
Citation: Nalmpatian, A.; Heumann,

C.; Pilz, S. Forecasting Mortality

Trends: Advanced Techniques and

the Impact of COVID-19. Stats 2024,

7, 1172–1188. https://doi.org/

10.3390/stats7040069

Academic Editor: Wei Zhu

Received: 15 September 2024

Revised: 10 October 2024

Accepted: 12 October 2024

Published: 16 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Forecasting Mortality Trends: Advanced Techniques and the
Impact of COVID-19
Asmik Nalmpatian *, Christian Heumann and Stefan Pilz

Department of Statistics, Ludwig Maximilian University of Munich, 80539 Munich, Germany;
christian.heumann@lmu.de (C.H.); stefan.pilz@posteo.de (S.P.)
* Correspondence: asmik.nalmpatian@campus.lmu.de

Abstract: The objective of this research is to evaluate four distinct models for multi-population
mortality projection in order to ascertain the most effective approach for forecasting the impact of
the COVID-19 pandemic on mortality. Utilizing data from the Human Mortality Database for five
countries—Finland, Germany, Italy, the Netherlands, and the United States—the study identifies the
generalized additive model (GAM) within the age–period–cohort (APC) analytical framework as
the most promising for precise mortality forecasts. Consequently, this model serves as the basis for
projecting the impact of the COVID-19 pandemic on future mortality rates. By examining various
pandemic scenarios, ranging from mild to severe, the study concludes that projections assuming
a diminishing impact of the pandemic over time are most consistent, especially for middle-aged
and elderly populations. Projections derived from the superior GAM-APC model offer guidance
for strategic planning and decision-making within sectors facing the challenges posed by extreme
historical mortality events and uncertain future mortality trajectories.

Keywords: mortality modeling; COVID impact; multi-populational; cross-country; generalized
additive models; partial APC plots; APC; machine learning; excess mortality

1. Introduction

In recent decades, life expectancy in the developed world has shown a substantial
increase, exemplified by a notable 56.7% reduction in the mortality rate of 80-year-old men
in the USA from 1933 to 2019. This trend, reflecting societal advancements and improved
healthcare systems, underscores the importance of accurately predicting mortality trends
for informed decision-making by policymakers, pension schemes, insurers, and social
security systems. The emergence of the COVID-19 pandemic has further underscored
the need to understand its impact on mortality trends over the short- to mid-term. Our
study focuses on assessing the impact of COVID-19 on mortality trends, aiming to enhance
existing mortality models while maintaining explainability.

The literature presents a diverse range of approaches to mortality modeling, from
traditional stochastic models like those discussed by [1] to modern methods such as the
use of machine learning (ML) techniques. Recent studies have shown that methods like
pure Gradient Boosting or Random Forest perform exceptionally well [2], while others
have explored hierarchical approaches with ML building upon simpler LC models [3].
Furthermore, recent advancements include the application of neural networks to enhance
mortality models, such as the Common-Age-Effect Model proposed by [4] and the extension
of LC models for multiple populations demonstrated by [5]. Generalized Additive Models
(GAMs), a well-established model class, was first introduced by [6] and has been applied in
the mortality context; [7] describes a Bayesian APC model with an autoregressive prior on
the age, period, and cohort terms; and [8] proposed the use of a bivariate spline function
within a GAM to effectively capture two-dimensional cohort information. A similar model
was applied by [9] for projecting cancer incidence and mortality in Finland, by [10] for
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mortality in the UK, and by [11] for projecting breast cancer mortality in Spain. However,
none of them model and extrapolate GAM in the APC framework with a tensor product
in a multi-populational fashion. The literature on accounting for COVID in mortality
projections is also growing, e.g., [12], which uses the stochastic Li and Lee model; [13],
which proposes parsimonious decomposition of the mortality surface on a polynomial basis
with regularization and cross-validation; and [4], which quantifies the impact of the 2020
mortality shock by calibrating the Lee–Carter model. However, none of the aforementioned
studies employ GAM in APC and evaluate scenarios post-pandemic.

To compare with the traditional stochastic mortality models, LC [1] and age–period–
cohort (APC) [14], alongside contemporary ML methodology proposed by [3], this study
introduces a cross-country GAM within an APC framework, utilizing a smoothed second-
order spline with penalty points. To our knowledge, this research is the first to integrate
the GAM method into the APC framework in a multi-population context and employ it
to extrapolate the impact of COVID-19 on future mortality trends. We examine Germany,
Finland, the Netherlands, Italy (representing Europe), and the United States (representing
North America) using data from the Human Mortality Database [15]. We employ a cross-
country approach, enabling the model to learn from multiple countries concurrently, thereby
capturing both universal trends and country-specific variations in mortality patterns.

Our research makes three key contributions, which are visually summarized in
Figure 1. First, we compare the predictive performance of four models, including tra-
ditional single-population and contemporary multi-populational models, for modeling
and projecting future mortality rates for five countries. We find that the most promising
approach is based on a GAM, where cohorts are represented as an interaction between
age and period. This framework, adaptable for both aggregated and individual survival
data, introduces a state-of-the-art method for the field of multi-populational cross-country
mortality research. Secondly, we introduce partial APC plots as a novel graphical tool in
mortality research, enabling the analysis of specific APC structures. This tool aids in com-
municating complex temporal patterns and highlights gender-specific and cross-country
differences. Finally, we provide fresh insights into the factors driving the impact of the
COVID-19 pandemic on mortality for the five countries. Through analyzing age, period,
and cohort associations in a multi-population context using a GAM within an APC frame-
work, we extrapolate mortality rates into the future. Four scenarios, representing varying
degrees of pandemic impact, are evaluated against observed mortality data post-pandemic
to identify the most accurate scenario.

Figure 1. Schematic illustration of the key findings: (1) GAM-APC is the most effective approach
for mortality forecasting. (2) The model provides multi-populational and cross-country insights.
(3) Among the four pandemic impact scenarios, Scenario 3, which assumes a diminishing impact of
COVID-19, is the most consistent, particularly for middle-aged and elderly populations.
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The practical implications of our findings are considerable. Our research demonstrates
the efficacy of the GAM within the APC framework and its capacity to extrapolate mortality
forecasts, accounting for the impact of the COVID-19 pandemic. This offers invaluable
insights for policymakers and stakeholders, providing guidance in navigating the uncer-
tainties brought about by the pandemic, with a particular emphasis on matters pertaining
to life insurance and pension funds.

Our study follows a structured approach, beginning with an overview of the database
and methodology. We then compare the predictive performance of benchmark methods
across countries, offering insights into optimal trend forecasting techniques. Additionally,
we conduct scenario analyses to evaluate the impact of COVID-19 on mortality trends.
Finally, we conclude by summarizing our key findings and implications.

2. Data and Methods
2.1. Data

The study relies on the Human Mortality Database (HMD) [15], which provides
mortality rates µa,t,g,c, death counts Da,t,g,c, and population sizes Ea,t,g,c categorized by age
a, year t, gender g, and country c. The selection of countries is based on their geographic
context and the contrasting impact of the COVID-19 pandemic. Specifically, Finland (until
2019), Germany (until 2017), Italy (until 2018), and the Netherlands (until 2019) represent
Europe, while the United States (until 2019) represents North America.

For the most recent years up until 2023, the Short-Term Mortality Fluctuations (STMF) [16]
series offers partial information on mortality rates and population, grouped by week and
age categories. However, the study requires data on a yearly basis and in a metric age scale.
To address this, we employ a methodology to construct mortality data on a yearly basis and
in a metric age scale, which are then combined with the original HMD data. This process is
based partly on the proposal by [12] and further detailed in Appendix A.

Figure 2’s heatmaps visualize mortality rate changes in the United States, showing
a decreasing trend over the years. Darker red colors indicate higher mortality rates, with
females generally exhibiting lower rates than males, especially in older age categories.
Infant mortality rates have strongly improved, transitioning from red to white. The diagonal
lines symbolize distinct birth cohorts, highlighting the three primary effects examined in
this study: age, period, and cohort.

Figure 2. Heatmaps of mortality rates for the US population are shown, with age groups and periods
represented horizontally and vertically, respectively. The diagonal lines display unique cohorts.
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2.2. Methods

The aim of the developed and applied methodology is to enhance mortality modeling
by prioritizing predictive performance and future trend forecasting. To achieve this goal,
four different methods have been benchmarked and outlined below: traditional ones such
as Lee–Carter (LC) and age–period–cohort (APC); a more modern two-step approach using
Gradient Boosting Machine (GBM); and finally, Generalized Additive Model (GAM) within
the APC framework.

2.2.1. Lee–Carter (LC)

The classical LC model, initially proposed by Lee and Carter (1992) [1], estimates
and forecasts mortality rates µa,t at age a in year t. This model is applicable on single-
populational data, considering one gender category for each country:

log µa,t = αa + βaκt + εa,t (1)

Here, αa represents the age-specific average over time, βa describes the rate of mortality
improvement at age a, and κt denotes the general trend of mortality at time t. The error
terms εa,t reflect the residual age- and year-specific historical influence on mortality rates
that the model cannot capture. The authors suggest using the singular value decomposition
(SVD) method to find the least squares solution to minimize the residual sum of squares.
The original method is embedded in a single-populational Poisson regression model by [17]:

Da,t∼Poisson(Ea,t · µa,t) (2)

The expected number of deaths according to the LC fit can be calculated as
Da,t = Ea,t · µa,t using linear predictor ηa,t = log µa,t = αa + βaκt with constraints like
∑a βa = 1, ∑t κt = 0 [18].

2.2.2. Age–Period–Cohort (APC)

The APC model extends the LC model by including a cohort effect γt−a and omitting
the age-specific improvement rates, yielding in the following linear predictor:
ηa,t = αa + κt + γt−a. The cohort is generally computed by cohort = year − age. This
model is applicable on single-populational data and has its origins in the fields of medicine
and demography, going back a long way ([14,19]). However, [20] was the first who con-
sidered this type of model in the actuarial field. With the Poisson distribution assumption
and the log link function remaining the same, it can be traced back to the general shape of
Generalized APC models [18]. The identifiability is ensured with the following constraints:
∑t κt = 0, ∑tmax−0

c=tmin−90 γc = 0, and ∑tmax−0
c=tmin−90 cγc = 0, indicating that the cohort effect oscil-

lates around zero with no apparent linear trend.

2.2.3. Two-Step Approach with Gradient Boosting Machine (GBM)

In this study, we adopt the two-step approach proposed by [3] to refine mortality rate
estimations derived from the LC model using Gradient Boosting Machine (GBM).

Firstly, we employ the LC model to estimate mortality rates µLC
a,t,g,c separately for

each country c and gender g. Secondly, we leverage GBM to adjust these estimations by
estimating the improvement factor qa,t,g,c, which corrects for underestimations (values
greater than 1) or overestimations (values smaller than 1). This step involves training GBM
with hyperparameter optimization on a multi-populational level using age, year, cohort,
gender, and country as features, with death counts Da,t,g,c as the target variable:

Da,t,g,c ∼ Poisson(qa,t,g,c · µLC
a,t,g,c︸ ︷︷ ︸

=µa,t,g,c

·Ea,t,g,c).
(3)
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The adapted exposure Ẽa,t,g,c is calculated as µLC
a,t,g,c · Ea,t,g,c. Although the software

does not permit the direct inclusion of Ẽa,t,g,c as an offset, we circumvent this limitation by
scaling the death counts by exposure Da,t,g,c/Ẽa,t,g,c and using Ẽa,t,g,c as weights, a method
shown to be mathematically equivalent to using death counts as target and exposure as
offset in the Poisson case by [21]. Details on the GBM methodology are given in Appendix B.
Finally, the refined mortality rates are obtained as µa,t,g,c = µLC

a,t,g,c · qa,t,g,c.

2.2.4. Generalized Additive Model (GAM) in APC Framework

We integrate the APC framework into GAM in a multi-populational setting, allowing
for the modeling of nonlinear, smooth effect structures and facilitating the capture of
complex relationships.

In the traditional regression framework, collinearity arises among the three temporal
components (age, period, and cohort) leading to identification problems. To mitigate this,
we employ a bivariate tensor product with penalized B-splines between age and period,
establishing a two-dimensional interaction surface. This surface inherently incorporates
cohort information along its diagonals, as illustrated in Figure 2. By doing so, we address
the identification problem without imposing restrictive assumptions or constraints [8,14].

By employing multi-populational modeling, within the same GAM framework, we
estimate a separate bivariate function for each country and gender interaction. This en-
ables the capture of specific mortality patterns within each subpopulation while allowing
countries to learn from each other’s experiences through the intercept term.

Finally, we fit a semiparametric additive Poisson regression with a log link, using
death counts Da,t,g,c as the target and offsetting for population size Ea,t,g,c. The model
structure is formulated as follows:

log(µa,t,g,c) = β0 + fa,t,g,c(age, time) + log(Ea,t,g,c) (4)

Here, fa,t,g,c represents the bivariate function for the interaction of age a and period t,
specific to each gender g and country c combination.

To visualize the marginal effects of each component effectively, temporal developments
are condensed in one specific dimension (either age, period, or cohort) and averaged over the
respective other component. This approach allows for examining the effects of age or period
by country and gender while considering the cohort values as post-stratification [22–24]:

fa,g,c(age) =
1
T ∑

time∈T
fa,t,g,c(time | age)

ft,g,c(time) =
1
A ∑

age∈A
fa,t,g,c(age | time)

fc,g,c(cohort) =
1

A · T ∑
age∈A

∑
time∈T

fa,t,g,c(age, time | cohort)

(5)

For forecasting purposes, the impact of COVID-19 on mortality rates is incorporated
into the mortality model using an additional variable called covid. This variable is specific
to each country c and takes the value of 0 for years until 2019 and 1 for the years 2020
and 2021, representing the period during which the COVID-19 pandemic has proven to
have a strong impact. The values taken for future predictions are subject to the scenario
assumptions elaborated in Section 3.

log(µa,t,g,c) = β0 + fa,t,g,c(age, time) + βcovidcovid∗c + log(Ea,t,g,c) (6)

The interaction covid∗c allows the model to capture the country-specific impact of
the pandemic on mortality rates during the years 2020 and 2021 and, thus, project into
the future.
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To forecast the mortality rates into the future, we follow a differentiated approach,
as outlined in Figure 3. For the time-dependent components (period and cohort) of the
LC, APC as well as the final rates of the two-step approach with GBM ARIMA model as
random walk with linear drift and automated parameter estimation are selected [25–27].
The forecast of mortality rates for GAM is based on extrapolation of the spline fit, assuming
a globally quadratic structure and a persistent curvature outside the observed data. The
choice of degrees of freedom for the covariates can be either predetermined or estimated
automatically. We caution against extrapolating too far into the future [24].

Figure 3. Illustration of the models used for fit and forecast.

We employed R for the technical implementation of the LC and APC models [28], and
their forecasting [25], as well as for GAM [29]. Additionally, for the two-step approach, we
utilized Python 3.11.10 to implement a Light GBM algorithm [30] and Hyperopt [31] for
hyperparameter optimization.

To evaluate the accuracy of the models, the root-mean-square error (RMSE) is calcu-
lated, which measures the average difference between the mortality rates µ̂a,t,g,c and the
observed mortality rates µa,t,g,c across all ages a, years t, genders g, and countries c. The
RMSE is computed as follows:

RMSEa,t,g,c =

√
∑a∈A ∑t∈T ∑g∈G ∑c∈C(µ̂a,t,g,c − µa,t,g,c)2

n
(7)

where n represents the total number of observations.

3. Results

This section begins with an evaluation of predictive performance, both in-sample and
out-of-sample, for all four models. Table 1 gives an overview of the different training and
test sets used in the analysis. It should be noted that for the purposes of benchmarking,
years up to and including 2019 are used on the assumption that they are not affected
by the impact of the COVID-19 pandemic. This approach eliminates any year-specific
artifacts that might otherwise affect the assessment of the predictive performance of the
models themselves. The single-populational models LC, APC, and GBM (based on LC
in the first step) are limited to using data from Germany from 1990 onwards due to data
inconsistencies before reunification. In order to maintain comparability across the tensor–
product spanned by years and ages, it is necessary to ensure that the multi-population
GAM is coherent. This is because GAM requires a joint coverage of years—a prerequisite
for coherent modeling. As a result, available years for all countries will be restricted to
1990–2015 to ensure sufficient training for capturing current effects on mortality rates and
projecting them into the future for 2016–2019. Conversely, to ensure comparability among
the LC, APC, and GBM models, we permit a shorter training period for Germany (until
2010), resulting in a longer testing period. This approach is especially appropriate for LC,
which, due to its linear nature, does not require extensive historical data to accurately
forecast future trends.



Stats 2024, 7 1178

Table 1. Model training and test periods for benchmarking.

Model Country Training Set (Fitting Period) Test Set (Forecast Period)

LC, APC, GBM Finland, Italy, Netherlands, US 1950–2010 2011–2019
LC, APC, GBM Germany 1990–2010 2011–2019

GAM Finland, Italy, Netherlands, US, Germany 1990–2015 2016–2019

Focusing on in-sample RMSE for single-populational LC, APC, multi-populational
GBM, and GAM models, we fit the training periods range from 1950 to 2010 for Finland,
Italy, the Netherlands, and the US, and from 1990 to 2010 for Germany. GAM models are
fitted from 1990 to 2015 for all countries. In-sample error is calculated within the same
range as the model training period and reveals that the two-step approach with GBM and
GAM in the APC framework exhibits superior performance over traditional stochastic
mortality models LC and APC. There is no clear preference between GBM and GAM,
with both achieving strong reductions in RMSE compared to LC and APC for in-sample
predictions. Table A1 in Appendix D provides an overview of the goodness-of-fit for
information reasons.

GBM demonstrates proficiency in adaptive learning, which enables it to discern intri-
cate, non-linear relationships that markedly enhance model fit. However, this also gives rise
to the possibility of overfitting, whereby the learning process is influenced by noise rather
than the underlying trends, thereby enhancing training performance but not ensuring better
long-term generalization. Table 2 highlights the differences in computational efficiency.
The APC model, being slightly larger and taking longer to run than the LC model, reflects
its added complexity due to the cohort dimension. As expected, LightGBM (GBM) takes
significantly longer to train and uses substantially more memory than GAM. This is because
gradient boosting involves iterative training and optimization across many decision trees,
which requires more computational resources than fitting a GAM model in Appendix C.
The model size of GBM is also larger than that of GAM, reflecting its complexity and the
higher number of parameters.

Table 2. Computational efficiency for training, summarized for all 10 single populations for LC
and APC.

Metric LC APC GBM GAM

Runtime (s) 63.15 87.31 799.75 412.49
Memory (MB) 17.9 20.3 301 76.2
Storage (MB) 0.0274 0.0308 72.10 11.78

Table 3 presents the out-of-sample results for different models, indicating the fore-
casting quality across countries and genders. Out-of-sample RMSE is calculated based on
forecast periods ranging from 2011 to 2019 for LC, APC, and GBM models, while GAM
forecasts span from 2016 to 2019 for all countries.

Table 3. Out-of-sample RMSE comparison for LC, APC, GBM, and GAM models. Forecast for LC,
APC, and GBM based on ARIMA (2011–2019), while GAM extrapolates tensor product (2016–2019).

Country Female Male
LC APC GBM GAM LC APC GBM GAM

FIN 0.0021 0.0029 0.0028 0.0012 0.0029 0.0029 0.0027 0.0015
DE 0.0048 0.0046 0.0039 0.0021 0.0052 0.0045 0.0045 0.002
ITA 0.0045 0.0025 0.0044 0.0016 0.0042 0.0021 0.0026 0.0013

NLD 0.003 0.0020 0.0024 0.0013 0.0035 0.0038 0.0027 0.0011
US 0.0023 0.0018 0.0014 0.0010 0.0054 0.0020 0.0031 0.0016
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The differing training periods for the multi-populational GAM model and single-
populational models were necessary to ensure coherent modeling based on historical data
availability. We used RMSE as a consistent metric to measure mean forecast error across
models, and despite concerns regarding GAM’s shorter training period, outlier analysis
confirmed the reliability of its RMSE mean.

While GBM shows improved fit and forecast performance, GAM exhibits stronger
improvement in forecast accuracy, especially for short-term forecasts within a few years.
The GAM-based APC model achieves notable reductions not only in fit but also in forecast
errors compared to the classical APC model, implying improved accuracy of mortality
rate predictions. The choice of GAM for further analysis is justified based on its superior
forecast performance.

One key highlight of the GAM in APC framework is its multi-populational nature,
enabling the interpretation of exponential marginal effects, with age, period, and cohort
being the components analyzed further. Figure 4 displays the effects of the model based
on these components: Both age and cohort effects conform to expectations; thus, higher
ages correspond to higher mortality rates while cohort effects reflect variations stemming
from individuals’ unique experiences based on their birth year [32–34]. Conversely, similar
reverse effects are observable for age and cohort.

Figure 4. The figure illustrates the estimated marginal effects of age, period, and cohort on mortality
rates across multiple countries and genders based on GAM fitted for years 1990–2020.

The period effect, which indicates the improvement of mortality over time and is
influenced by external factors affecting all age groups equally at a given point in time,
exhibits a notable increase leading up to 2020 [35,36]. However, the period effect notably
spikes, particularly approaching 2020, signifying a strong influence of this year on mortality
rates. Specifically, the strides made in improving mortality rates over preceding years or
even decades appear to have been offset by the effect of COVID-19, resulting in a regression
to levels observed around 2003. Appendix D contains this figure stratified by countries and
genders for more detailed interpretation.

Following the benchmarking of the four models, we delve into an analysis of the
effects of each temporal component on mortality rates throughout the considered time
period. Finally, based on GAM in APC framework, we assess the trend forecast into the
future considering the impact of COVID-19.
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Even though the impact of COVID-19 is, fortunately, diminishing in the present time,
its impact on historical (and future) data and the persisting uncertainties in the future
cannot be overlooked. These factors necessitate continued attention for many years to
come. It is important to note that the idea and methodology employed in this study extend
beyond COVID-19 and encompass other events, especially those occurring at the edge of
time series, which can present challenges for standard breakpoint analyses.

The scenarios depicted herein must be viewed in light of a meticulous plausibility
assessment and the underlying assumptions. To validate the scenario-based findings, we
engaged with epidemiological experts. This collaboration is paramount for ensuring the
reliability and robustness of the analysis, especially given the complexities inherent in such
events. Comparing our framework with expert opinions in the literature, as conducted
by citetelenti2021after, reveals a high level of agreement.

Scenario 1: In this scenario, the assumption is made that COVID-19 will disappear
in the future. The model is trained using data up to 2019 only, excluding the years 2020
and 2021. The predictions are then made for the years 2020–2025, assuming no long-term
effects of COVID-19 on mortality. This approach treats COVID-19 as a special event that
does not have any influence on mortality in the upcoming years. The model focuses on
the underlying mortality trend without considering the impact of COVID-19 and, thus,
without the COVID-indicator.

Scenario 2: In Scenario 2, the expectation is that the full effect of COVID will persist in
the future. The model is trained on mortality data up to and including 2021, encompassing
years impacted by COVID-19. The indicator variable covid is incorporated, set to 0 for
years before 2019 and 1 for 2020 and 2021. Predictions are then made for subsequent years,
assuming that covid remains set to 1 to indicate the ongoing presence of COVID-19. This
scenario assumes that the COVID-related situation will continue similarly as it did until
2021 and that it will have a consistent effect on mortality over the coming years.

Scenario 3: In this scenario, the assumption is made that the COVID effect will
flatten over time. Similar to Scenario 2, the model is trained using mortality data up to
and including 2021. However, in this case, the COVID-19 effect is assumed to decrease
exponentially over time. The predictions take into account the diminishing impact of
COVID-19 in the future, reflecting the belief that the effect of COVID-19 on health and
mortality will slowly flatten out and eventually disappear after a few years. Therefore, the
covid indicator takes exponentially decreasing values between 1 and 0 for each year.

Scenario 4: In Scenario 4, the focus is on adjusting for excess mortality associated
with COVID-19. The years 2020 and 2021 are treated as outliers, but the excess mortality
is explicitly considered. The model calculates the difference between the expected death
counts and the actual mortality counts for these two years to account for the excess mortality.
It is assumed that the excess mortality will not average out over the coming years and
must be explicitly accounted for. The baseline mortality, representing the mortality trend
without the influence of COVID-19, remains unchanged. This scenario allows for separate
consideration of the excess mortality caused by COVID-19 while keeping the baseline
mortality unchanged.

The formulation of potential future scenarios related to the pandemic is a complex
undertaking, shaped by a multitude of factors, including political decisions and societal
acceptance. Despite the inherent challenges, these presented scenarios offer a valuable
foundation for mortality forecasts, taking into account the evolving attitudes of life insurers
and contributing to the ongoing discourse surrounding the impact of the pandemic. A
summary of the key assumptions underlying each scenario is provided in Table 4.

Table 5 presents the different training and test periods used in the scenario analysis,
now also considering years after 2019.
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Table 4. Discussion of assumptions underlying COVID-19 mortality impact scenarios.

Assumption Description

Scenario 1: Complete disappearance of COVID-19
No long-term effects Assumes no long-term health consequences for recovered individuals,

despite evidence of “Long Covid” [37]. Assumes no lasting psychologi-
cal or social impacts from lockdowns [38].

Vaccination effectiveness Assumes widespread vaccination will lead to the abrupt disappearance
of the pandemic, despite uncertainties about long-term vaccine efficacy.

Excess mortality Assumes excess mortality will average out in the coming years, with no
rapid population reductions.

Scenario 2: Continuous COVID-19 impact
Viral variants Acknowledges that while vaccines reduce infection risk [39], rising inci-

dence rates suggest ongoing challenges [40]. Considers the potential for
emerging variants to undermine vaccine effectiveness.

Consistent mortality impact Assumes the impact on mortality will remain unchanged over the next
years, despite short-term decreases and uncertainties as well as advance-
ments in science and medicine [41].

Economic and health conse-
quences

Recognizes the negative economic and health impacts of prolonged lock-
downs and containment measures.

Scenario 3: Gradual decline in COVID-19 impact
Medical progress and behav-
ioral changes

Credits medical advancements, behavioral changes, and herd or vaccine
immunity for the reduced impact.

Residual effect Recognizes a residual effect of the pandemic but anticipates it will di-
minish over time.

Scenario 4: Adjustment for 2020/2021 excess mortality
Disappearance of adverse ef-
fects

Assumes the adverse health effects of the pandemic will disappear with
no long-term consequences.

Explicit excess mortality ac-
counting

Assumes excess mortality from 2020 and 2021 will not average out and
must be explicitly accounted for.

Unchanged baseline mortality Assumes baseline mortality remains unchanged, discounting behavioral
changes (e.g., reduced traffic fatalities, fewer influenza deaths due to
hygiene, and quarantine measures).

Table 5. Overview of different scenario periods.

Scenario Fitting Period Forecast Period Validation Period

1—Without COVID-effect 1990–2019 2020–2025 2022–2023
2—Full COVID-effect 1990–2021 2022–2025 2022–2023

3—Flattening COVID-effect 1990–2021 2022–2025 2022–2023
4—Excess mortality 1990–2019 2020–2025 2022–2023

Figure 5 presents outcomes for four scenarios across various countries and genders,
focusing on 80-year-olds. We chose age 80 for illustration, but the overall structure is
similar for other ages, albeit with less intense COVID-19 effects for younger age groups.
Notable high-value outliers for Italy, the US, and the Netherlands in 2020 and 2021 indicate
a pronounced impact of COVID-19. Different trend forecasts capture varying effects of
COVID-19 on mortality rates. Scenario 1 represents a milder assumption, while Scenario
2 depicts a more severe projection. Future forecasts vary by country and age group,
influenced by past behaviors and responses to the pandemic. Trend forecasts in different
scenarios generally align with plausibility. Excluding 2020 and 2021 in Scenario 1 results
in lower mortality rates, while adjusting for excess mortality in Scenario 4 leads to even
lower rates, considering the population shift due to previous deaths. Scenario 2 with
full COVID effect shows the highest mortality trend, which is particularly evident for
older age groups. However, younger populations appear less affected. Scenario 3 starts
similar to Scenario 2 but gradually decreases over time. Different countries show distinct
trends, likely influenced by COVID’s demographic and political impact. The Netherlands’
observed rates in years 2022 and 2023 align with Scenario 2, whereas Italy and the US
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show patterns more consistent with the flattening effect. German scenarios show less
differentiation, aligning closely with observations, while Finland’s forecast suggests lower
mortality rates than observed.

Figure 5. Trend forecasts for 80-year-olds across four distinct scenarios. Training data span from 1990
to a maximum of 2021, depending on the scenario, with forecasts projected up to 2025. Circles and
triangles represent observed rates, with red markers indicating those used for validation purposes.

The heatmap (Figure 6) illustrates both a cross-country and country-specific perspec-
tive on the y-axis, while age groups are delineated on the x-axis. Colors within the heatmap
indicate the normalized RMSE (NRMSE) values for the years 2022 and 2023 when com-
pared with the observed mortality rates from STMF and processed in accordance with
Appendix A.

Figure 6. Heatmap showing the normalized RMSE of scenarios for extrapolated years 2022 and 2023
for males across different countries and age groups. The cross-country section presents a summary of
the NRMSE across all countries.
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NRMSE is calculated by dividing RMSE by the mean of observed mortality rates in
a specific category with values ranging usually from 0 to 1. A value of 0 means perfect
predictions, while 1 suggests predictions are as accurate as predicting the mean. Values
above 1 often suggest that the model’s performance may not be optimal. We prioritize the
analysis on males since previous findings suggest a more pronounced emphasis on the
COVID effect for this gender, although the overall patterns for females exhibit similarity.
For males in the 20-year age brackets, the graph shows a generally good overall forecast
accuracy, especially for ages over 20, as colors tend towards blue for middle and older ages,
indicating smaller NRMSE values closer to 0 and suggesting better forecast accuracy. No
clear scenario preference is evident in the cross-country view across all age groups. In gen-
eral, Scenario 3 (flattening COVID effect) tends to perform well for middle-aged individuals
and, in addition, also Scenario 4 (COVID full effect) for older ages. Substantial variations in
scenario performance are observed across different countries and age groups. For younger
age groups, Scenario 1 (no COVID effect) performs best in Italy and the Netherlands, where
substantial COVID impact was observed. Middle-aged groups demonstrate similarly high
performance across all scenarios. Older age groups show stronger scenario differences with
a clear preference for Scenarios 2 and 3, indicating better fit. Scenarios do not perform well
for those under 19, possibly due to the unique characteristics and weak impact of COVID
in this age group. Appendix D contains the same graph with individual ages instead of
grouped age buckets for a more detailed overview.

4. Conclusions

To summarize, this research work focused on addressing the challenge of capturing
the mortality-related extreme event at the edge of a time series—in particular, COVID-19’s
effect on future mortality forecasting.

The key findings of our research include identifying the GAM within APC frame-
work as the most effective method for forecasting future mortality rates across multiple
countries. This innovative approach, utilizing a smoothed second-order spline, surpasses
traditional stochastic models (e.g., LC) and machine learning techniques (e.g., GBM) in
predictive accuracy. By applying the GAM-APC model to data from Germany, Finland,
Italy, the Netherlands, and the United States, the study provides valuable cross-country
and multi-populational insights into mortality trends. This enables the capture of both
universal mortality patterns and country-specific variations, offering a comprehensive
understanding of global and localized mortality dynamics. The research develops and eval-
uates four pandemic impact scenarios (ranging from mild to severe) to forecast the impact
of COVID-19 on future mortality rates. It concludes that scenarios assuming a diminishing
impact of the pandemic over time are the most consistent, especially for middle-aged and
elderly populations.

To ensure a rigorous assessment, these scenarios and their underlying assumptions
were thoroughly evaluated and discussed in collaboration with epidemiological experts.
This approach including the content of scenarios aligns with existing literature and enhances
the credibility of the forecast analysis [42].

Overall, this work contributes to the existing literature by introducing traditional,
enhanced, and novel models, comparing different approaches and providing insights into
future trends in mortality rates while considering the impact of COVID-19 in a cross-
country context. The specific contribution of the GAM approach with the APC framework
in this research lies in its novel application for mortality trend forecasting, particularly
incorporating the impact of COVID-19 in a multi-populational cross-country fashion.

Despite the current waning impact of COVID-19, it is crucial to acknowledge the
lasting importance of historical data and the persisting uncertainties that lie ahead. These
factors emphasize the need for ongoing attention in the years to come. It is important
to acknowledge that the concept and methodology utilized in this study extend beyond
COVID-19, encompassing other events that occur at the edges of time series data. Look-
ing ahead to future research directions, the GAM with APC framework has a promising
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potential for expanding the feature set by the inclusion of socioeconomic status, income,
and education as additional factors, allowing for a more complete understanding of mortal-
ity trends.
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Appendix A. Data Preparation

This section discusses the methodology employed to enrich existing mortality data
obtained from [16], focusing on the number of deaths and population size for recent years
absent in the [15] dataset. The primary challenge addressed is the aggregation of data into
rough age categories, while the study requires a metric age scale.

The methodology involves several steps. Firstly, weekly population sizes are derived
from the mortality dataset followed by extrapolation to annual levels. Using mortality
rates and death counts, the weekly population size can be calculated. These weekly data
are then aggregated to annual figures. Similarly, weekly death counts are summed to
obtain annual totals. To construct annual death counts and populations for individual ages
for the aforementioned years, specific procedures were applied, as described below. The
methodology ensures that the derived data align with observed mortality patterns within
each age group.

Once the weekly population is extrapolated to the annual level by multiplying by a
factor of 52, the approach leverages cohort-wise population patterns from previous years
(2015–2019) and assumes a similar age distribution for 2020–2023. The initial population
course, i.e., for 2020, is created by shifting the population size pattern of 2019 one year
forward. This shift leads to an initial gap at age 0 in 2020, which is linearly extrapolated
based on data from 2018 and 2019. The resulting population values are adjusted to match
observed data within age groups.

A three-stage approach is employed to distribute death counts from grouped to metric
age scale on an annual basis. Firstly, averaged weights for each age in each age bucket [l, u]

are computed based on data from the previous five years (2015–2019): w{l,u} =
D{l,u}

1
u−l+1 ·D[l,u]

.

Secondly, these weights are applied to the averaged death counts in each age group to
correct for deviations from the mean: D∗{l,u} = ( 1

5 ∑2019
j=2015 w{l,u},j) · 1

u−l+1 ·D[l,u],2020. Finally,
the corrected death counts are adjusted to ensure equal counts in both grouped and metric

versions within each age group: D{l,u},2020 = k{l,u} · D∗{l,u}, with k{l,u} =
D[l,u],2020

∑u
i=l D∗i,2020

.

The resulting mortality rates are computed by dividing death counts by population
size for each individual age and subpopulation. These enriched mortality data are used to
impute the [15] dataset for the years 2020–2023. The same procedure is applied across all
subpopulations and missing years.

Appendix B. Details on Gradient Boosting Machine

Gradient Boosting is another form of an ensemble learner that is based on the weighted
combination of weak predictive learners such as Decision Trees, usually outperforming
Random Forest. The model is built stepwise and optimized by a differentiable loss function,

https://doi.org/10.5281/zenodo.13905807
https://doi.org/10.5281/zenodo.13905807
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minimizing the in-sample loss [43]. It builds the model stepwise, like other boosting
methods, and generalizes by allowing optimization of any differentiable loss function.
Whereas multiple samples of the original training dataset are used to fit a separate decision
tree to each one independent of the others and to combine all trees into a single predictive
model in bagging, boosting grows the trees sequentially, meaning the information gained
from the previous trees is used to grow the current one. This helps to overcome the major
issue of training a single large Decision Tree by possibly resulting in an overfitting problem.
The gradient boosting algorithm instead learns by constructing a new model based on the
previous one and adding the ith base learner h(i)a,t,g,c:

q̂(i)a,t,g,c = q̂(i−1)
a,t,g,c + λih

(i)
a,t,g,c (A1)

The model is improved in such a way that the current residual will be used as an
outcome to fit a new Decision Tree and to add this into the originally fitted function with the
notion to update the residuals. So, the gradient boosting algorithm fits the new predictor to
the residual errors made by the previous predictor. The shrinkage parameter λi helps to
run the process even slower, allowing for more trees and more detailed enhancement of the
residuals. All parameters of the Decision Trees undergo optimization through the training
of Poisson boosted trees, with the objective of minimizing the negative log-likelihood
associated with the Poisson distribution, serving as the designated loss function. Overall,
in contrary to the bagging methodology, each tree depends on the previous ones [44]. Even
though the gradient boosting keeps on minimizing the errors, this can cause overfitting
in cases where there is a lot of noise in the data and is computationally time and memory
expensive, especially because trees are built sequentially (not in parallel as Random Forest
does). Due to the high flexibility, the gradient boosting algorithm also tends to be harder
to tune than Random Forest [43]. In this study, we specifically utilized LightGBM [45],
employing Microsoft’s library for implementing these models, which have demonstrated
high accuracy in various scenarios [30].

Appendix C. Details on Hyperparameter Optimization

For hyperparameter optimization of the GBM, we used Hyperopt, a Python library
that employs the Tree Parzen Estimator (TPE) algorithm. TPE is an efficient method that
utilizes a probabilistic model to guide the search for optimal hyperparameters. The TPE
workflow can be summarized as follows: First, TPE begins by randomly sampling a
few hyperparameter combinations to create an initial set of observations, serving as the
starting point for optimization. Next, TPE models the relationship between hyperparameter
values and the performance metric (e.g., loss or accuracy), estimating the probability that a
configuration will yield better results.

TPE then balances exploration, trying new configurations, and exploitation, focusing
on promising configurations based on probabilistic models. It emphasizes configurations
likely to lead to better results, similar to how gradient descent focuses on the gradient of the
loss function. As TPE evaluates more configurations, it iteratively refines its probabilistic
models, making more informed decisions.

By continually balancing exploration and exploitation, TPE efficiently navigates the
hyperparameter space, eventually converging on an optimal set of hyperparameters for a
given machine learning model. For a deeper understanding of the TPE algorithm and its
practical application, refer to [46,47].

As for GAMs, each smooth term has associated smoothing parameters that control
the trade-off between fit and smoothness. The mgcv package’s gam() function automates
the process of smoothing parameter optimization when the method is set to Restricted
Maximum Likelihood (REML). After specifying the model, the mgcv package automatically
selects the optimal smoothing parameters by maximizing the restricted likelihood, using an
internal Newton–Raphson numerical optimization algorithm. The result is a model with
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optimally chosen smoothing parameters that balance fit and smoothness according to the
restricted likelihood criterion [24].

Appendix D. Additional Results

The analysis in Table A1 highlights the superior in-sample predictive performance of
the two-step GBM and GAM models within the APC framework over traditional LC and
APC models, with no clear preference between GBM and GAM, across various training
periods for different countries.

Table A1. In-sample RMSE comparison for LC, APC, GBM, and GAM models. LC, APC, and GBM
are fitted from 1950 to 2010 (Finland, Italy, Netherlands, US) and 1990 to 2010 (Germany). GAM is
fitted from 1990 to 2015 for all countries.

Country
Female Male

LC APC GBM GAM LC APC GBM GAM
FIN 0.0045 0.0015 0.0035 0.0011 0.0072 0.0027 0.0066 0.0013
DE 0.0015 0.0022 0.0004 0.001 0.0021 0.0021 0.0007 0.001
ITA 0.0025 0.0021 0.001 0.001 0.0012 0.0025 0.0008 0.001

NLD 0.0019 0.0032 0.0014 0.001 0.0017 0.0015 0.0014 0.001
US 0.0014 0.0033 0.0005 0.0013 0.0017 0.0028 0.0004 0.0011

Figure A1. Estimated marginal effects of age, period, and cohort on mortality rates, differentiated by
countries and genders. The horizontal lines represent the level of no effect. The GAM model was
fitted for the years 1990–2015 and ages 0–90.

GAM enables the interpretation of exponential marginal effects, with age, period, and
cohort being the components analyzed and differentiated by countries and gender. Notably,
while the descending trend in period effect for women is relatively consistent and shallow
across all countries, men exhibit a much steeper decline, indicating a stronger improvement
in mortality rates over the years. There are noticeable increases in mortality rates for Italy
and the US in recent years, particularly for US males, which may be associated with factors
such as the opioid crisis.

The heatmap depicted in Figure A2 offers a detailed examination on an individual age
basis for assessing the scenario analysis across the years 2022 and 2023.
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Figure A2. Heatmap showing the normalized RMSE of scenarios for extrapolated years 2022 and
2023 for males across different countries and individual ages.
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