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Abstract: Understanding how countries’ socio-economic, environmental, health status, and climate
factors have influenced the dynamics of COVID-19 is essential for public health, particularly in
Africa. This study explored the relationships between African countries’ COVID-19 cases and deaths
and their socio-economic, environmental, health, clinical, and climate variables. It compared the
performance of Ordinary Least Square (OLS) regression, the spatial lag model (SLM), the spatial error
model (SEM), and the conditional autoregressive model (CAR) using statistics such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Root Mean Square Error (RMSE),
and coefficient of determination (R2). Results showed that the SEM with the 10-nearest neighbours
matrix weights performed better for the number of cases, while the SEM with the maximum distance
matrix weights performed better for the number of deaths. For the cases, the number of tests followed
by the adjusted savings, Gross Domestic Product (GDP) per capita, dependence ratio, and annual
temperature were the strongest covariates. For deaths, the number of tests followed by malaria
prevalence, prevalence of communicable diseases, adjusted savings, GDP, dependence ratio, Human
Immunodeficiency Virus (HIV) prevalence, and moisture index of the moistest quarter play a critical
role in explaining disparities across countries. This study illustrates the importance of accounting
for spatial autocorrelation in modelling the dynamics of the disease while highlighting the role of
countries’ specific factors in driving its dynamics.
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1. Introduction

The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) and first reported in December 2019 in Wuhan,
China, has become a global health concern [1,2]. Declared as a pandemic on 11 March
2020, the disease has severely hit the world [2]. For example, as of 2 August 2021, there
had been 199,051,292 total cases, with 4,241,236 deaths (https://www.worldometers.info/
coronavirus/, accessed on 8 August 2022). The incidence of the disease is, however,
non-uniform across the globe. In Africa, the incidence of COVID-19 is relatively low,
with 6,799,806 cases, including 171,445 deaths, as of 2 August 2021, i.e., 3.4% and 4.04%
of total cases and deaths, respectively, yet the continent accounts for 17.2% of the world
population. The reasons for such a contrast have interested scientists, especially considering
the low-quality health care systems in African countries [1,3,4]. Furthermore, patterns of
COVID-19 cases and deaths across African countries show high geographical disparities.
For example, while about 180,000 cases per million people and about 800 deaths per
million people were reported in Seychelles, fewer than 100 cases and 10 deaths per million
people were noted in countries such as Benin, Angola, Guinea, etc. Why such spatial
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disparities, and which factors explain such patterns? Understanding the factors explaining
the spatial heterogeneity in COVID-19 incidence in Africa is essential to inform public
health policymakers who are aiming to better control the pandemic [2] and ensure effective
preparedness for future epidemics.

There is evidence that environmental and socio-demographic factors may act in syn-
ergy or antagonistically with climate factors to exacerbate or lessen the severity of infectious
disease transmission and fatality [5]. For example, migrants, either nationals or interna-
tionals, especially those involved in low-income jobs, are among the most vulnerable to
death and infection by SARS-CoV-2 [6]. Population age structure was also suggested as
a determinant in controlling COVID-19 deaths and spreading [7]; the high numbers of
COVID-19 deaths and cases in Italy were linked with the demographic structure of the
country (median age = 46 years) [6]. In Europe, more than 95 percent of people who died
due to COVID-19 were 60+ years old (WHO, 2020), which has been suggested to explain
the low number of cases and deaths due to COVID-19 in Africa, where the median age is
19 years. Income factors (e.g., median household income, median household income per-
cent, Gini coefficient) were significantly associated with COVID-19 cases and deaths [6,7].
Similarly, the potential role of weather and climate in COVID-19 morbidity and mortality
has been highlighted by several studies, some arguing for a negative correlation between
ambient temperature and humidity and the number of COVID-19 cases/deaths and others
the absence of any correlation or even a positive one [8].

Studies have been carried out to model and predict the dynamics of the pandemic [9].
Several sought to understand environmental (climate and pollution), socio-demographic,
and socio-economic correlates of the spatial heterogeneity in COVID-19 incidences and
deaths in Europe, the United States of America (USA), and Asia either on country, pre-
fecture, or county scales [2,6,10,11]. In such studies, geography, which includes spatial
locations and characteristics of the spatial determinants, was shown to play a crucial role
in the early outbreak and transmission of the virus across scales [2,12]. For instance, the
spatial variability and clustered patterns of COVID-19 cases and deaths in many coun-
tries showed a strong spatial dependency on confounding factors [13]. This indicates the
need to understand spatial effects such as spatial autocorrelation, spatial stationarity, and
heterogeneity in modelling COVID-19 morbidity and mortality and their correlates.

Comparatively, only a few studies have been carried out in Africa regarding these
issues. The few attempts to obtain such insights in Africa (see [7,14]) have not explicitly
considered spatial autocorrelation and spatial stationarity in the modelling and thus are
potentially misleading. For example, Bouba et al. [7] used OLS regression on COVID-19
cases and deaths from 14 February 2020 to 4 February 2021 (first waves) to explore their
relationship with 34 covariates (epidemiological, socio-demographic, climatic, environ-
mental, and economic-financial) across 54 African countries. Similarly, Tamasiga et al. [15]
used multivariate linear regression and a few predictors (seven demographic and income
predictors) across 40 sub-Saharan countries to understand factors affecting COVID-19 cases
and deaths based on the data from Janaury 2020 to March 2023. The authors obtained mod-
els with an R2 equal to 69% and 63%, indicating that substantial variations in COVID-19
cases and deaths are yet to be explained. Furthermore, Su et al. [14] conducted a global
analysis (178 countries, including African countries) of the influence of socio-ecological
factors on COVID-19 risk. The study considered 28 socio-ecological and demographic vari-
ables. All these studies used OLS regression or simple Generalised Poisson models. One of
the shortcomings in using OLS or simple generalised models to model the incidence and
deaths due to COVID-19 across countries is the ignorance of the spatial patterns that may
exist in the incidence and deaths of COVID-19 [6,14]. For example, due to the proximity
of some countries, they may show similar patterns, which may be confounded by other
factors when this spatial relationship is not explicitly tested and considered [6,14]. Among
the rare studies that used spatial regression is [16], where the authors used data from the
first and second waves of COVID-19 (until May 2021) from 47 countries. The authors
explored three linear spatial regression models, namely the spatial lag, spatial error, and
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spatial autoregressive condition (SAC) models and found that COVID-19 prevalence in an
African country was highly dependent on that of neighbouring African countries as well
as its economic wealth, transparency, and proportion of the population aged 65 or older.
However, in this study, the authors ignored countries’ COVID-19 testing capacity and
used only a few predictors (six), excluding, for example, climate and population migration,
which are also important correlates of COVID-19 dynamics.

Our study aims to improve the assessment of the impact of socio-economic, envi-
ronmental, and demographic parameters on the spread of COVID-19 cases and deaths
across African countries by adopting spatial-regression-based approaches and using the
most updated statistics on COVID-19 cases and deaths. The objective was to assess the
socio-ecological patterns of the COVID-19 spatial dynamics in Africa. Specifically, the study
sought to (i) map the spatial heterogeneity of the number of COVID-19 cases and deaths
across African countries, (ii) test the existence of spatial autocorrelation and heterogeneity
in the patterns of COVID-19 cases and deaths, and (iii) determine socio-ecological factors
affecting the spatial heterogeneity of COVID-19 morbidity and mortality across African
countries.

2. Materials and Methods
2.1. Study Area

The study considered all 54 African countries, including Madagascar. Based on the
latest United Nations estimates, the population of Africa in 2023 was 1,460,481,772, i.e.,
about 18.2% of the world population (https://www.worldometers.info/world-population/
#region, accessed on 5 January 2024). However, Africa carries 25% of the world’s disease
burden, and its share of global health expenditures is less than 1%. Worse still, it manu-
factures less than 2% of the medicines consumed on the continent. A majority of Africans,
mostly the poor and those in the middle-income bracket, rely on underfunded public
health facilities, while a small minority have access to well-funded, quality private health
care. The first three challenges identified were inadequate human resources, inadequate
budgetary allocation to health, and poor leadership and management [17]. At the advent
of COVID-19, and because most countries on the continent rank as poor on the United Na-
tions Development Programme’s Human Development Index, experts predicted millions
of COVID-19 deaths on the continent, which turned out to be wrong several years after the
pandemic [1]. For example, as of 3 April 2024, only 1.82% and 3.69% of the total cases and
deaths, respectively, were reported in Africa.

2.2. Data Acquisition

We sought to model the dynamics of the COVID-19 cases and deaths. As such, we
compiled data on the cumulative cases and deaths of COVID-19 for each African country as
of 8 August 2022. The numbers of cases and deaths were then divided per millions of people
to make them comparable across countries. The number of cases detected highly depends
on the number of tests carried out. Therefore, for modelling the number of cases, the total
number of tests was added as a covariate to account for its effect on the number of reported
cases and deaths. Data on the number of cases, deaths, tests, and population were obtained
from the Worldometer database (https://www.worldometer.org/, accessed on 8 August
2022). In total, 43 explanatory variables grouped in 7 categories were considered as follows:
demography (10 variables), migration (3 variables), economic (6 variables), health care
systems (3), clinical or diseases (7), pollution (4), climate (8), and others (2). Demography
variables included population density, annual change in population, fertility rate, median
age, proportion of total population aged 65 and above, proportion of total population
aged 15–64, dependence ratio as % of working-age population, dependence ratio for old
people as % of total population, and median year of life expectancy at birth. Migration
variables included the net migrants, number of airports in the country, and number of air
transport passengers carried per capita. The economic variables included the adjusted
savings, i.e., particulate emission damage (% of GNI), which is equal to net national savings

https://www.worldometers.info/world-population/#region
https://www.worldometers.info/world-population/#region
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plus education expenditure and minus energy depletion, mineral depletion, net forest
depletion, carbon dioxide, and particulate emissions damage, the GDP per capita, the
Human Development Index, and urbanisation rate. The health care systems variables
included the number of nurses and midwives per 1000 population, number of physicians
per 1000 population, and the Global Health Security Detection Index (weighted sum of all
the Global Health Security (GHS) data normalised to a scale of 0 to 100, where 100 = best
health security condition). The clinical variables included the prevalence of diabetes (% of
population aged 20 to 79), the incidence rate of tuberculosis (TB) per 100,000 people, the
Bacillus Calmette–Guérin (BCG) vaccination coverage in %, the prevalence of HIV (total
% of population aged 15–49), the reported cases of malaria per 100,000 population, the
raised total cholesterol (≥5.0 mmol/L) as an age-standardised estimate, and the burden
of communicable diseases and maternal, prenatal, and nutrition conditions (including
infectious and parasitic diseases, respiratory infections) per 100,000 people. Variables on
pollution were PM2.5 air pollution (population exposed to levels exceeding the World
Health Organization (WHO) guideline value (% of total)), the methane emissions in the
energy sector (thousand metric tons of carbon dioxide (CO2) equivalent), the nitrous oxide
emissions (thousand metric tons of CO2 equivalent), and the proportion of people practising
open defection (% of population). Climate variables were annual mean temperature,
temperature seasonality, annual precipitation, precipitation of driest quarter, moisture
index, moisture index of the most arid quarter, moisture index of the moistest quarter, and
potential evapotranspiration. The other variables were the total area land of the country
and the proportion of the total land area that is covered by forests. Further details and
sources of the data are provided in the Supplementary File, Table S1.

2.3. Data Analysis

COVID-19 cases and deaths per million across African countries were considered re-
sponse variables and plotted in a geographical information system to explore the spatial
heterogeneity of the disease incidence and fatality across the continent. The correlation be-
tween both variables was moderate and positive (r = 0.672, p-value < 0.001). The correlation
between the total number of cases per million and the total number of tests per million was
high and positive (r = 0.834, p-value < 0.001). The correlation between the total number
of deaths per million and the total number of tests per million was rather moderate and
positive (r = 0.662, p-value < 0.001).

Before diving into the statistical analyses, all explanatory variables were standardised
using the min–max normalisation, which resulted in the values of all variables ranging
from 0 to 1. The modelling of the relationship between explanatory variables and each of
the two response variables involved three steps. As the number of explanatory variables
was high, the first step dealt with collinearity analysis using the variance inflation factor
(VIF). The process consisted of regressing each explanatory variable on the remaining
explanatory variables and iteratively eliminating those with a variance inflation factor
(VIF) greater or equal to 5, resulting in 23 variables selected out of the 43. The 18 variables
selected included country’s total area, excluding area under inland water bodies, national
claims to continental shelf, and exclusive economic zones (land_Area), methane emissions
in the energy sector (thousand metric tons of CO2 equivalent) in 2018 (Meth_em), nitrous
oxide emissions (thousand metric tons of CO2 equivalent) in 2018 (Nitro_oxide), num-
ber of airports in the country (Nb_Airport), dependence ratio for old people (% of total
population) in 2020 (DepR_old), number of tests per 1 million people (Tests_1Mpop), urban-
isation rate (Urban_Rate), the net migrants (Migrants), population density (Density_2020),
precipitation of driest quarter (bio17), moisture index of the most moist quarter (mimq),
adjusted savings in % of GNI (AdjSav), annual mean temperature (bio1), annual change
in the population (Yearly_change), dependence ratio (% of working-age population) in
2020 (DepR), proportion of the total land area that is covered by forests (Forest_area), BCG
vaccination coverage, in % (BCG.19), prevalence of HIV as total % of population aged
15–49 (HIV.19), raised total cholesterol (≥5.0 mmol/L) as an age-standardised estimate
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(Raised_Choleste_2018), GDP per capita (current US$) (GDP.19), reported cases of malaria
per 100,000 population (Malaria.19), the burden of communicable diseases and maternal,
prenatal, and nutrition conditions (including infectious and parasitic diseases, respiratory
infections) per 100,000 people (Commun_DiseasePrevalence2019), and the Global Health
Security Detection Index (weighted sum of all the GHS data normalised to a scale of 0 to
100, where 100 = best health security condition) (GHS.index.19).

Then, an OLS regression was performed on the response variables (total cases per
1 million population and total deaths per 1 million population), including the 23 pre-selected
explanatory variables. The parsimonious model was identified after a backward selection
on the initial regression model. Then, the Global Moran’s I was used to explore the spatial
autocorrelation of COVID-19 cases and deaths across African countries. This index was
calculated using the parsimonious OLS regression model, which was performed on each
response variable using various weight matrices. Three row-standardised weight matrices
were considered for testing the global spatial autocorrelation, including the maximum
distance matrix, the 4-nearest neighbours matrix, and the 10-nearest neighbours matrix.
The maximum distance was the maximum of the minimum distance, which allowed each
country to have at least one neighbour. The average number of neighbours within this
distance was 6.03. Based on this, the 4-nearest neighbours matrix and the 10-nearest
neighbours matrix were considered in addition to the maximum distance matrix. This
analysis allowed prior assessment of the relevance of spatial models.

Four global spatial models (GSMs) [2] were considered, including OLS regression
(OLS), the spatial lag model (SLM), the spatial error model (SEM), and the conditional
autoregressive model (CAR) [18]. The OLS model was used because it is one of the most
used regression techniques, though it has some constraining assumptions which limit its
applicability for data with special features like spatial data. It was used as a reference
for comparison purposes. The SLM, SEM, and CAR were considered because (i) we were
primary interested in global (not local) spatial modelling, and (ii) they are the most used
global spatial regression techniques in epidemiological modelling [2,6,19].

The SLM and SEM are also known as Simultaneous Autoregressive Models (SARs).
OLS regression assumes spatial stationarity across the scale and, therefore, hypothesises
that a model conceptualised for a particular area can be applied effectively to other areas of
interest [20]. According to Anselin and Arribas-Bel [21], the global OLS has fundamental
assumptions; the observation in the feature space does not vary with space, and therefore
should be independent, and the residual model errors should not be correlated [22]. The
OLS is formulated as follows:

Y = Xβ + ε, (1)

where Y is the vector of response variable, β the vector of slopes associated with the
predictors matrix X, and ε the error term.

The spatial lag model (SLM) assumes spatial dependence between the explanatory
and response variables in feature space and conceptualises the global regression by incorpo-
rating spatial dependence attributes in the modelling process. The SLM also assumes that
spatially lagged dependent variables are in the model estimation, which can be ensured by
the spatial dependence test resulting from the OLS [2]. The effect of this spatial variable
generated from a weighted contiguity matrix quantifies the level of interactions of an
observation with its neighbour values in the feature space. Suppose that the determinant
factors tested by Moran’s I (error), the Lagrange Multiplier (lag), and Robust LM (lag)
exhibited statistically significant estimates at a defined probability level. In that case, one
should reconsider the model selection process and opt for the SLM (i.e., the unrestricted
model) as a replacement for the OLS (the restricted model without spatial term). The SLM
is formulated as follows:

Y = ρWY + Xβ + ε, (2)

where ρ is the autoregression parameter, W is a matrix of weights, and the remaining
parameters are defined as above.
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The spatial error model (SEM) is an extension of global models that fundamentally
stands on the assumption of spatial dependence in the residual error of the OLS [20]. The
SEM posits that spatial autocorrelation among regression residuals is thus evident. Two
standard spatial dependence tests, the Lagrange Multiplier (error) and Robust LM (error),
were performed to ensure statistical significance in the spatial dependency in error terms.
The SEM can be written as follows:

Y = Xβ + λWζ + ε, (3)

where λ is the autoregression parameter, ζ is the spatial error term, and the rest is as above.
The conditional autoregressive (CAR) model assumes a conditional spatial dependence

between the response and the explanatory variables through a symmetric weights matrix.
The model can be written as follows [18]:

Y = Xβ + ρW(Y − X) + ε, (4)

with ε = N(0, Vc). If the error variance σ2 is constant for all locations i, the covariance
matrix is Vc = σ2(I − ρW)−1, where W is a matrix of weights that must be symmetric.
Though the CAR and SAR models are related, the terms ρW used in both the CAR and
SAR models are not identical because the matrix W does not need to be symmetric in the
SAR models.

All statistical analyses were implemented in R software version 4.1.0 [23]. The spatial
regression models were implemented in the package “spatialreg” [24] and the LM tests
in the package spdep [25]. The best model was selected based on the AIC, BIC, R2, Root
Mean Squared Error (RMSE), and statistical difference from the spatial autocorrelation
tests. The coefficient of determination (R2) statistics denote the overall model strength and
robustness. The AIC and BIC values measure the overall model accuracy and parsimonious
character. The RMSE measures the precision of the model fitted to the observed data. The
residuals of the models were plotted for further diagnostic purposes (see Figure S1 in the
Supplementary File).

The relative importance of the selected explanatory variables for both response vari-
ables was assessed using the Random Forest model [26], which spots the key explanatory
factors in the models [2]. This was implemented in the “randomForest” package in the
R software [27]. Because the importance ranking can vary between runs due to the random
selection of training data and variables to determine the split at each node [28], the model
was run with 1000 trees [29], and the mean decrease in accuracy (%IncMSE) was used to
measure predictor influence. %IncMSE is the average increase in the squared residuals
of the test set when the variable is pruned, and it provides information on the variable’s
contribution to the overall variance of the predicted variable. This measure was calculated
for each tree in the forest and then averaged over all trees.

3. Results
3.1. Spatial Heterogeneity in COVID-19 Cases and Deaths across African Countries

The spatial distribution of COVID-19 cases and deaths is illustrated in Figure 1. The
highest numbers of cases (>60,000 cases per million) were observed in Seychelles, Botswana,
Cabo Verde, Tunisia, Libya, South Africa, Namibia, and Eswatini, while the lowest num-
bers of COVID-19 cases (<2000) were accounted for in Niger, Chad, Tanzania, Sierra
Leone, Burkina Faso, the DRC, Nigeria, Sudan, Liberia, Mali, South Sudan, and Soma-
lia. In the remaining countries, the levels of COVID-19 cases were relatively moderate
(2000–30,000 cases) (Figure 1). Considering the COVID-19 deaths across Africa, the highest
incidence (greater than 1000 deaths per million) was recorded in Tunisia, followed by Sey-
chelles, South Africa, Namibia, Eswatini, and Botswana. In contrast, the lowest numbers of
deaths (<20 deaths per million) were observed in Burundi, followed by Chad, Niger, South
Sudan, Tanzania, Benin, Sierra Leone, the DRC, Nigeria, and Burkina Faso (Figure 1).
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Figure 1. The spatial distribution of COVID-19 cases (a) and deaths (b) across African countries on
natural log scale.

3.2. Association between Explanatory Factors and COVID-19 Cases and Deaths

The OLS regression model on the number of cases showed that variables such as
Tests_1Mpop, Density_2020, Urban_Rate, DepR, DepR_old, bio1, bio17, HIV prevalence,
raised total cholesterol, AdjSav, GDP, and number of airports in the country had sig-
nificant relationships with the number of cases (Table 1). Tests_1Mpop, Density_2020,
Urban_Rate, DepR_old, HIV prevalence, raised total cholesterol, AdjSav, and GDP had
positive relationships (estimate > 0), while the other variables (DepR, bio1, bio17, AdjSav,
and Nb_Airport) had negative relationships (estimate < 0). For the number of deaths,
Tests_1Mpop, population density (Density_2020), dependence ratio (DepR), methane emis-
sions (Meth_em), moisture index of the moistest quarter (mimq), HIV prevalence, malaria
prevalence, GHS index, AdjSav, and GDP turned out to have a significant (p-value < 0.05)
relationship (Table 1). Tests_1Mpop, population density (Density_2020), HIV prevalence,
GHS index, and GDP had positive relationships (estimate > 0), while the other variables
(DepR, Meth_em, mimq, Malaria.19, and AdjSav) had negative relationships (estimate < 0)
(Table 1).

Among the three weight matrices considered to test the global spatial autocorrela-
tion (the maximum distance matrix, the 4-nearest neighbours matrix, and the 10-nearest
neighbours matrix) (Table 2, Figure S2), significant spatial autocorrelation was observed for
the number of deaths with the 4-nearest neighbours matrix and the 10-nearest neighbours
weights matrix (Table 2).

Using the robust Lagrange Multiplier (LM) test and based on fit statistics such as the
R2, AIC, BIC, deviance, and RMSE, we were able to compare the performance of the SEM,
SAR, and CAR models (Table 3). For the number of cases, the SEM with the 10-nearest
neighbours matrix weight was the best performing and differed significantly from the OLS
(LM = 7.000, p-value = 0.0033, Table 3). This model had the highest R2 (R2 = 0.949) and the
lowest values for the other criteria (AIC, BIC, and RMSE). For the number of deaths, the
SEM and SLM with the maximum distance matrix weight and the 10-nearest neighbours
matrix weight significantly outperformed the OLS and the CAR models. Based on fit
statistics, the SEM with the maximum distance matrix weight was the best. This model
had the highest R2 (R2 = 0.897) and the lowest values for the other criteria (AIC, BIC, and
RMSE) (Table 3).

The summary of the SEM for the number of cases showed that most variables (11 out of
12) that were significant in the OLS remained significant in the SEM, except the raised total
cholesterol, which turned out to be non-significant. However, the effect of BCG coverage,
which was not significant in the OLS, turned out to be significant in the SEM with a positive
effect on the number of cases. The direction (sign of the estimate) of the effects of the vari-
ables did not change from the OLS to the SEM, but, for most of the variables (except AdjSav
and the number of airports), the magnitude of their effects (absolute value of the estimate)
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increased from the OLS to the SEM and even doubled for some variables (e.g., bio17 and
prevalence of HIV). These results indicate misleading conclusions if the autocorrelation
is not considered in the modelling (Table 1). For the number of deaths, the summary of
the SEM (Table 1) indicated that all variables that were significant in the OLS also had
a significant relationship with the number of deaths per million. The directions (sign of
the estimates) did not also change, but the magnitude of their effects changed slightly.
Variables such as Forest_area, bio17, and Commun_DiseasePrevalence2019 that were not
significant in the OLS turned out to be significant, all with a negative relationship with the
number of deaths per 1 million population, indicating that countries with higher forest
cover, higher precipitation in the driest quarter, and higher prevalence of communicable
diseases had a lower number of deaths per million population (Table 1).

Table 1. Global regression estimates derived from OLS, SLM, and SEM for COVID-19 cases and
deaths across African countries.

Number of Cases Per Million OLS Regression SEM with 10-Nearest Neighbour Weights Matrix

Estimate Std. Error t Value Pr(>| t) Estimate Std.Error Statistic p-Value

(Intercept) 7.838 0.489 16.031 <2 × 10−16 7.520 0.254 2.96 × 1001 0.00 × 10+00

Tests_1Mpop 1.875 0.440 3.959 0.0003 2.43 0.390 6.1 <0.001
Forest_area −0.655 0.427 −1.532 0.134 0.098 0.272 3.59 × 10−01 7.20 × 10−01

Density_2020 1.195 0.498 2.40 0.022 1.527 0.361 4.23 × 1000 2.31 × 10−05

Urban_Rate 0.997 0.40 2.033 0.0490 1.07 0.28 3.8 0.0001
DepR −1.896 0.590 −3.166 0.0030 −2.03 0.43 −4.7 2.38 × 10−06

DepR_old 1.245 0.602 2.070 0.0460 2.000 0.464 4.31 × 1000 1.63 × 10−05

Meth_em −0.957 0.568 −1.686 0.1010 −0.944 0.487 −1.94 × 1000 5.25 × 10−02

biol −1.735 0.570 −3.016 0.0045 −1.920 0.340 −5.50 3.52 × 10−08

bio17 −0.883 0.427 −2.066 0.0460 −1.496 0.264 −5.67 × 1000 1.45 × 10−08

BCG.19 0.673 0.444 1.516 0.1380 0.538 0.253 2.13 × 1000 3.36 × 10−02

HIV.19 1.488 0.548 2.717 0.0100 2.596 0.369 7.03 × 1000 2.07 × 10−12

Raised_Choleste_2018 1.494 0.602 2.483 0.0180 0.875 0.505 1.73 × 10+00 8.31 × 10−02

AdjSav −2.305 0.476 −4.838 2.46 × 10−05 −2.031 0.337 −6.03 × 1000 1.670 × 10−09

GDP. 19 2.098 0.571 3.675 0.0008 2.312 0.550 4.20 × 1000 2.63 × 10−05

Nb Airport −1.029 0.503 −2.047 0.0480 −0.839 0.396 −2.122 3.38 × 10−02

lambda −3.034 0.336 −9.043 0.00 × 1000

Number of Death Per Million OLS Regression SEM with Maximum Distance Weights Matrix

(Intercept) 5.622 0.466 12.068 0.0000 5.880 0.315 1.87 × 10+01 0.00 × 10+00

Tests_1Mpop 1.502 0.63 2.381 0.0221 1.19 0.51 2.30 2.09 × 10−02

Density_2020 −2.056 0.73 −2.787 0.0081 −1.40 0.61 −2.29 2.20 × 10−02

Forest_area −0.666 0.411 −1.621 0.1129 −0.521 0.265 −1.97 × 1000 4.89 × 10−02

DepR −1.531 0.69 −2.219 0.0322 −1.81 0.57 −3.14 1.67 × 10−03

Meth_em −1.980 0.562 −3.526 0.0010 −1.974 0.442 −4.464 8.03 × 10−06

bio17 −0.728 0.486 −1.499 0.1418 −1.148 0.363 −3.163 1.56 × 10−03

mimq −1.808 0.67 −2.708 0.0099 −1.69 0.54 −3.08 2.00 × 10−03

HIV. 19 2.249 0.565 3.982 0.0002 2.375 0.371 6.406 1.49 × 10−10

Malaria. 19 −2.048 0.539 −3.8 0.0004 −1.900 0.367 −5.18 × 1000 3.58 × 10−07

Commun_DiseasePrevalence2019 −1.224 0.671 −1.823 0.0759 −1.613 0.454 −3.550 3.85 × 10−04

GHS.index.19 1.197 0.534 2.240 0.0308 0.977 0.383 2.550 1.07 × 10−02

AdjSav −2.635 0.466 −5.659 1.54 × 10−6 −2.783 0.307 −9.07 × 10+00 0.00 × 10+00

GDP.19 1.319 0.576 2.29 0.0275 1.446 0.422 3.43 × 10+00 6.1 × 10−04

lambda −0.835 0.194 −4.296 1.74 × 10−05

Tests_1Mpop = total number of tests per 1 million people; Forest_area = total land area that is covered by
forests (ha); Density_2020 = number of people by land area in 2020, measured in square kilometers, most
recent year available; Urban_Rate = population in urban agglomeration of more than 1 million, % of total
population; DepR = dependence ratio (% of working-age population in 2020); DepR_old = dependence ratio
for old people (% of total population in 2020); Meth_em = methane emissions in energy sector (thousand met-
ric tons of CO2 equivalent) in 2018; bio1 = annual mean temperature; bio17 = precipitation of driest quarter;
BCG.19 = BCG vaccination coverage, in %; HIV.19 = prevalence of HIV; Raised_Choleste_2018 = raised total
cholesterol (≥5.0 mmol/L); AdjSav = adjusted savings in % of GNI (AdjSav); GDP.19 = GDP per capita (current
US dollars) in 2019; NbAirport = number of airports in the country; mimq = moisture index of the most moist quar-
ter; Malaria.19 = reported cases of malaria per 100,000 population; Commun_DiseasePrevalence2019 = burden
of communicable diseases and maternal, prenatal, and nutritional conditions per 100,000 population;
GHS.index.19 = GHS index.
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Table 2. Summary of the global spatial autocorrelation test (Moran’s I).

Weights Matrix Moran’s I Statistic Expected Value Variance p-Value

Number of cases

Maximum distance −0.0942 −0.0208 0.006 0.811
4-nearest neighbours −0.0501 −0.0208 0.007 0.631
10-nearest neighbours −0.0931 −0.0208 0.002 0.920

Number of deaths

Maximum distance −0.0584 −0.0208 0.006 0.170
4-nearest neighbours 0.1304 −0.0208 0.007 0.044
10-nearest neighbours 0.0753 −0.0208 0.002 0.033

Table 3. Evaluation statistics for the models on the number of cases and death.

Weights Models R2 AIC BIC Deviance logLik RMSE Robust LM p-Value

Log number of cases

Identity OLS 0.888 93.53 120.01 10.93 −34.764 0.477
Max Dist SEM 0.917 87.41 115.783 8.099 −28.703 0.411 6.762 0.0093
Max Dist SLM 0.889 95.372 123.749 10.885 −32.686 0.476 3.149 0.0760
10-NN SEM 0.949 78.186 106.563 4.975 24.093 0.322 7.000 0.0033
10-NN SLM 0.889 95.398 123.775 10.894 −32.699 0.476 0.420 0.5167
4-NN SEM 0.893 94.542 122.920 10.478 −32.271 0.467 2.938 0.0865
4-NN SLM 0.893 93.668 122.045 10.442 31.834 0.466 4.066 0.0438
Max Dist CAR n.a. 95.479 123.857 n.a. −32.740 0.476 n.a. n.a.
10-NN CAR n.a. 95.254 123.901 n.a. −32.762 0.477 n.a. n.a.

Log number of deaths

Identity OLS 0.860 103.595 124.404 15.167 −40.797 0.316
Max Dist SEM 0.897 96.754 119.456 11.225 −36.377 0.484 9.175 0.0025
Max Dist SLM 0.864 104.455 127.157 14.779 −40.227 0.555 5.952 0.0147
10-NN SEM 0.888 100.431 123.133 12.182 −38.216 0.504 4.051 0.0442
10-NN SLM 0.865 103.923 126.625 14.598 −39.962 0.551 4.376 0.0365
4-NN SEM 0.873 103.379 126.081 13.801 −39.690 0.536 2.783 0.0953
4-NN SLM 0.862 104.954 127.655 14.945 −40.477 0.558 2.718 0.0992
Max Dist CAR n.a. 105.28 127.986 n.a. −40.642 0.557 n.a. n.a.
10-NN CAR n.a. 105.28 128.285 n.a. −40.642 0.562 n.a. n.a.

Max Dist = maximum distance, 4-NN = 4-nearest neighbours, 10-NN = 10-nearest neighbours, n.a. = not applicable,
SLM = spatial lag model, SEM = spatial error model, CAR = conditional autoregressive model. Values in bold
represent statistics of models that significantly differed from the OLS.

3.3. Variable Importance

Figure 2 summarises the relative importance of the selected variables (fifteen for
COVID-19 cases and twelve for COVID-19 deaths) based on the Random Forest. For the
COVID-19 cases, among the variables, the five with the highest relative importance were
found to be the number of tests per 1 million people (Tests_1Mpop, 28%) followed by
adjusted savings (AdjSav, 7%), GDP per capita (GDP.19, 6.5%), dependence ratio (DepR,
5%), and annual mean temperature (bio1, 4%) (Figure 2a). The contribution of the other
variables was roughly null. For the COVID-19 deaths, the number of tests per 1 mil-
lion people (Tests_1Mpop, 17%) had the highest relative importance, followed by the
prevalence of malaria (Malaria.19, 14%), the prevalence of communicable diseases (Com-
mun_DiseasePrevalence2019, 7%), AdjSav (6.8%), and GDP (6.5%) (Figure 2b). The con-
tributions of the dependence ratio, prevalence of HIV (HIV.19), and moisture index of the
most moist quarter (mimq) were very low and those of Forest_area, methane emissions
(Meth_em), precipitation of driest quarter (bio17), and population density (Density_2020)
were roughly null.
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Figure 2. Relative influence of the variables used in the parsimonious regression models for COVID-19
cases (a) and COVID-19 deaths (b). AdjSav = adjusted savings, i.e., particulate emission damage (% of
GNI) in 2018. It is equal to net national savings plus education expenditure and minus energy deple-
tion, mineral depletion, net forest depletion, and carbon dioxide and particulate emissions damage;
BCG.19 = BCG vaccination coverage, in %; bio1 = annual mean temperature; bio17 = precipitation of
driest quarter; Commun_DiseasePrevalence2019 = burden of communicable diseases and maternal,
prenatal, and nutrition conditions (including infectious and parasitic diseases, respiratory infections)
per 100,000 people; Density_2020 = population density; DepR = dependence ratio (% of working-age
population in 2020); DepR_old = dependence ratio for old people (% of total population) in 2020; For-
est_area = proportion of the total land area that is covered by forests; GDP.19 = GDP per capita (current
US dollars); GHS.index.19 = Global Health Security Detection Index (weighted sum of all the GHS
data normalised to a scale of 0 to 100, where 100 = best health security condition); HIV.19 = prevalence
of HIV (total % of population aged 15–49); Malaria.19 = reported cases of malaria per 100,000 people;
Meth_em = methane emissions in energy sector (thousand metric tons of CO2 equivalent) in 2018;
mimq = moisture index of the most moist quarter; Nb_Airport = number of airports in the coun-
try; Raised_Choleste_2018 = raised total cholesterol (≥5.0 mmol/L) as age-standardised estimate;
Tests_1Mpop = total number of tests per 1 million of people; Urban_Rate = urbanisation rate.

4. Discussion

Although the African continent has not been severely affected by the COVID-19 pan-
demic [1], a better understanding of how socio-economic and climate factors have shaped
the pandemic dynamics is crucial for informing the policymakers at both country and
continental levels. Among the several existing models, choosing the most appropriate ones
is important to avoid misleading conclusions, especially when dealing with multi-location
data where spatial autocorrelation matters. In this study, we showed that the distribution of
COVID-19 cases and deaths was heterogeneous across the 54 African countries and sought
to understand underlying socio-economic and climate factors. To do so, we compared the
performance of OLS, SLM, SEM, and CAR models on the number of COVID-19 cases and
deaths per million population.

Consistent with previous findings (e.g., [2,6]), we found that models incorporating
spatial autocorrelation (SLM and SEM) outperformed the OLS for both the number of
COVID-19 cases and deaths. This finding highlights the importance of exploring the
potential effect of spatial autocorrelation in fitting models with multi-location data. We
found an increase of 6% for the R2 for the number of cases and 4.5% for the number of
deaths. These are, respectively, larger than the 4% increase reported for the number of cases
and lower than the 33% increase for the number of deaths found by Maiti et al. [2] in a study
of socio-economic and ecological drivers of COVID-19 dynamics at the county level in the
United States of America. This suggests that the magnitude of the model improvement
when accounting for spatial autocorrelation likely depends on the context and the studied
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variables. Our models also have a better explanatory power than previously established
models for Africa (e.g., Adj-R2 = 70% for the number of cases and Adj-R2 = 50% for the
number of deaths in Bouba et al. [7]).

Population demography pattern and structure, migration, socio-economic conditions,
health care systems, pollution, and climate have been shown to modulate the dynamics of
COVID-19 and hence may be epidemiologically informative in several places [2,6,30]. For
example, Su et al. [14] found that paying more attention to controlling migration, either
national or international, restricted population flows, modernising the health care system
by improving diagnosis and treatment capacity, and upgrading the public welfare system
to make it fully functional for the crisis situation could be the points of interest to effectively
fight against COVID-19. Our results showed that variables such as the number of tests
per million population, age dependency ratio, old dependency ratio, urbanisation rate,
bioclimatic variables, and pollution metrics are important drivers of COVID-19 incidence
in Africa.

The low burden of COVID-19 in most African countries was suggested to be partly
explained by the flaws in the detection and reporting system [31], which appeared to
be supported by the positive and significant association with both the number of cases
and deaths per million population that we found. Bouba et al. [7] also found similar
results, suggesting that the statistics reported in African countries might be sufficiently
underestimated, at least for the number of cases. This also indicates the relevance of
accounting for the number of tests as a covariate for proper estimations of the effect of other
variables. Indeed, bias, especially underreporting and reporting delays, is a major issue in
African COVID-19 cases and deaths data, which some studies have shown to being largely
underestimated by a factor of 8.5 on average due to the weakness of the health systems
at country level [32–34]. To consider this potential bias, we have included the number of
tests [33] as an explanatory variable, which turned out to be significant for both the number
of cases and number of deaths. Nevertheless, this might not have entirely addressed the
issue of underreporting as this is heterogeneous across countries [33], which introduces
uncertainty in our modelling.

Children and the old-aged population are often more vulnerable to respiratory
diseases [35,36], thus indicating the relevance of examining the potential role of the age
dependency ratio (DpR) and old dependency ratio (DepR_old) in the morbidity and
mortality of COVID-19. DpR is the sum of the young population (under the age of 15) and
elderly population (aged 65 and over) relative to the working-age population (aged 15 to
64). DepR_old is the number of people (in the age group of 65 and older) per 100 people
(aged 15 to 64). Our data and models indicate significant negative relationships between
DpR and the number of cases and number of deaths and, marginally, a significant negative
relationship between DepR_old and the number of deaths, consistent with the findings of
Varkey et al. [35] for Asian countries. This result supports the fact that, although statistics
of earlier waves indicate that older adults are more prone to COVID-19, the subsequent
waves provide evidence that even young adults are also affected by the disease.

The urbanisation level was one of the first confirmed positive driving factors of COVID-
19 transmission and subsequent deaths. This resulted in the first non-pharmaceutical
interventions to curb the disease dynamics, such as forbidding people gathering, social
distancing, airport closures, limited travel, sanitary cordons, etc. [37], which all aimed to
reduce people gathering, and hence the propagation of the virus through, e.g., aerosols,
droplets, and bioaerosols. Using data from 184 countries, Upadhyaya et al. [38] found a
positive and statistically significant association between urbanisation level and COVID-19
mortality. Similarly, Fan et al. [39] reported a positive association between urbanisation
with regional health vulnerability and the severity of the COVID-19 case rate and death rate.

In addition to the social, viral, and human dimensions regulating COVID-19 cases
and death patterns, climate may also play a pivotal role as a co-factor in the disease
dynamics [40]. For example, the duration of survival and transmission of SARS-CoV-2
through aerosols, droplets, and bioaerosols are negatively affected by temperature [41]. The
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negative relationship between annual mean temperature (Bio1) and COVID-19 cases that we
found agreed with several previous findings, supporting the conclusion that temperature
has a negative relationship with the incidence of COVID-19 [42,43]. In particular, a 1 ◦C
rise in temperature was associated with a 1.92 decrease in cases per million. Our findings
also indicated that the precipitation of the driest quarter (Bio17) was negatively associated
with the number of cases, corroborating previous evidence that bioclimatic variables
are important factors shaping the incidence distribution of COVID-19 [40]. In addition
to temperature- and precipitation-related variables, moisture has also been suggested
as a significant correlate of the number of COVID-19 cases and deaths [44]. There is
evidence that moisture is an important risk factor for respiratory diseases, where infection
is enhanced in low-humidity conditions [45], resulting in a negative relationship between
humidity and the incidence of respiratory disease. In this regard, Ma et al. [44] reported a
negative association between humidity and the daily death counts of COVID-19 in Wuban.
Consistent with these findings, our results also indicate that the number of COVID-19
deaths decreases with the moisture index of the most moist quarter (Mimq), highlighting the
importance of this factor, particularly for the number of deaths. This negative relationship
might somehow explain the low number of deaths in the arid countries of Africa (e.g., Niger,
Mali, and Burkina Faso), where the Mimq is often high. Contrary to Bouba et al. [7], who
did not find any association between COVID-19 cases and deaths and climate variables,
our findings provide evidence of the significant role of climate variables in the patterns of
the disease in Africa. These differences could be linked either to the collinearity among
predictors, diluting the effect of some variables, or the fact that we explicitly considered
spatial autocorrelation in our models, which was not the case in [7].

Changes in levels of air pollution affect urban environmental health and are often
associated with an increased likelihood of viral infection [46], which includes COVID-19.
Our findings suggest that high methane emissions and many people practising open
defection are negatively associated with the number of cases and deaths, respectively.
These findings are counter-intuitive as increased pollution is expected to increase the
likelihood of infections and mortality. These findings could hide an indirect effect of
confounding factors that our model might not capture. It may also be linked to the fact that
the data used for these two variables are too old (1 to 2 years before the pandemic’s start)
to determine the current patterns of the disease. Unfortunately, these are the most recent
data that we found, thus revealing a critical issue with public data in African countries.

Among the significant variables, the number of tests per 1 million people (Tests_1Mpop),
adjusted savings (AdjSav), and GDP were identified as the most important for both the
number of COVID-19 cases and the number of deaths, illustrating the importance of these
variables in driving the overall pattern of COVID-19 on the continent. The number of tests per
1 million people varied from 5073 (Algeria) to 878,731 (Eswatini) with a coefficient of variation
of 129.9%. The adjusted savings varied from 0.14 (Mauritius) to 3.64 (Chad) with a coefficient
of variation of 59.3%, and the GDP varied from 217 (Burundi) to 16,850 (Seychelles) with a
coefficient of variation of 121.3%. As illustrated by these figures, these variables varied greatly
across countries. In addition to the above variables that were common to both number of cases
and deaths, dependence ratio (DepR) and annual mean temperature (bio1) were identified as
important variables for the number of cases, while prevalence of malaria (Malaria.19) and the
prevalence of communicable diseases (Commun_DiseasePrevalence2019) were identified as
important for the number of deaths. These variables have a coefficient of variation of 39.96%,
14.2%, 130%, and 20.62%, respectively. For the prevalence of malaria, which showed the
greatest variation across countries, the negative effect we found was supported by previous
findings. For example, Anyanwu [47] reported a reduced number of COVID-19 deaths in
malaria-endemic countries, although they suggested further clinical trials. The prevalence
of malaria in our dataset varied from 0 in countries such as Algeria, Cabo Verde, Egypt,
Lesotho, Libya, Mauritius, Morocco, Seychelles, and Tunisia, where the numbers of cases
and deaths were high, to more than 300 in countries such as Sierra Leone, Mozambique,
the CAR, and Burundi, where the reported numbers of cases and deaths were relatively
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low. Concerning the prevalence of communicable disease, previous evidence also showed a
strong association between the COVID-19 pandemic and the control and prevention programs,
diagnosis capacity, and adherence to treatment of major infectious diseases (e.g., HIV, TB, and
malaria), including neglected diseases and non-communicable diseases [48].

Other variables not considered in this study have been suggested to drive the patterns
of COVID-19. For example, the Gini inequality index, the Global Health Security (GHS)
index, and the mean body mass index (BMI) have been identified as significant correlates
of the number of COVID-19 cases in Africa [7]. Similarly, the prevalence of diabetic
patients, the number of nurses per 1000 population, and the GHS index were also identified
as determinants of mortality due to COVID-19 in Africa [7]. These variables might be
correlated with some of the variables included in our models. Nevertheless, this indicates
that multi-dimensional perspectives should be considered to understand the drivers of
COVID-19 better and consequently design appropriate actions and public health policies.

5. Conclusions

This study performed a cross-country assessment of the socio-ecological drivers of the
COVID-19 dynamics in Africa using four global spatial regression models, namely Ordinary
Least Square (OLS) regression, the spatial lag model (SLM), the spatial error model (SEM),
and the conditional autoregressive model (CAR). The SEM outperformed the other models
for both the number of cases and the number of deaths per million people. This study
illustrates the importance of accounting for spatial autocorrelation in understanding the
dynamics of epidemics while highlighting the important role of socio-economic conditions
and climate in driving the dynamics of the epidemics. The study also shows the importance
of testing different weight matrices in exploring the performance of the global spatial
models. For COVID-19 cases, urbanisation rate, dependence ratio, methane emissions
in the energy sector, adjusted savings, annual mean temperature, and precipitation of
the driest quarter were the strongest covariates. For the COVID-19 deaths, population
density, dependence ratio for old people, adjusted savings, and moisture index of the moist
quarter were the strongest covariates. These identified variables explained 94.9% of the
variation in the number of cases and 89.7% of the variation in the number of deaths, which
is a very good performance. We conclude that improving socio-economic conditions and
the environment can help lower the impacts of future epidemics. The study, however,
considered only global spatial models, which assume spatial stationarity in the studied
features. Further studies could explore local spatial models such as geographical weighted
regression (GWR) or multiscale geographical weighted regression (MGWR) which instead
assume non-stationarity and this could bring additional insights.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/stats7040064/s1, Figure S1: Models diagnosis for (a) the number of
COVID-19 cases and (b) the number of COVID-19 deaths; Figure S2. Analysis of spatial dependence
in the OLS residuals. Moran index plot for the residuals of the regression of the number of COVID-19
cases [a] and deaths [b] (in log-scale) on the selected covariates. Significant Moran index values are
highlighted in blue; a negative value indicates a repulsion while a positive value indicates a cluster.
The red line is the overall trend which is close to zero; Table S1: Explanatory variables considered.
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