the muscle thickness deformation.
This trajectory was smoothed to remove the outliers (recognized as the points that are out
of the [5%, 95%] distribution range of bone peak positions), then was also normalized to the
(0, 1) range as the input of networks. For the recorded arm movement positions, the outliers
were removed first and the data were smoothed using the moving average [33] to remove
the noise. After that, the joint angles were calculated. Depending on the changing patterns
of the angle (either becoming smaller or larger), the continuous motions were segmented
into two phases (Figure 4), being the training targets.

To address the varying sampling rates of recorded signals, data synchronization was
performed. To achieve this, timestamps were simultaneously recorded for each sensor
during the experiments, and the 30 Hz from ultrasound was set as the standard alignment
sampling rate. For arm tracking data, the missing 3D joint positions (due to the discrepancy
between 10 Hz and 30 Hz) were interpolated via quadratic functions [34,35], with the
assumption of continuous arm motion. For the sEMG signals, any additional data points
not aligned with the ultrasound timestamps were discarded; only the samples closest to
the ultrasound timestamps were kept. In the end, the synchronized data streams from each
participant were used for training and evaluating the proposed attention UNets model.

2.4. Deep Learning Methodology
2.4.1. Network Training Tasks

We established two training tasks to facilitate the comparison of classification results
between the two types of bio-signals. The first task involved classifying the type of motion
transition. When feeding signals into the networks, a transition vector was included to
indicate the starting position of a new motion cycle. However, whether the onset referred
to a transition from arm lifting to lowering (increasing angles) or the reverse (decreasing
angles) was unknown. The network needed to classify this onset transition of a motion
cycle based on the full cycle of bio-signals. By comparing the transition classifications
from both sEMG and ultrasound signals, we assessed their correlations between muscle
activation and deformation.

The second task (motion phase segmentation) focused on comparing the full sequence
motion classification between the two muscle signals. During different motion phases,
muscle activation and deformation may display unique yet consistent patterns. The clas-
sification of these patterns could determine whether the muscle features captured by the
two signals were correlated at each corresponding moment. Additionally, by analyzing the
classification positions in the two signals, we could identify any other special patterns of
each muscle feature.

2.4.2. Network Structure

As our targets involved segmenting motion phases using the original bio-signals, we
chose a classical UNet model (Figure 5) inspired by [32,36,37]: this model produced an
additional transition classification from the encoder in addition to the continuous motion
segmentation. We designed the networks for two objectives: (1) to see if the motion
classifications were similar for the two signals over the full sequence and (2) to compare the
motion transition classification of the two signals at the onset of a new motion cycle. This
structure was used for both ultrasound signals and sEMG signals for fairness. For each



J 2025, 8, 5 8 of 18

modified attention UNet, the structure consisted of a five-layer encoder and decoder, which
were directly connected and shared information through the skip-connections in the same
layer. The encoder provided the classification for the transition at the beginning of this
period, while the decoder outputted the classification for each moment of the signals.

Figure 5. The proposed attention UNet for predicting the arm movement phase using ultrasound
signals. The input is the recorded bio-signals, while the output from the encoder is the classification
of movement transitions, and the final output is the motion types throughout the full sequence (red
and green represent the two motion phases). The attention module has a horizontal cylindrical shape
and is demonstrated on the right in detail.

In Figure 5, each convolution (yellow) block in the main attention UNet consists of
1D convolution, batch normalization, and an ELU activation function [38]. The down-
sampling used the max-pooling in one dimension, while the up-sampling used the nearest
neighbor interpolation.

2.4.3. Training Strategy

To train the proposed neural network to identify correlations between bio-signals
and joint angles, three training losses were designed: two classification losses, ltrans and
lphase, and one dice loss, lDL. These losses enable the network to learn onset transition
classification and full motion sequence classification effectively.

For the transition classification and full motion sequence classification, we used the
cross-entropy losses ltrans and lphase, respectively. As lphase was applied on each point of the
input sequence, it was a segmentation problem, where the dice loss lDL was also used as
Equation (3). The ppred

i and ptrue
i were the prediction probability and the ground truth label

at this moment, n was the number of all moments in this sample, and ϵ ensured the numer-
ical stability during training. The dice loss calculated the dice coefficients of segmentation
and transformed it as a loss function to enable networks to have largeroverlapping areas
between the segmentation and the ground truth. In the end, the total loss function was
written as Equation (4).

lDL = 1 −
2 ∑n

i=0(ppred
i ∗ ptrue

i ) + ϵ

∑n
i=0 ppred

i + ∑n
i=0 ptrue

i + ϵ
(3)

l = ltrans + lphase + lDL (4)

To validate whether the networks could learn general mappings between bio-signals
and motion phases, rather than overfitting to a specific case, we designed a two-stage
training process. First, the network was pre-trained using a dataset from five participants
to capture generalizable patterns. Then, the model was fine-tuned using a small percentage
(20%) of data from another participant and evaluated on the remaining 80% of that partici-
pant’s dataset. This approach ensured that the learned mappings were generalizable while
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allowing the model to adapt to individual variations in muscle deformation and activation
patterns with minimal additional data.

During training, we used a 0.0001 learning rate, with the Adam optimization
method [39]. The pre-training stage lasted for 50 epochs, while the fine-tuning stage
lasted for another 30 epochs. Then, we selected the epoch result of the two models from
the 30 epochs when they had closed classification accuracy.

2.5. Statistical Analysis and Evaluation
2.5.1. Chi-Square Test

To evaluate and demonstrate the correlations between muscle activation and defor-
mation, we compared the classification results from sEMG and ultrasound signals using
statistical analysis. Specifically, the chi-square test was employed to determine whether a
significant relationship existed between the predictions made by the two models. The pur-
pose of the test was to assess if the observed agreement between the two models’ classi-
fication results could be attributed to a true relationship between muscle activation and
deformation patterns, rather than occurring by chance.

The chi-square test is a statistical method used to compare observed results (from
the two models) with expected results (assuming no correlation between the models’
classifications). Its goal is to determine if differences between the observed and expected
values indicate a genuine relationship between the variables being studied—in this case,
the classification outputs from sEMG and ultrasound signals. This approach allowed us to
evaluate the statistical significance of the correlation between the two signals.

Three assumptions of the chi-square test were fulfilled. (1) Independence of ob-
servations: each classification decision was made independently by either the sEMG or
ultrasound model. (2) Adequate expected frequencies: the contingency table of classifi-
cation decisions was verified to ensure that all expected frequencies were greater than 5,
following the threshold defined in [40]. (3) Categorical data: this assumption was inherently
satisfied, as the task involved two classification categories. The chi-square statistic (χ2) was
calculated using Equation (5):

χ2 = ∑
(Oij − Eij)

2

Eij
(5)

The Oij is the observation, while the Eij is the expected frequency. The chi-square test
used the α = 0.05 as a standard to reject the null hypothesis, which suggested the existence
of the correlations between two sequences of decisions. This was performed to analyze the
decision correlations between ultrasound and EMG signals from each participant.

2.5.2. F1-Score

To evaluate the similarity between the transition classification of the two models,
we used the F1-score as a metric. Unlike the traditional use of the F1-score to assess
the agreement between predictions and ground truth, in this study, the F1-score was
computed between the binary prediction outputs of two models. This evaluation aimed
to measure the level of agreement and similarity between the two models’ transition
classification behaviors.

The F1-score was derived from the harmonic mean of precision and recall, which
were defined based on the confusion matrix elements calculated between the results from
ultrasound and sEMG models. During testing, unlike the training setup (mentioned in
Section 2.4.1 Network Training Tasks), the full period transition was set as lowering the
arm to lifting the arm, and the model needs to correctly classify that a new period starts
from lifting the arm. Thus, lifting the arm was set as the positive while the lowering the
arm was set as the negative answer. The confusion matrix was defined as follows:
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• True Positives (TP): Transitions where both models classified the starting motion as
lifting the arm.

• False Positives (FP): Transitions where ultrasound model classified the motion as
lifting the arm, but sEMG model classified as lowering the arm.

• False Negatives (FN): Transitions where ultrasound model classified the motion as
lowering the arm, but sEMG model classified as lifting the arm.

• True Negatives (TN): Transitions where both models classified the starting motion as
lowering the arm.

Based on these elements, the precision and recall were calculated as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

The F1-score was then given by the harmonic mean of precision and recall:

F1-Score = 2 × Precision × Recall
Precision + Recall

(6)

In this context, the F1-score quantified the similarity between the transition classifica-
tion of the two models, focusing on their agreement for the correct motion classification
when a new period started. A high F1-score indicated strong alignment in their classifi-
cations, suggesting similar correct decision-making patterns. Conversely, a low F1-score
reflected discrepancies in their classifications.

2.5.3. Other Evaluation Metrics

Before analyzing the correlation and performing the chi-square test, the classification
accuracy, Acc(%) in Table 1, was calculated for both sequence and transition classification
tasks using the ultrasound (US) and sEMG models. Classification accuracy was defined as
the alignment between the model’s predictions and the ground truth labels in percentage.

Table 1. The table used to compare the classifications from both the ultrasound (US) and sEMG
models. The sequence classification means the classification of motion types for each moment during
the whole sequence, while the transition classification means the classification of the transition
type for the start of each motion cycle. Acc(%) represents the classification accuracy of the whole
sequence from each model compared with the ground truth labels. Correlation(%) represents the
same classification decision made from the two models, regardless of the accuracy. The p-value is
from the chi-square test to validate if there is a significant relationship between the classification
results from the two models.

Participant
Sequence Classification Comparison Transition Classification Comparison

US/EMG Acc (%) Correlation (%) p-Value US/EMG Acc (%) Correlation (%) F1-Score (%)

A 96.62/85.03 85.55 0.0000 100.0/93.10 93.10 96.43

B 73.40/72.46 64.26 0.0000 70.59/41.18 70.59 73.68

C 89.76/92.61 91.97 0.0000 90.91/81.82 84.85 91.23

D 92.56/49.04 52.63 0.0279 100.0/23.53 23.53 38.10

E 85.62/58.16 57.22 0.0000 100.0/67.65 67.65 80.70

F 88.70/61.70 64.00 0.0000 93.94/57.58 57.58 72.00

For the sequence classification task, the ground truth corresponds to the motion type
at each moment (see Figure 6 for the classification of the full sequence). For transition
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classification, the ground truth refers to the starting motion type of a new motion cycle,
which the models needed to predict using the output of the classification module shown in
Figure 5.

Figure 6. This shows the classification results from the two models of participant A. A random
segment of the motion cycles was selected from the test dataset, which contains several motion cycles
(due to the repeatable motion). The solid curves represent the prediction results from the ultrasound
model, while the dotted curves represent the results from the EMG model. The red color represents
the class of lowering the arm, while the blue color represents the class of lifting the arm. The gray
vertical dashed lines represent the prediction positions from the ultrasound model.

In addition, another metric (the Correlation(%) in Table 1) was reported as a descriptive
metric of agreement during the analysis. It calculated the proportion of matching classifica-
tion decisions between the ultrasound and sEMG models. However, to assess the statistical
significance of this observed agreement quantitatively and provide a more rigorous analysis,
the chi-square test was conducted as the primary method for the statistical analysis.

3. Experimental Results
3.1. Evaluation Objectives

After training the model, the inference results from the two models (ultrasound
and sEMG) and the ground truth labels in the test dataset were analyzed to explore the
relationship between muscle activation and deformation. In addition to evaluating the
classification accuracy, the classifications from the two models were compared to assess
their agreement. The chi-square test was employed to determine whether the observed
agreement between the classifications of the ultrasound and sEMG models was statistically
significant, providing evidence of a potential relationship between muscle activation and
deformation. Specifically, the test assessed whether the observed frequencies of agreement
and disagreement differed significantly from what would be expected under the null
hypothesis (i.e., no relationship between the classifications).

3.2. Evaluation Results

To explore the correlations of classification from the ultrasound and sEMG signals,
the classification results are reported on the left side of Table 1. The accuracy Acc% (and
all the subsequently mentioned “accuracy”) refers to the classification accuracy of the
model, which is determined by comparing it with the ground truth labels of the full
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motion sequence. For all participants, the p-values calculated using the chi-square test
are lower than 0.05, rejecting the null hypothesis that there is no correlation between the
two classification sequences. The third column Correlation(%) refers to the percentage of
the same classification decisions made from the ultrasound and sEMG models. Notice that
although for participants D, E, and F, the sEMG model prediction accuracies were quite low,
the Correlation(%) values are still very close to (or even higher than) the EMG prediction
accuracies. Also the p-values that were close to zero demonstrate the clear significant
relation between the two signals. This demonstrates that between muscle activation and
deformation there exists a clear relationship, even when the sEMG model did not perform
well for some cases.

Another result is the transition classification performance, shown in the right side
of Table 1. During the evaluation, the onset transition vector given to the network was
from putting down to lifting up the arm. In this way, the model knew that a new motion
cycle started and tried to classify the transition position (from lifting up to putting down
the arm) within a single motion cycle (see Figure 6). The transition positions determined
from the ground truth labels were used to calculate the F1-score, which evaluated the
performance of the two models. The comparison of their transition classifications at these
specific positions was reported in the last column of Table 1. Except for participant D,
other participants obtained very high F1-scores, showing that the two models have similar
classification results on the onset transition positions.

To evaluate the models’ capability to locate the transition positions, a qualitative
comparison result of the motion classification was visualized in Figure 6. This is from a
random segment of the continuous motion performance of participant A. Figure 6 shows
(1) the full sequence classification results for both the ultrasound and sEMG models and
(2) the predicted transition positions in the ultrasound model, demonstrated by the vertical
dashed gray lines.

In addition to the classification accuracy, the direct comparison between the two mod-
els’ classifications is visually shown in the contingency tables from Figure 7, which helps
to explore any potential relationship between muscle activation and deformation. With-
out comparison to the ground truth labels, these tables intuitively illustrate the correlations
between the classification decisions from the two models.

In Figure 7, the first row shows the relationship between the decisions of the
two models for participants A, B, and C. These three tables show strong correlations,
as the predominant values are along the diagonal of the table, indicating a high level of
agreement. In contrast, the second row, representing the models’ classifications from the
participants D, E, and F, shows lower correlations, as the frequency of the disagreements
equals to or exceeds that of agreements.

Furthermore, since the motion classification was performed point-by-point across the
entire signal sequence, the transition positions (where the predicted classification changed
from one motion type to another) offer additional insights for checking the unique charac-
teristics of the biomechanical (ultrasound) and neuroelectrical (sEMG) signals. To explore
the potential characteristics of the two different types of signals, the classification sequences
from the two models were post-processed to find the motion transition positions (from
one to another motion), which are the closest positions towards the ground truth tran-
sition positions. The absolute distances between these two types of positions were then
calculated and summarized in the histogram of Figure 8, which shows the relative errors
(compared with the ground truth) of the transition positions classified from the model and
post-processed to obtain.
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Figure 7. The contingency tables compare the full sequence classification only between the ultrasound
and sEMG signals, regardless of the ground truth labels. The results of the six participants (A–F) are
arranged in a zigzag pattern from top left to the bottom right. In each table, the row represents the
classification of sEMG model (0 means putting down the arm, 1 means lifting up the arm), and the
columns indicate the decisions from the ultrasound model. The number in each cell of the table
denotes the counts of samples falling into this category (the ultrasound and sEMG had the same or
different classification decisions). Note that these tables do not include any comparison with the
ground truth labels. Thus, they can visually represent the relationships between the decisions from
the two models

Figure 8. The histograms show the distribution of the absolute shift errors between the transition
locations of models’ classifications (determined by the post-processing from the full sequence classifi-
cation results) and the transition locations from the ground truth labels, expressed as a percentage of
the full motion cycle duration (e.g., 0.2 on the x-axis indicates an error of 20% of the full cycle dura-
tion). The results of participants A to F are arranged from top left to bottom right in a zigzag pattern.
The lines connect the peak values of the bars within each distribution slot. The brown color represents
the overlapping areas between the results of ultrasound and EMG models. The post-processing steps
to obtain the transition locations from the models are described in Section 3.2.

Additionally, if we did not consider the ground truth labels, the transition positions
from the two models could also be directly compared, and their distributions across
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all motion cycles are summarized in another histogram Figure 9, which highlights the
differences in how two different types of models captured the motion transitions from
the signals.

Figure 9. The histogram shows the transition locations of the two models’ classifications (determined
by the post-processing from the full sequence classification results), regardless of ground truth labels,
and expressed as a percentage over the single motion cycle (e.g., 0.2 on the x-axis indicates the 20%
position of a full cycle duration). The participants A to F are displayed in a zigzag order from top left
to bottom right. The lines connect the peak values of the bars within each distribution slot, illustrating
the slot distribution from each participant. The post-processing steps to obtain the transition locations
from the models are described in Section 3.2.

4. Discussion
Muscle activation and deformation are the key aspects of muscle functionality, but their

interplay has not been extensively studied using biological raw signals. Most prior re-
search focused on analyzing these features independently or combining them for specific
applications, such as gesture recognition or muscle fatigue analysis. However, the direct
correlations between these two muscle properties remain unexplored, leaving a gap in
understanding their relationship. This study addressed this gap by investigating how
sEMG signals (representing muscle activation) and ultrasound signals (representing muscle
deformation) correlate through a motion classification task. By comparing the classification
performance of these signals, this research aimed to provide insights into their working
mechanism and implications for muscle contraction dynamics.

In the experiment, six participants performed an arm lifting motion, which was
categorized into two classes: lifting and putting down the arm. A deep learning model was
developed for classifying these motions using the collected signals. The classification results
from both types of signals were compared to assess their correlations, facilitating further
evaluation of the relationship between muscle activation and deformation. Both models
used an attention UNet architecture due to its advantages in the segmentation tasks.
As shown in Table 1, the results from both the sequence and transition classifications
indicate the correlation between ultrasound and sEMG raw signals. Thus, we used the
motion type as the intermediate feature to validate the existence of the relationship between
muscle activation and deformation.

For most participants, the analysis results from Table 1 show a significant relationship
between ultrasound and sEMG signals, supported by the p-values close to 0.00 via the
chi-square test. However, participant D was an exception. While a significant correlation
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was still observed (p-value = 0.0279 < 0.05), the sEMG model’s classification performance
was less satisfied. As a result, participant D’s F1-score for the transition classification was
lower compared to that of other participants. The unsatisfied performance may be due to
the random arm movements and cycle periods, as well as the special sEMG signal that was
more difficult to classify, which will be investigated in a future study.

In Figure 7, the correlations for participants from A to C are evident. The reduced
correlations from participant D to F were likely due to the poor classification performance
of the sEMG model, as indicated by the low classification accuracy. However, the chi-
square significance test still showed p-values that were lower than 0.05, showing the
existence of correlations between classifications from the ultrasound and sEMG signals.
This demonstrated the clear relationship between muscle activation and deformation.

Another perspective of the experimental results was to evaluate how precisely the
sEMG and ultrasound models classified the transition types and identified the transition
positions. The transition classification task assessed the models’ capabilities to capture
the patterns of joint angle change within a single period. As shown on the right side of
Table 1, the ultrasound model showed good classification performance, due to the clear
relationship between muscle deformation and the joint angles [41]. In contrast, the sEMG
model exhibited lower accuracy, potentially attributed to the weaker correlation between
muscle activation (energy-based variables) and the joint angles (position-based variables).
This aspect requires further investigation in future studies. However, even with the dif-
ference in accuracy, the Correlation(%) values were close to or even surpassed the sEMG
model’s classification accuracy. This indicates that, despite the incorrect classifications of
ultrasound models, the sEMG model also made the same wrong classification decisions
as the ultrasound’s, showing the closed relationship between the muscle deformation and
activation patterns.

For transition positions analysis, Figure 6 provides qualitative comparisons. We
observed that at the same transition positions from the ultrasound model, the predicted
transitions from the sEMG model showed some left or right shifts. However, in most
motion cycles, these shifts were minimal, indicating that the sEMG model’s transitions
were closely aligned with those of the ultrasound model, showing the correlation between
the transition positions of the two signals.

In addition to Figure 6, Figure 8 directly compares the errors in the transition positions
between the two models. From this figure, we observe that, except for participant D, who
exhibited a large variance between the ultrasound and sEMG models, the other participants
(A to F, excluding D) showed that the distance between the transition positions of the
ground truth and the classifications was smaller than 20% of the single motion cycle. This
demonstrates a high level of classification agreement between the two models.

Additionally, Figure 9 directly compares the predicted locations of transition between
the two models. From this figure, both ultrasound and sEMG models had good classifica-
tion performances on the transition positions, which were nearly 50% position of the full
motion cycle (except for participant D). The sEMG model had slightly earlier prediction
than the ultrasound. This may be because the muscle activation has around 100 ms to
200 ms advanced to the actual muscle deformation [14].

Although our method used the motion type as an intermediate to find the relationship
between muscle activation and deformation, there were still some limitations in our method.
(1) The sEMG signal acquisition process may be influenced by the slight relative movement
between electrodes and skin during arm motion, as well as the potential cross-talk between
adjacent muscles, such as the biceps brachii and brachialis. However, the influence of
these factors could be minimized, as this study focused on the general activation patterns
rather than isolating individual muscle signals. Future work could further address the
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challenges by using high-density sEMG arrays for measurement [42] or improved electrode
designs [43] to enhance the precision and reduce the signal cross-talk issues. (2) Although
we directly compared the results of the sEMG model and ultrasound model, we still
used the angle joint as the intermediate factor. In future studies, the direct relationship
between ultrasound and sEMG signals could be built for better correlation analysis. (3) To
measure the direct relationship between ultrasound and sEMG in a fair way, we trained
the ultrasound and sEMG models using the same network architecture and the same
epoch number, without considering the special signal features or the better classification
models for each of them separately. Normally, the sEMG signal is more complex than the
A-mode ultrasound signal in both the spacial and temporal domains, so a hierarchical
transformer structure considering both domains could be beneficial to extract the motion
class information from sEMG signals. However, we still observed that even when the
sEMG model performed worse than the ultrasound model, its classification decisions
still had a significant relationship (verified from the chi-square test) with the ultrasound,
indicating the close relationship between muscle activation and deformation. (4) To show
the relationships between the two muscle features, this experiment was only performed
using a single type of motion, without exploring on other types of motions. However,
as there was no constraint for participants’ motion ranges and rhythms, this single motion
had diverse muscle activities with a high level of freedom, potentially providing sufficient
data to reveal this relationship.

In future research, more analysis could be performed to explore the potential quantita-
tive relationship between these two signals with more types of motions, which can show a
clearer relationship between muscle activation and deformation patterns. This study of
the correlations between muscle different types of signals can enable more possibilities
and potentials for the downstream tasks, such as the study of different muscle contraction
dynamics to distinguish the normal and fatigue conditions or the study of the functional
relationship of muscles applied in different joints during movement.

5. Conclusions
In this paper, we presented a method to identify the direct relationship between muscle

deformation and activation, using the original neuromuscular signals. Our experimental
results demonstrated the clear correlations between muscle deformation and activation.
This research potentially paves the way for further analysis of other predictive features
and correlations of muscles, such as force, joint torque, and joint angle. Additionally, it
has practical implications and provides insights for downstream applications, including
fatigue analysis or muscle disease diagnostics.
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