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Abstract: The purpose of this paper is to discuss the problem of estimation and testing the equality
of two autoregressive parameters of two first-order autoregressive processes AR(1), where for each
process, the observations are made at different time points. The primary interest is to propose the
testing procedures for the homogeneity of autocorrelation parameters ρ1 and ρ2. Furthermore, we are
interested in estimating ρ1 under uncertain and weak prior information about the possible equality of
ρ1 and ρ2, though we may not have full confidence in the tenacity of this information. A large sample
test for the homogeneity of the parameters is developed. Pooled “P” (or restricted estimator) and
preliminary test “PT” estimators are proposed, and their properties are investigated and compared
with the unrestricted estimator “UE” of ρ1.

Keywords: autoregressive; homogeneity; pretest estimators; pooled estimator; asymptotic bias;
asymptotic relative efficiency
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1. Introduction

The estimation of model parameters is a fundamental aspect of statistical analysis,
particularly when data originate from distinct sources or experiments. Suppose that
two research stations are conducting the same experiment independently, measuring
the same characteristics at different time points. We have a sample of n1 measurements
corresponding to the time points t11 < t12 < · · · < t1n1 for station 1 and a sample of n2
measurements corresponding to the time points t21 < t22 < · · · < t2n2 for station 2. It
is assumed that there is an autoregression of order-1 in the population of both research
stations. Let ρ1 and ρ2 be population autoregressive coefficients of two stations, respectively.
The first-order stationary autoregressive model for research station 1 is given by

X1t = ρ1X1(t−1) + ϵ1t, t = 1, . . . , n1, (1)

where ϵ1t are independently and identically distributed with mean zero and finite variance
σ2

1 . Similarly, the first-order stationary autoregressive model for research station 2 is
given by

X2t = ρ2X2(t−1) + ϵ2t, t = 1, . . . , n2, (2)

where ϵ2t are independently and identically distributed with mean zero and finite variance
σ2

2 . Suppose that for j = 1, 2, we have samples for nj measurements xjtj1 , xjtj2 , . . . , xjtjnj

corresponding to the time points tj1 < tj2 < · · · < tjnj for station j.
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The ordinary least squares estimate (OLSE) or unrestricted estimator “UE” ρ̂j of ρj
based on nj observations xjtj1 , xjtj2 , . . . , xjtjnj

is

ρ̂j =

nj−1

∑
i=1

xjtji xjtj(i−1)

nj−1

∑
i=1

x2
jtj(i−1)

. (3)

In many practical scenarios, the choice between the pooled estimation and separate
estimation of parameters can significantly impact the efficiency and reliability of the result-
ing estimators. The debate over pooling versus separate estimation has been extensively
studied in the literature. Ahmed [1] investigated the conditions under which pooling dis-
crete data yields more efficient estimators, laying the groundwork for subsequent research.
Building on these foundational insights, Wang et al. [2] explored effective strategies for
parameter estimation and forecasting in panel regressions, while Juodis et al. [3] examined
the asymptotic properties of pooled factor-augmented regressions under more realistic
conditions. Recent advancements, such as those by Aldeni et al. [4], who focused on pretest
and shrinkage estimators for log-normal means, and Waqas et al. [5], who developed ro-
bust methodologies for optimizing shape parameters in Birnbaum–Saunders distributions,
further contribute to the growing body of research in this area.

The concept of pretest estimators employs preliminary tests to decide whether to pool
data or estimate parameters separately. This approach aims to balance the efficiency gains
of pooled estimators (see [3]) with the robustness of separate estimation when there is
uncertainty about parameter equality. Furthermore, Ahmed [1] explored penalty, shrinkage,
and pretest strategies for variable selection and estimation, providing valuable methods for
improving estimation efficiency. Recent works by Piladaeng et al. [6] introduced penalized,
post-pretest, and post-shrinkage strategies in non-linear growth models and Stein-rule
M-estimation in sparse partially linear models, respectively. In another contribution,
Ahmed et al. [7] developed efficient estimators of reliability characteristics for a family
of lifetime distributions under progressive censoring. These advancements expand the
scope of pretest estimation methods and their practical applications. For a comprehensive
review, Danilov [8] explored the effects of pretesting in econometrics, particularly in
applications to finance, highlighting the comparative advantages of pretest estimators over
unrestricted estimators.

In contrast to these approaches, our study focuses on estimating ρ1 under the hy-
pothesis that ρ1 = ρ2, emphasizing scenarios where combining data from two separate
sources is crucial. Suppose we have two research stations conducting the same experiment
independently, providing separate datasets. One dataset is known to be from the model of
interest, while the second, acquired at a different time or location, is suspected to belong
to the same model but is not definitively confirmed. The challenge is to estimate ρ1 when
prior information about the potential equality of ρ1 and ρ2 is uncertain. In this context, we
propose a large sample test statistic to assess the homogeneity of autocorrelation parameters
and introduce both pooled and preliminary estimators tailored to parallel sampling con-
texts. Our objective is to evaluate whether integrating information from these two datasets
improves parameter estimation, given the uncertainty surrounding parameter equality.
By combining information from the two sources, we aim to enhance the efficiency and
accuracy of the estimators. Let the null or preliminary hypothesis be

H0 : ρ1 = ρ2 = ρ0(unknown), (4)

The remainder of this article is structured as follows: In Section 2, we propose a
large sample test statistic for assessing the homogeneity of autocorrelation parameters and
introduce the pooled and preliminary estimators of ρ1. Section 3 investigates the properties
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of these estimators, providing a detailed analysis of their asymptotic bias and mean squared
error. Section 4 compares the performance of the estimators using various tools such as
dominance criteria. Section 5 presents a simulation study to evaluate both the asymptotic
properties and the finite-sample performance of the estimators. Section 6 demonstrates two
applications of the estimation method using real-world data from weather and economic
studies. Finally, Section 7 summarizes the findings and discusses future research.

2. Improved Estimation

Let mj = nj − 1. Wei [9] showed that for the stochastic regression model,√
mj
(
ρ̂j − ρj

) L−→ N
(
0, νj

)
,

where L−→ means convergence in distribution and νj =
σ2

j

γj(0)
, with γj(h) being the autoco-

variance function of order h for the jth population. Note that for a stationary AR(1) process,

the autocovariance at lag h = 0 is given by γj(0) =
σ2

j

1 − ρ2
j

. In light of the above asymptotic

distributional result, we propose a Pooled “P” or restricted estimator of ρ1 under the null
(preliminary) hypothesis (4) as

ρ̂P =

n1

ν̂1
ρ̂1 +

n2

ν̂2
ρ̂2

n1

ν̂1
+

n2

ν̂2

, (5)

where ν̂j =
σ̂2

j

γ̂j(0)
, with σ̂2

j and γ̂j(0) as consistent estimators of σ2
j and γj(0), respectively,

given by

γ̂j(0) =

nj

∑
i=1

x2
jtji

nj
and σ̂2

j =

mj

∑
i=1

(
xjtji − ρ̂j xjtj(i−1)

)2

mj
,

This formulation is the most general case. If ν1 = ν2, we recover the scenario where
the variances are equal, and thus the weights simplify. Additionally, if n1 = n2, the pooled
estimator simplifies even further to a simple average. Therefore, our approach captures the
most general situation, allowing for variations in both sample sizes and variances. Typically,
the pooled estimator ρ̂P performs better than the unrestricted estimator ρ̂1 under the null
hypothesis (4). However, as the scale distance between ρ1 and ρ2 grows, ρ̂P becomes
considerably biased and inefficient. The performance of ρ̂1 remains unchanged over such
departures. In an effort to improve the precision of estimators, its is reasonable to develop
an estimator which is a combination of ρ̂1 and ρ̂P by incorporating a preliminary test on the
null hypothesis (4), following an approach which was discussed in [1]. As a result, when
H0 is rather suspicious, it is desirable to have a compromise estimator using a preliminary
test on H0 in (4) and then choose ρ̂P or ρ̂1 based upon the outcome of the test.

First, we propose a large sample test statistic Z2 for H0:

Z2 =

(
ν̂1

n1
+

ν̂2

n2

)−1

(ρ̂1 − ρ̂2)
2, (6)

The distribution of Z2 under the (4) tends to central chi-square distribution with
1 degree of freedom χ2

(1) if n1 + n2 → ∞. Consequently, under (4), the critical value of

Z2 may be approximated by χ2
(1,α) which denotes the upper 100 α% critical value of χ2

(1).
Finally, the preliminary test estimator “PT” is defined by
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ρ̂PT = ρ̂P 1
(
Z2 < χ2

1,α

)
+ ρ̂1 1

(
Z2 ≥ χ2

1,α

)
, (7)

where 1(A) is an indicator function of the set A. We notice that ρ̂PT is a convex combination
of ρ̂1 and ρ̂P via a test statistic for testing H0, and this estimator may not be perfect in the
whole parameter space. For some account of the parametric theory on the subject, we refer
the reader to [1,10], among others. Two bibliographies in this area of research are provided
by Piladaeng et al. [6], Chien-Pai Han and Ravichandran [11]. The asymptotic theory of
preliminary test estimation for discrete models is discussed by Ahmed [1], among others.

We use the mean squared error (MSE) criterion to appraise the performance of the
estimators under the following squared loss function:

L(ρ̂∗, ρ1) = (ρ̂∗ − ρ1)
2,

where ρ̂∗ is a suitable estimator of ρ1. Then, the MSE of ρ̂ is given by MSE(ρ̂∗, ρ1) = E(ρ̂∗ − ρ1)
2;

further, ρ̂∗ is termed an inadmissible estimator of ρ1 if there exists an alternative estimator ρ̂⋄

such that
MSE(ρ̂⋄) ≤ MSE(ρ̂∗) for all ρ1, (8)

with strict inequality for some ρ1. If, instead of (8) holding for every n, we use the asymp-
totic MSE (AMSE), then we require that

lim
n→∞

MSE(ρ̂⋄) ≤ lim
n→∞

MSE(ρ̂∗) for all ρ1, (9)

with strict inequality for some ρ1. Then, ρ̂∗ is termed an asymptotically inadmissible
estimator of ρ1.

3. Main Results

For large values of (6), the preliminary test estimator in (7) leads to the asymptotic
equivalence with the usual maximum likelihood estimator. Also, when (4) does not hold
and n is very large, by virtue of the consistency of the test-statistic, (6) will be large in
probability, and the (7) will be asymptotically equivalent in probability, to the (3). Hence, in
the asymptotic set-up, a fixed alternative will not make sense. A meaningful investigation
is possible for local alternatives where ρ1 is close to ρ2. Therefore, it is reasonable to
restrict ourselves to local alternative Kn, which contains the null hypothesis as a special
case. Under an asymptotic set-up, we shall examine the performance of the estimators.
We may also remark here that for parametric preliminary test estimation, unless the true
parameters are close to each other, there is no substantial gain from the preliminary test
estimation over classical methods. This closeness is precisely characterized in terms of local
alternatives. Moreover, the asymptotic set-up enables us to obtain results which are quite
comparable to the existing parametric preliminary test estimation theory. For given sample
size n = n1 + n2, replacing ρ1 by ρ1 +

δ√
n , we obtain

Kn : ρ2 = ρ1 +
δ√
n

, (10)

where δ is a fixed real number. Under the local alternatives in (10) and as n → ∞, in such
a way that n1/n → π ∈ [0, 1] and n2/n → (1 − π) ∈ [0, 1], the following lemmas are the
consequences of the results of Wei [9].

Lemma 1. X1 =
√

n(ρ̂1 − ρ0)
d−→ X ∼ N

(
δ,

ν1

π

)
.

Proof. The detailed proof is provided in Appendix A.

Lemma 2. Z1 =
√

n
(
ρ̂P − ρ0

) d−→ Z ∼ N
(

0,
ν2ν1

πν2 + (1 − π)ν1

)
.
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Proof. See Appendix B for the detailed proof.

Lemma 3. Y1 =
√

n
(
ρ̂1 − ρ̂P) d−→ Y ∼ N

([
(1 − π)ν1

(1 − π)ν1 + πν2

]
δ,
[

(1 − π)ν1

(1 − π)ν1 + πν2

]
ν1

π

)
.

Proof. For a detailed proof, see Appendix C.

Lemma 4. As n → ∞, the test statistics Z2 given in (6) has asymptotically a non-central chi-square

distribution with 1 degree of freedom and a non-centrality parameter ∆ =
π(1 − π)δ2

(1 − π)ν1 + πν2
.

Proof. See Appendix D.

Now, we present the expressions for the asymptotic biases of the estimators as follows.
By direct computation and using the results from [10], we arrive at the following bias
expressions of the estimators:

B1 = asymptotic bias of
{√

n(ρ̂1 − ρ1)
}
= 0,

B2 = asymptotic bias of
{√

n
(

ρ̂P − ρ1

)}
=

(1 − π)ν1

(1 − π)ν1 + πν2
δ,

B3 = asymptotic bias of
{√

n
(

ρ̂PT − ρ1

)}
= B2 G3

(
χ2

1,α; ∆
)

,

where Gm(., ∆) is the cumulative distribution function of a non-central chi-square dis-
tribution with m degrees of freedom and non-centrality parameter ∆. First, note that
limδ→∞ δ G3

(
χ2

1,α; ∆
)
= 0. Thus, we conclude that ρ̂PT is asymptotically unbiased (in the

sense of δ), but ρ̂P is not so. However, since the bias is a component of the asymptotic mean
squared error (AMSE) and the control of the AMSE would control both bias and variance,
we shall only compare the AMSE from this point onwards. Expressions for the AMSE of
the estimators are presented in the following theorem, which follow from the results in [10].

Theorem 1. Under the local alternatives (10), the AMSE of the estimators is as follows:

AMSE1(∆) = asymptotic MSE of
{√

n(ρ̂1 − ρ1)
}
=

ν1

π
, (11)

AMSE2(∆) = asymptotic MSE of
{√

n
(

ρ̂P − ρ1

)}
=

ν1

π

(
1 +

(1 − π)ν1

(1 − π)ν1 + πν2
(∆ − 1)

)
, (12)

AMSE3(∆) = asymptotic MSE of
{√

n
(

ρ̂PT − ρ1

)}
=

ν1

π

(
1 +

(1 − π)ν1

(1 − π)ν1 + πν2

[
∆
{

2G3

(
χ2

1,α; ∆
)
− G5

(
χ2

1,α; ∆
)}

− G3

(
χ2

1,α; ∆
)])

. (13)

Proof. For a detailed proof, see Appendix E.

4. Asymptotic Properties of the Estimators

We note that the AMSE of ρ̂1 is a constant line, while the AMSE of ρ̂P is a straight
line in terms of ∆, which intersects the AMSE of ρ̂1 at ∆ = 1. Using the AMSE criterion to
appraise performance, if the restriction (ρ1 = ρ2) is correct, then the AMSE of ρ̂P is less than
the AMSE of ρ̂1. Furthermore, AMSE2 ≤ AMSE1 if 0 ≤ ∆ ≤ 1. Hence, for ∆ ∈ [0, 1], ρ̂P

outperforms ρ̂1. However, beyond this interval, the AMSE of ρ̂P increases without bound.
In an effort to identify some important characteristic of the PT estimators, first note that

G5

(
χ2

1,α; ∆
)
≤ G3

(
χ2

1,α; ∆
)
≤ G3

(
χ2

1,α; 0
)
= 1 − α, (14)



Stats 2024, 7 1146

for α ∈ [0, 1] and ∆ ≥ 0. The left-hand side of (14) converges to 0 as ∆ approaches infinity.
Now, we compare the AMSE of PT with that of the UE. We notice that ρ̂PT dominates
ρ̂1 whenever

∆ ≤ G3

(
χ2

1,α; ∆
)[

2G3

(
χ2

1,α; ∆
)
− G5

(
χ2

1,α; ∆
)]−1

. (15)

It is obvious from (15) that the AMSE of PT is less than the AMSE of UE when ∆ is
equal to or near 0. Further, as α, the level of the statistical significance, approaches one,
the AMSE of PT tends to the AMSE of UE. Also, when ∆ increases and tends to infinity,
the AMSE of ρ̂PT approaches the AMSE of ρ̂1. Further, for larger values of ∆, the value of
the AMSE of ρ̂PT increases, reaches its maximum after crossing the AMSE of ρ̂1, and then
monotonically decreases and approaches the AMSE of ρ̂1. There are, therefore, points in
the parameter space where ρ̂PT has a larger AMSE than ρ̂1 and a sufficient condition for
this result to occur is that the following inequality holds:

AMSE3 > AMSE1 according as ∆ > G3

(
χ2

1,α; ∆
)[

2G3

(
χ2

1,α; ∆
)
− G5

(
χ2

1,α; ∆
)]−1

.

Finally, under (4), the dominance picture of the estimators is as follows:

• None of the three estimators are inadmissible with respect to the other two.
• However, at ∆ = 0, the estimators may be ordered according to the magnitude of their

AMSE as follows: ρ̂P ≻ ρ̂PT ≻ ρ̂1. Here, ≻ denotes domination.

5. Simulation Study

In this section, we employ simulated data to explore the relative efficiency of the
estimators under consideration. The comparisons between the ρ̂P and ρ̂PT estimators are
conducted with respect to the ρ̂1 unrestricted estimator “UE”, based on the simulated
relative efficiency (SRE). The SRE of an estimator ρ̂∗ in comparison to the ρ̂1 is defined as

SRE(ρ̂1; ρ̂∗) =
SR(ρ̂1)

SR(ρ̂∗)
,

here, SR(·) represents the simulated risk of an estimator. The SR of an estimator ρ̂∗ is
determined by the average risk over M replications, calculated by

SR(ρ̂∗) =
1
M

M

∑
l=1

(ρ̂∗l − ρ0)
2.

It is evident that the SRE of the ρ̂1 will always equal one, as it serves as the baseline
for comparison. An SRE value greater than one indicates that the estimator ρ̂∗ outperforms
ρ̂1, suggesting a higher efficiency relative to the ρ̂1. Conversely, an SRE value less than
one implies that ρ̂∗ is less efficient than ρ̂1, indicating a certain degree of inferiority in its
performance. This metric allows for a clear quantification of the relative merits of different
estimators. We perform Monte Carlo simulations using various combinations of sample
sizes n1 and n2. Both small and large sample sizes are considered to assess their impact
on the performance of the estimators, where n = n1 + n2. Two autoregressive models, (1)
and (2), are generated with varying sizes n1 and n2, and across a range of ρ0 = (0.3, 0.5, 0.7).
The parameters are defined as follows: ρ1 = ρ2 and ρ2 = ρ1 +

δ√
n . The scale parameter δ is

selected to take small values, starting from 0 up to its maximum, ensuring the stationarity
of our autoregressive models:

0 ≤ δ < (1 − ρ0)
√

n. (16)

First, we compute the unrestricted estimators ρ̂j for j = 1, 2 using (3). Following this,
the pooled or restricted estimator ρ̂P is determined using (5). Subsequently, we calculate the
test statistic Z2 as described in (6), with the distribution of the test statistic being evaluated
under the null hypothesis (4). Finally, the pretest estimators ρ̂PT are derived using (7). This
process allows us to systematically compare the performance of the different estimators
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under various conditions, ensuring a thorough assessment of their relative efficiencies.
The SR for each estimator is computed by repeating the simulation M = 10,000 times to
ensure stable results. The SREs of the proposed estimators are evaluated across various
combinations of n1, n2, and ρ0, with α fixed at 0.05 and 0.10, and δ varying within the
range [0,(1 − ρ0)

√
n1 + n2

]
. Tables 1 and 2 present the SRE(ρ̂1; ρ̂∗) values for the different

estimators for both smaller and larger sample sizes, respectively, while the corresponding
graphs are displayed in Figure 1. The figure illustrates the results when n1 = 25 and
n2 = 50 at the top, and n1 = n2 = 500 at the bottom.

Table 1. SREs of estimators ρ̂P and ρ̂PT when sample sizes n1 and n2 are small, for varying ρ0 values.

ρ0 = 0.3 ρ0 = 0.5 ρ0 = 0.7

ρ̂P ρ̂PT ρ̂P ρ̂PT ρ̂P ρ̂PT

n1 n2 δ α = 0.05 α = 0.10 α = 0.05 α = 0.10 α = 0.05 α = 0.10

25 50

0.0 2.9037 1.8862 1.5875 3.0396 1.8932 1.5920 3.2731 1.9207 1.6215
0.2 2.9157 1.8572 1.5550 3.0918 1.8640 1.5823 3.5997 1.9191 1.6015
0.4 2.8525 1.7956 1.5118 3.0791 1.8039 1.5132 3.7049 1.8487 1.4826
0.6 2.6866 1.6357 1.4303 3.0193 1.6313 1.4061 3.5048 1.6811 1.3935
0.8 2.4584 1.5145 1.3458 2.7341 1.5013 1.3189 3.1426 1.4901 1.2674
1.0 2.1960 1.3797 1.2421 2.3709 1.3860 1.2046 2.6527 1.3131 1.1361
2.0 1.0717 0.8278 0.8304 1.0311 0.7665 0.7759 0.8677 0.6457 0.6775
3.0 0.5317 0.5590 0.6283 0.4572 0.5105 0.5940 - - -
4.0 0.2883 0.4690 0.5866 0.2246 0.4832 0.6411 - - -
5.0 0.1652 0.5278 0.6918 - - - - - -
6.0 0.0981 0.7874 0.9199 - - - - - -

50 50

0.0 1.9911 1.5634 1.3954 1.9897 1.5635 1.3776 2.1448 1.5973 1.4076
0.2 1.9699 1.5242 1.3634 2.0113 1.5327 1.3763 2.2239 1.5930 1.4014
0.4 1.9489 1.4812 1.3279 2.0127 1.5003 1.3430 2.2829 1.5432 1.3348
0.6 1.8866 1.4123 1.2795 2.0115 1.4179 1.2713 2.2085 1.4520 1.2773
0.8 1.7873 1.3388 1.2228 1.8638 1.3326 1.2179 2.0751 1.3097 1.1769
1.0 1.6617 1.2505 1.1505 1.7197 1.2353 1.1371 1.8508 1.1817 1.0887
2.0 0.9647 0.8269 0.8439 0.9061 0.7724 0.8005 0.7397 0.6676 0.7255
3.0 0.5246 0.6148 0.6927 0.4214 0.5711 0.6784 - - -
4.0 0.2864 0.5662 0.6844 0.2029 0.6229 0.7656 - - -
5.0 0.1633 0.6596 0.7979 - - - - - -
6.0 0.0954 0.8582 0.9342 - - - - - -

75 100

0.0 2.2620 1.7054 1.4904 2.3790 1.7234 1.4911 2.4939 1.7167 1.4861
0.2 2.2674 1.7110 1.4801 2.4086 1.7181 1.4580 2.6410 1.7026 1.4545
0.4 2.2080 1.6406 1.4413 2.3616 1.6366 1.3985 2.5822 1.5579 1.3477
0.6 2.0938 1.5561 1.3772 2.2358 1.5095 1.3275 2.3541 1.4606 1.2700
0.8 1.9396 1.4506 1.2916 2.0543 1.3734 1.2474 2.1589 1.2990 1.1630
1.0 1.7684 1.2974 1.1970 1.8353 1.2508 1.1584 1.8478 1.1466 1.0636
2.0 0.9667 0.8256 0.8365 0.8841 0.7534 0.7828 0.6771 0.6395 0.7026
3.0 0.5091 0.5904 0.6656 0.4234 0.5624 0.6596 0.2674 0.5580 0.7032
4.0 0.2912 0.5353 0.6522 0.2213 0.5703 0.7136 - - -
5.0 0.1773 0.6067 0.7485 0.1244 0.7614 0.8851 - - -
6.0 0.1129 0.7752 0.8875 0.0721 0.9622 0.9875 - - -
7.0 0.0736 0.9402 0.9771 - - - - - -
8.0 0.0491 0.9953 0.9988 - - - - - -
9.0 0.0329 1.0000 1.0000 - - - - - -

100 100

0.0 1.9636 1.5278 1.3771 2.0275 1.5633 1.3998 2.0626 1.5818 1.4085
0.2 1.9733 1.5354 1.3733 2.0669 1.5422 1.3613 2.1880 1.6036 1.3921
0.4 1.9343 1.4791 1.3404 2.0345 1.4930 1.3286 2.1328 1.4860 1.3044
0.6 1.8566 1.4163 1.2883 1.9484 1.4212 1.2614 2.0692 1.4049 1.2381
0.8 1.7480 1.3355 1.2281 1.8025 1.3099 1.1957 1.8946 1.2617 1.1463
1.0 1.6493 1.2681 1.1746 1.6495 1.2144 1.1189 1.6726 1.1364 1.0651
2.0 0.9596 0.8377 0.8520 0.8812 0.7814 0.8074 0.6711 0.6692 0.7365
3.0 0.5360 0.6263 0.6988 0.4392 0.6002 0.6930 0.2650 0.6074 0.7455
4.0 0.3131 0.5791 0.6953 0.2329 0.6171 0.7432 0.1135 0.8748 0.9590
5.0 0.1912 0.6529 0.7878 0.1289 0.7923 0.9002 - - -
6.0 0.1216 0.7952 0.9061 0.0738 0.9619 0.9865 - - -
7.0 0.0787 0.9405 0.9787 0.0427 0.9997 0.9997 - - -
8.0 0.0519 0.9937 0.9963 - - - - - -
9.0 0.0343 0.9992 1.0000 - - - - - -

The stability condition (16) is not fulfilled and is noted by a ’-’.
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Table 2. SREs of estimators ρ̂P and ρ̂PT when sample sizes n1 and n2 are larger, for varying ρ0 values.

ρ0 = 0.3 ρ0 = 0.5 ρ0 = 0.7

ρ̂P ρ̂PT ρ̂P ρ̂PT ρ̂P ρ̂PT

n1 n2 δ α = 0.05 α = 0.10 α = 0.05 α = 0.10 α = 0.05 α = 0.10

150 250

0.0 2.6517 1.8058 1.5250 2.6486 1.7819 1.5243 2.6871 1.7870 1.5302
0.2 2.6708 1.8105 1.5405 2.6514 1.7699 1.5005 2.7906 1.7946 1.4986
0.4 2.5615 1.7428 1.5006 2.5648 1.6942 1.4533 2.7022 1.6498 1.3995
0.6 2.3830 1.6426 1.4203 2.3705 1.5795 1.3809 2.3987 1.4700 1.2912
0.8 2.1628 1.5266 1.3484 2.1247 1.4358 1.2838 2.0712 1.3044 1.1764
1.0 1.9275 1.3985 1.2504 1.8625 1.2909 1.1837 1.7413 1.1459 1.0658
2.0 0.9756 0.8337 0.8433 0.8647 0.7598 0.7877 0.6593 0.6362 0.6966
4.0 0.3079 0.5215 0.6336 0.2422 0.5343 0.6658 0.1437 0.7044 0.8465
6.0 0.1328 0.7019 0.8269 0.0950 0.8533 0.9451 - - -
8.0 0.0678 0.9598 0.9875 0.0439 0.9986 1.0000 - - -
10.0 0.0378 1.0000 1.0000 - - - - - -
12.0 0.0221 1.0000 1.0000 - - - - - -
13.0 0.0170 1.0000 1.0000 - - - - - -

250 250

0.0 2.0009 1.5716 1.3841 2.0044 1.5853 1.3798 2.0232 1.5680 1.3856
0.2 1.9807 1.5519 1.3809 2.0057 1.5541 1.3635 2.0376 1.5186 1.3550
0.4 1.9246 1.5076 1.3458 1.9345 1.4802 1.3411 2.0376 1.4474 1.3079
0.6 1.8321 1.4309 1.2879 1.8375 1.4052 1.2757 1.9019 1.3440 1.2330
0.8 1.7128 1.3364 1.2253 1.7058 1.3141 1.2123 1.7072 1.2377 1.1417
1.0 1.5776 1.2430 1.1542 1.5538 1.2121 1.1359 1.4793 1.1070 1.0536
2.0 0.9306 0.8364 0.8579 0.8477 0.7792 0.8164 0.6478 0.6763 0.7353
4.0 0.3284 0.5732 0.6840 0.2574 0.6003 0.7220 0.1447 0.7676 0.8813
6.0 0.1442 0.7508 0.8749 0.1002 0.8888 0.9507 0.0426 0.9994 1.0000
8.0 0.0731 0.9700 0.9922 0.0447 0.9971 0.9994 - - -
10.0 0.0401 0.9993 1.0000 0.0211 1.0000 1.0000 - - -
12.0 0.0228 1.0000 1.0000 - - - - - -
13.0 0.0172 1.0000 1.0000 - - - - - -
15.0 0.0098 1.0000 1.0000 - - - - - -

250 500

0.0 2.9386 1.8986 1.5719 2.9433 1.9106 1.5777 3.0249 1.8969 1.5904
0.2 2.9424 1.9096 1.5608 2.9223 1.8718 1.5478 3.1022 1.8312 1.5068
0.4 2.7980 1.8019 1.5108 2.8300 1.7806 1.5073 2.9007 1.7002 1.4092
0.6 2.5747 1.6732 1.4398 2.5747 1.6451 1.4066 2.4983 1.5195 1.3278
0.8 2.3095 1.5382 1.3471 2.2722 1.4895 1.3094 2.1217 1.3449 1.1967
1.0 2.0353 1.3939 1.2503 1.9652 1.3295 1.2012 1.7738 1.1605 1.0762
3.0 0.5346 0.5899 0.6581 0.4495 0.5483 0.6338 0.3080 0.5136 0.6271
5.0 0.2060 0.5316 0.6664 0.1621 0.6072 0.7476 0.0969 0.8795 0.9537
7.0 0.1023 0.7949 0.9032 0.0763 0.9330 0.9773 0.0403 1.0000 1.0000
9.0 0.0585 0.9785 0.9905 0.0413 0.9981 0.9993 - - -
11.0 0.0364 1.0000 1.0000 0.0241 1.0000 1.0000 - - -
13.0 0.0239 1.0000 1.0000 0.0147 1.0000 1.0000 - - -
15.0 0.0162 1.0000 1.0000 - - - - - -
17.0 0.0111 1.0000 1.0000 - - - - - -
19.0 0.0078 1.0000 1.0000 - - - - - -

500 500

0.0 1.9776 1.5608 1.3883 1.9825 1.5461 1.3698 1.9710 1.5469 1.3867
0.2 2.0135 1.5659 1.3728 1.9796 1.5353 1.3637 2.0633 1.5546 1.3681
0.4 1.9591 1.5202 1.3526 1.9247 1.4833 1.3347 1.9930 1.4764 1.3128
0.6 1.8673 1.4482 1.3087 1.8027 1.3946 1.2831 1.7859 1.3680 1.2400
0.8 1.7480 1.3694 1.2534 1.6732 1.3134 1.2108 1.6110 1.2349 1.1531
1.0 1.6121 1.2768 1.1924 1.5257 1.2107 1.1331 1.4578 1.1254 1.0557
3.0 0.5594 0.6399 0.7054 0.4675 0.6029 0.6837 0.3138 0.5836 0.6952
5.0 0.2287 0.6153 0.7482 0.1746 0.6950 0.8184 0.0964 0.9162 0.9726
7.0 0.1149 0.8713 0.9469 0.0809 0.9599 0.9867 0.0371 1.0000 1.0000
9.0 0.0653 0.9902 0.9963 0.0425 0.9993 1.0000 0.0156 1.0000 1.0000
11.0 0.0400 1.0000 1.0000 0.0238 1.0000 1.0000 - - -
13.0 0.0256 1.0000 1.0000 0.0137 1.0000 1.0000 - - -
15.0 0.0169 1.0000 1.0000 0.0080 1.0000 1.0000 - - -
17.0 0.0113 1.0000 1.0000 - - - - - -
19.0 0.0075 1.0000 1.0000 - - - - - -
21.0 0.0050 1.0000 1.0000 - - - - - -

The stability condition (16) is not fulfilled and is noted by a ’-’.

From the simulation outcomes, the following observations can be made:

1. Since the estimator ρ̂P achieves the highest SRE at δ = 0, it outperforms all other
estimators. This effectiveness further improves as the parameter of the autoregressive
model increases. However, for the ρ̂PT estimator, its efficiency declines as both the
level of significance and the values of ρ0 increase.

2. When δ > 0, none of the three estimators are superior to the others. This result is
due to the SRE of ρ̂PT decreasing continuously with increasing δ. However, beyond a
certain point, as δ continues to rise, the efficiency gradually approaches one. Before
reaching this point, ρ̂PT experiences a sharp decline in efficiency, eventually being
surpassed by ρ̂P. After this point, the SRE of the ρ̂P estimator becomes less significant
compared to the ρ̂PT estimator.
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Figure 1. SREs of the ρ̂P and ρ̂PT estimators for ρ0 = (0.3, 0.5, 0.7), α = (0.05, 0.1). (top) n1 = 25 and
n2 = 50, (bottom) n1 = n2 = 500.

As we proceed in this study, our focus will shift towards a deeper investigation
into the statistical properties and the performance of a test statistic Z2 given by (6). We
derive the asymptotic distribution of Z2 under large sample conditions, which is a non-
central chi-square distribution χ2

(1,∆). Specifically, we prove the Lemma 4. To validate
this result, we perform a series of simulations: we simulate 10,000 times the statistic Z2
for different values of ρ0 = (0.3, 0.5, 0.7) and a range of δ values (where δ satisfies the
condition (16)). For each scenario, the degree of freedom df and non-centrality parameters
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∆ are estimated using the maximum likelihood method (MLE). Furthermore, we will
compare the empirical findings with the theoretical expectations to ensure consistency
across different scenarios. The simulation results confirm the theoretical findings derived
in Lemma 4. The estimated values df̂ and ∆̂ coincide with the theoretically predicted
values, demonstrating the accuracy of the asymptotic distribution for the test statistic Z2.
Additionally, we compile Table 3, which summarizes the descriptive statistics and the
MLE for the asymptotic distribution of Z2 under different values of ρ0 and δ, assuming
n1 = n2 = 500. The table presents the mean, variance, median, skewness, and kurtosis
of the simulated data, as well as the estimated degrees of freedom and non-centrality
parameters for the corresponding χ2 distribution. This is further complemented by Figure 2,
which provides a graphical representation of the fit, illustrating the consistency between
the theoretical and simulated distributions.

Table 3. Summary statistics and asymptotic distribution of Z2 for different values of ρ0 and δ, when
n1 = n2 = 500.

Descriptive Statistics MLE of χ2(df, ∆)

ρ0 δ Mean Variance Median Skewness Kurtosis df̂ ∆̂

0.3

0.0 0.9819 2.0071 0.4356 3.0046 13.9022 0.9881 0.0000
0.2 0.9969 1.9774 0.4425 2.6666 9.6435 0.9870 0.0100
0.4 1.0285 2.1124 0.4617 2.6750 9.7308 0.9824 0.0466
0.6 1.0822 2.3349 0.4829 2.6703 9.7125 0.9931 0.0891
0.8 1.1582 2.6456 0.5219 2.6407 9.4782 1.0132 0.1431
1.0 1.2567 3.0451 0.5732 2.5832 9.0195 0.9951 0.2600
1.5 1.6021 4.4374 0.7843 2.3518 7.3284 1.0026 0.5952
2.0 2.0915 6.4020 1.1729 2.0795 5.6259 0.9932 1.0964

0.5

0.0 0.9985 2.0075 0.4489 2.9158 13.0787 0.9952 0.0033
0.2 1.0129 2.0670 0.4599 2.9289 13.0207 0.9957 0.0172
0.4 1.0541 2.2328 0.4879 2.9225 12.7862 0.9934 0.0608
0.6 1.1022 2.3324 0.5075 2.6311 10.0075 1.0116 0.0916
0.8 1.1950 2.6968 0.5510 2.5795 9.5633 0.9993 0.1984
1.0 1.3156 3.1708 0.6148 2.4974 8.8724 0.9919 0.3279
1.5 1.7413 4.8454 0.9016 2.2113 6.7461 0.9802 0.7683
2.0 2.3581 7.5781 1.4140 2.0446 5.7282 1.0108 1.3410

0.7

0.0 0.9803 1.8986 0.4423 2.7329 10.5603 0.9919 0.0000
0.2 1.0017 2.0001 0.4624 2.9467 13.2798 1.0094 0.0001
0.4 1.0606 2.2285 0.4942 2.9445 13.3232 1.0049 0.0559
0.6 1.1562 2.6374 0.5289 2.6470 9.5245 0.9840 0.1723
0.8 1.2956 3.2042 0.6070 2.5681 8.8611 0.9970 0.2968
1.0 1.4843 3.8666 0.7236 2.4689 8.5549 1.0245 0.4606
1.5 2.1585 6.4644 1.2491 2.0493 5.9878 1.0078 1.1591
2.0 3.0848 10.0387 2.1403 1.6967 3.7772 1.0093 2.0936

r0 = 0.3      c2 (0.9881 , 0) r0 = 0.5      c2 (0.9952 , 0.0033) r0 = 0.7      c2 (0.9919 , 0)
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Figure 2. Cont.
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Figure 2. Fitted distribution of Z2 for different values of ρ0 and δ = {0, 0.4, 1, 2}, with n1 = n2 = 500.

6. Real Data Applications

To demonstrate the usefulness of the suggested estimators from Section 2, we present
two real-data applications (in weather and economy) in this section to validate their
practical relevance and effectiveness.

6.1. Mean Annual Precipitation

Various precipitation metrics, including the daily totals, monthly accumulations,
annual precipitation, extreme values, rainfall durations, and rain rates, have been modeled
using a time series autoregressive model. As our initial application, we analyze two time
series representing mean annual precipitation from two stations located in Washington
State, USA. The first station “HOQUIAM BOWERMAN AP” provides the mean annual
precipitation records from 1970 to 2024, covering a period of 54 years (n1 = 55 observations),
and is denoted as X1t. The second station “ABERDEEN” offers data spanning from 1950 to
2022, with a total of 72 years of precipitation records (n2 = 73 observations), and is denoted
as X2t. These datasets are publicly available on the National Weather Service website
at https://www.weather.gov/wrh/Climate?wfo=sew (accessed on 25 August 2024). A
summary of the statistical characteristics of the two time series X1t and X2t, along with
the estimation of ρj and νj for each series, is presented in Table 4, while their graphical
representation is provided in Figure 3.

Table 4. Summary of statistical characteristics and autocorrelation estimates for time series X1t

and X2t.

Station j nj
nj

n1 + n2
Mean Variance σ̂

2
j

γ̂j(0) ν̂j ρ̂j

X1t 55 0.4297 0.1875 0.0010 0.0020 0.0010 2.0338 0.9733
X2t 73 0.5703 0.2305 0.0015 0.0027 0.0014 1.9005 0.9767

The scientists wish to estimate ρ1 from station 1, and they suspect that the parameter
may be the same for both populations, i.e., ρ1 = ρ2. In such a case, it is advantageous to
pool the two time series X1t and X2t to estimate ρ1. Hence, by (5),

ρ̂P =

(
55

2.0338

)
× 0.9733 +

(
73

1.9005

)
× 0.9767(

55
2.0338

+
73

1.9005

) ≈ 0.9753

https://www.weather.gov/wrh/Climate?wfo=sew
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Figure 3. Mean annual precipitation from the “HOQUIAM BOWERMAN AP” station (X1t) and the
“ABERDEEN” station (X2t) over the periods 1970−2024 and 1950−2022, respectively. (Top Left):
Time series; (Top Right): Autocorrelation function estimation (AFC); (Bottom): Box-plots.

The homogeneity of the two parameters, i.e., ρ1 = ρ2 may be examined by means of (6),
or numerically,

Z2 =

(
2.0338

55
+

1.9005
73

)−1
× (0.9733 − 0.9767)2 ≈ 0.0001834

for α = 0.05, the upper 95% point of the non-central chi-squared distribution (asymptoti-
cally) χ2

1,0.05 ≈ 3.8415 which is the minimum value at δ = 0 (⇒ ∆ = 0). The preliminary
test estimator ρ̂PT given by (7) is

ρ̂PT = ρ̂P × 1(Z2 < 3.8415)︸ ︷︷ ︸
TRUE

+ρ̂1 × 1(Z2 ≥ 3.8415)︸ ︷︷ ︸
FALSE

The critical value of such a test statistic is 0.0001834 with an upper tail probability value
p-value = 0.9892. Thus, the result is not significant at the 5% level, and the null hypothesis
H0 of homogeneity of the autocorrelation parameters ρ1 = ρ2 cannot be rejected. Hence,
ρ̂PT = ρ̂P is selected as an estimate of ρ1. We conclude that a scientist who wishes to find a
good alternative to the ρ̂P and ρ̂1 should be able to specify the minimum relative efficiency.

6.2. Annual Inflation Rates (AIRs)

Annual inflation rates represent the average change in the prices of goods and services
within an economy over a one-year period. Inflation is a key indicator of economic health,
reflecting the variation in the purchasing power of a currency. It is commonly measured by
the Consumer Price Index (CPI), which tracks price changes in a representative basket of
goods and services consumed by households. As a macroeconomic indicator, the annual
inflation rate is crucial for understanding economic trends and inflationary pressures. To
analyze the dynamic behavior of inflation over time, econometric models such as autore-
gressive models are often employed. These models are particularly useful in capturing the
persistence of inflation, as they assume that the current inflation rate is dependent on the
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inflation rate from the previous period, along with a random shock. These models help
policymakers and economists forecast future inflation and assess the potential impacts on
monetary policy, wages, prices, and the purchasing power of consumers.

In this second application, we apply our estimation strategies to the annual inflation
rates of two countries: Poland (PL) and Algeria (DZ). The datasets for PL cover the period
from 1971 to 2023, comprising 53 observations, while the datasets for DZ span from 1970
to 2023, with a total of 54 observations; we test the homogeneity of the autoregressive
parameters by assessing whether the autocorrelation coefficients ρ1 and ρ2 for the two
countries are statistically equal. The inflation data, which serve as the basis for this
analysis, are publicly available through the World Bank’s World Development Indicators
(WDI) database at https://databank.worldbank.org/ (accessed on 28 August 2024). For
users of the R programming language [12], these data can also be directly accessed using
the WDI package [13] available at https://CRAN.R-project.org/package=WDI (accessed
on 28 August 2024). This datasets provide comprehensive time series data on various
macroeconomic indicators, including the annual percentage change in the Consumer
Price Index (CPI) for both countries. A summary of the statistical characteristics of the
two countries, PL and DZ, along with the estimates of ρj and νj for each country, are provided
in Table 5. A graphical representation of the inflation dynamics for both countries is shown
in Figure 4, where the boxplot is presented on a logarithmic scale to enhance the visibility
of the data, particularly in the presence of large data points.

Table 5. Summary of statistical characteristics and autocorrelation estimates for annual inflation rates
for Poland “PL” and Algeria “DZ”.

Country j nj
nj

n1 + n2
Mean Variance σ̂

2
j

γ̂j(0) ν̂j ρ̂j

PL 53 0.4953 28.2250 7107.40 5788.15 6973.30 0.8300 0.5188
DZ 54 0.5047 08.6125 54.2172 19.5046 53.2131 0.3665 0.9242
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Figure 4. Annual inflation rates for Poland “PL” and Algeria “DZ” over the periods 1971–2023 and
1970–2023, respectively. (Top Left) Time series; (Top Right) Autocorrelation function estimation
(AFC); (Bottom) Box-plots.

https://databank.worldbank.org/
https://CRAN.R-project.org/package=WDI
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First, we obtain the pooled (or restricted) estimator ρ̂P = 0.8016. The test statistic
Z2 = 7.3216 is computed using ρ̂1 and ρ̂2 (unrestricted estimator). Under the null hy-
pothesis, this test statistic follows a non-central chi-square distribution with one degree
of freedom (asymptotically). For α = 0.05, the upper 95% critical value of the chi-square
reference distribution is χ2

1,0.05 ≈ 3.8415 at δ = 0 (⇒ ∆ = 0) which yields p-value = 0.0069.
Thus, the result is significant at the 5% level, and the null hypothesis of homogeneity of the
autocorrelation parameters is rejected. The pretest estimator ρ̂PT is equal to the unrestricted
estimator, i.e., ρ̂PT = ρ̂1. When the assumption of homogeneity of the autocorrelation
parameters does not hold, the estimators based on the test statistic Z2 converge to the
unrestricted estimator. This indicates that by rejecting the hypothesis of homogeneity, we
conclude that the annual inflation dynamics in PL differ from those in DZ. In other words,
there are significant differences between the autocorrelation parameters of the inflation for
these two countries. These findings are consistent with both the theoretical predictions and
numerical results, especially for large values of δ.

To further analyze the impact of larger values of δ on the test of homogeneity of
the autocorrelation parameters, we estimate non-centrality parameter ∆ by the formula
(see Lemma 4)

∆̂ =
π(1 − π)δ2

(1 − π)ν̂1 + πν̂2
,

where π =
n1

n1 + n2
and 1 − π =

n2

n1 + n2
. The results of the pretest estimator for different

values of δ are presented in Table 6.

Table 6. Results of pretest estimator ρ̂PT for different values of δ.

δ ∆̂ χ2
(

1, ∆̂
)

p-Value
Z2 <

χ2
(

1, ∆̂
) H0 ρ̂PT

0.0 0.0000 3.8415 0.0068

FALSE rejected ρ̂PT = ρ̂1

0.2 0.0167 3.9053 0.0073
0.4 0.0666 4.0947 0.0087
0.6 0.1499 4.4027 0.0112
0.8 0.2665 4.8159 0.0149
1.0 0.4163 5.3160 0.0201
1.2 0.5995 5.8847 0.0270
1.4 0.8160 6.5069 0.0359
1.6 1.0658 7.1730 0.0472

1.8 1.3489 7.8772 0.0613 TRUE accepted ρ̂PT = ρ̂P
2.0 1.6653 8.6168 0.0785

7. Conclusions and Future Research

In this article, we develop and analyze preliminary test estimation methods for the
homogeneity of autocorrelation parameters in parallel two-sample autoregressive models.
Our findings demonstrate that the proposed pooled and preliminary estimators offer sig-
nificant improvements in efficiency compared to traditional estimators, particularly when
the assumption of parameter homogeneity does not hold. The large-sample properties of
these estimators, including asymptotic bias and mean squared error, have been thoroughly
investigated, showing that the proposed methods perform well in both asymptotic and
finite-sample scenarios. Building on these theoretical results, the simulation study further
underscores the robustness of the preliminary test estimator across various sample sizes,
validating the theoretical properties derived earlier. Notably, the results reveal that when
the homogeneity assumption is strongly challenged, the pooled estimator can introduce
substantial bias, whereas the preliminary test estimator effectively adjusts by incorporating
the test of homogeneity. This highlights the importance of pretesting in situations where
parameter equality is uncertain. Despite these promising results, the performance of these
estimators can still vary depending on specific data characteristics, such as the degree of
autocorrelation and sample size. For example, in real-world applications like the inflation
data for Poland and Algeria, the proposed method offers valuable insights into the differ-
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ences in economic dynamics between countries, demonstrating its utility beyond purely
theoretical settings.

Looking ahead, several avenues for future research can be explored. One potential
direction is to extend the current methodology to more complex time series models, such
as higher-order autoregressive models or models with mixed effects. Additionally, inves-
tigating the impact of non-stationarity and structural breaks on the performance of the
preliminary test estimators could yield further insights. Another promising area for future
work is the application of these methods to high-dimensional settings, where the number of
parameters exceeds the number of observations, which is increasingly common in modern
data analysis. Furthermore, exploring alternative testing methods, such as permutation,
bootstrap, or other non-parametric techniques, in the context of our framework could
offer additional flexibility. Finally, incorporating machine learning techniques for model
selection and parameter estimation, particularly in cases where the data exhibit non-linear
patterns, could further enhance the efficiency of the proposed estimators. These advance-
ments could broaden the applicability of preliminary test estimation methods to a wider
range of practical problems in statistics and econometrics.
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Appendix A. Proof of Lemma 1

From the asymptotic theory of estimation, it is known that A1 =
√

n1(ρ̂1 − ρ1)
L−→ N (0, ν1).

Let X1 =
√

n(ρ̂1 − ρ0) =
√

n(ρ̂1 − ρ1 + ρ1 − ρ0) =
√

n(ρ̂1 − ρ1) +
√

n(ρ1 − ρ0) =
A1√

π
+ δ

which is a linear function of A1, so E(X1) = δ and V(X1) =
ν1

π
.

Appendix B. Proof of Lemma 2

As ρ̂P = B0ρ̂1, where B0ρ0 = ρ0 and (1 − B0) =
(1 − π)ν1

(1 − π)ν1 + πν2
, we have

Z1 =
√

n
(

ρ̂P − ρ0

)
=

√
n(B0ρ̂1 − B0ρ0) = B0

√
n(ρ̂1 − ρ0) = B0X1,

https://github.com/acguidoum/R-code-stats-2024
https://github.com/acguidoum/R-code-stats-2024
https://www.weather.gov/wrh/Climate?wfo=sew
https://databank.worldbank.org/
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under the assumption π
ν1

δ → 0, we get E(Z1) = B0δ = 0 and V(Z1) = B0
ν1
π .

Appendix C. Proof of Lemma 3

Let

Y1 =
√

n
(

ρ̂1 − ρ̂P
)
=

√
n
(

ρ̂1 − ρ0 + ρ0 − ρ̂P
)

=
√

n(ρ̂1 − ρ0)−
√

n
(

ρ̂P − ρ0

)
= X1 − B0X1 = (1 − B0)X1

we obtain E(Y1) = (1 − B0)δ =
(1 − π)ν1δ

(1 − π)ν1 + πν2
and V(Y1) = (1 − B0)

ν1

π
=

(1 − π)ν2
1

π[(1 − π)ν1 + πν2]
.

Appendix D. Proof of Lemma 4

It is known that

ρ̂j ∼ N
(

ρj,
νj

nj

)
,

which implies that

(ρ̂1 − ρ̂2) ∼ N
(
(ρ1 − ρ2),

(
ν1

n1
+

ν2

n2

))
.

Under the null hypothesis H0 (4), we have

(ρ̂1 − ρ̂2) ∼ N
(

0,
(

ν1

n1
+

ν2

n2

))
,

Thus, the test statistic Z2 is given by (6), asymptotically, and the chi-square distribution
with one degree of freedom becomes non-central, where the non-centrality parameter ∆ is
given by

∆ =
E[ρ̂1 − ρ̂2]

2

V[ρ̂1 − ρ̂2]
,

where

• E[ρ̂1 − ρ̂2] = (ρ1 − ρ2) =
δ√
n

• V[ρ̂1 − ρ̂2] =

(
ν1

n1
+

ν2

n2

)
=

1
n

(
ν1

π
+

ν2

(1 − π)

)
Hence, the non-centrality parameter ∆ is

∆ =
π(1 − π)

(1 − π)ν1 + πν2
δ2.

Appendix E. Proof of Theorem 1

Lemma A1 (see [10]). Let y be a k-dimensional random vector that follows multivariate normal
distribution with mean vector µy and covariance matrix Ck. Then, for any measurable function ϕ,
we have

E
[
y ϕ
(
y′y
)]

= µyE
[
ϕ
(

χ2
k+2(∆)

)]
(A1)

E
[
yy′ ϕ

(
y′y
)]

= CkE
[
ϕ
(

χ2
k+2(∆)

)]
+ µyµ

′
yE
[
ϕ
(

χ2
k+4(∆)

)]
(A2)

where ∆ = 1
2 µ

′
yµy.

For (11), we have
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AMSE1(∆) = lim
n→∞

E
[
n(ρ̂1 − ρ1)

2
]
= lim

n→∞
E
[(√

n(ρ̂1 − ρ1)
)2
]
= lim

n→∞
E
[(√

n
(

ρ̂1 − ρ0 −
δ√
n

))2
]

= lim
n→∞

E
[(√

n(ρ̂1 − ρ0)− δ
)2
]
= E

[
(X1 − δ)2

]
= V(X1)

=
ν1

π
.

and for (12), we can write

AMSE2(∆) = lim
n→∞

E
[

n
(

ρ̂P − ρ1

)2
]
= lim

n→∞
E
[(√

n
(

ρ̂P − ρ0 + ρ0 − ρ1

))2
]

= lim
n→∞

E
[(√

n
(

ρ̂P − ρ0

)
−
√

n(ρ1 − ρ0)
)2
]
= lim

n→∞
E
[(√

n
(

ρ̂P − ρ̂1 + ρ̂1 − ρ0

)
− δ
)2
]

= lim
n→∞

E
[(√

n
(

ρ̂P − ρ̂1

)
+
√

n(ρ̂1 − ρ0)− δ
)2
]
= E

[
(X1 − Y1 − δ)2

]
=E
(

X2
1

)
+E
(

Y2
1

)
− 2E(X1Y1) + δ2 − 2δE(X1) + 2δE(Y1)

=V(X1)− 2E((X1 − δ)Y1)︸ ︷︷ ︸
A

+E
(

Y2
1

)
,

where

A =E((X1 − δ)(1 − B0)X1) = (1 − B0)E
(

X2
1 − δX1

)
= (1 − B0)


E(X2

1)︷ ︸︸ ︷
V(X1) +E(X1)

2 − δ2︸ ︷︷ ︸
0

 = (1 − B0)V(X1) = V(Y1),

and therefore,

AMSE2(∆) =V(X1)− 2V(Y1) +

E(Y2
1 )︷ ︸︸ ︷

V(Y1) +E(Y1)
2 =

ν1

π
−
(

(1 − π)ν1

(1 − π)ν1 + πν2

)
ν1

π
+

(
(1 − π)ν1

(1 − π)ν1 + πν2
δ

)2

=
ν1

π

(
1 +

(
(1 − π)ν1

(1 − π)ν1 + πν2

)
(∆ − 1)

)
,

with ∆ =
π(1 − π)δ2

(1 − π)ν1 + πν2
. Finally, for (13), we have

AMSE3(∆) = lim
n→∞

E
[

n
(

ρ̂PT − ρ1

)2
]
= lim

n→∞
E
[{√

n
(

ρ̂1 −
(

ρ̂1 − ρ̂PT
)
1
(
Z2 < χ2

1,α

)
− ρ0 −

δ√
n

)}2
]

=E
[{

(X1 − δ)− Y11
(
Z2 < χ2

1,α

)}2
]
= V(X1)− 2E

[
(X1 − δ)Y11

(
Z2 < χ2

1,α

)]
︸ ︷︷ ︸

B

+E
[
Y2

11
(
Z2 < χ2

1,α

)]
︸ ︷︷ ︸

C

, (A3)

by using (A1) and (A2), we have

B =E
[
E((X1 − δ)|Y1)Y11

(
Z2 < χ2

1,α

)]
= E

[(
E(X1)− δ +Cov(X1, Y1)V(Y1)

−1(Y1 −E(Y1))
)

Y11
(
Z2 < χ2

1,α

)]
=E
[
(Y1 −E(Y1))Y11

(
Z2 < χ2

1,α

)]
= E

[
Y2

11
(
Z2 < χ2

1,α

)]
−E(Y1)E

[
Y11
(
Z2 < χ2

1,α

)]
=V(Y1)G3

(
χ2

1,α; ∆
)
+E
(

Y2
1

)
G5

(
χ2

1,α; ∆
)
−E
(

Y2
1

)
G3

(
χ2

1,α; ∆
)

and
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C =V(Y1)E
(

ϕ
{

χ2
k−1+2(∆)

})
+E
(

Y2
1

)
E
(

ϕ
{

χ2
k−1+4(∆)

})
= V(Y1)P

(
χ2

k+1(∆) < χ2
k−1,α

)
+E
(

Y2
1

)
P
(

χ2
k+3(∆) < χ2

k−1,α

)
=V(Y1)G3

(
χ2

1,α; ∆
)
+E(Y2

1 )G5

(
χ2

1,α; ∆
)

substituting B and C in (A3), we obtain

AMSE3(∆) =V(X1)−V(Y1)G3

(
χ2

1,α; ∆
)
−E
(

Y2
1

)
G5

(
χ2

1,α; ∆
)
+ 2E

(
Y2

1

)
G3

(
χ2

1,α; ∆
)

=V(X1)−V(Y1)G3

(
χ2

1,α; ∆
)
+E
(

Y2
1

){
2G3

(
χ2

1,α; ∆
)
− G5

(
χ2

1,α; ∆
)}

=
ν1

π
− (1 − B0)

ν1

π
G3

(
χ2

1,α; ∆
)
+ (1 − B0)

2δ2
{

2G3

(
χ2

1,α; ∆
)
− G5

(
χ2

1,α; ∆
)}

=
ν1

π

[
1 − (1 − B0)G3

(
χ2

1,α; ∆
)
+ (1 − B0)∆

{
2G3

(
χ2

1,α; ∆
)
− G5

(
χ2

1,α; ∆
)}]

=
ν1

π

[
1 + (1 − B0)

(
∆
{

2G3

(
χ2

1,α; ∆
)
− G5

(
χ2

1,α; ∆
)}

− G3

(
χ2

1,α; ∆
))]
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