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Abstract: Two performance measures for binary tree classifiers are introduced: the level of confidence
and the level of utility. Both measures are probabilities of desirable events in the construction process
of a classifier and hence are easily and intuitively interpretable. The statistical estimation of these
measures is discussed. The usual maximum likelihood estimators are shown to have upward biases,
and an entropy-based bias-reducing methodology is proposed. Along the way, the basic question of
appropriate sample sizes at tree nodes is considered.
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1. Introduction

The main objective of this article is to propose two performance measures for binary
classifiers, the level of confidence and the level of utility. There is no lack of performance
measures for tree classifiers in the literature of data science. However, the two proposed
measures are probabilities of two desirable events associated with a binary classifier and,
as such, imply simple and clear meanings. Furthermore, the proposed measures provide
statistical support for considerations in the process of developing a binary classifier in the
sense of classic probability and statistics.

Decision trees are a tool of central importance in modern data science, of which the
binary decision trees are an emblematic case. The discussion in this article has relevance to
multinomial decision trees. However, for simplicity and clarity, the primary focus of the
discussion below is on binary classifiers at nodes in a tree structure. The construction of
a decision tree may be approached with different cultures and logics, each with pros and
cons. Interested readers may refer to [1,2] for in-depth discussions on different cultures
of such undertakings. The two main different cultures are often termed data science and
statistics, respectively, albeit not without overlapping domains. Regardless of the variation
in the logic of the construction effort, the core task remains the same. Consider a Bernoulli
random variable, B = B(px), where x ∈ X ∗ and X ∗ is a sample space for a random co-
variate element X. One of the simplest binary tree classifiers may be developed according
to the following model.

1. An identically and independently distributed (iid) sample of size n is taken,
{(Bi, Xi); 1 ≤ i ≤ n}, where Xi is a random element on X ∗ according to some
distribution and Bi is, conditioning on X = x, a Bernoulli random variable with
px. To construct a binary tree classifier is to find, based on the sample, a partition
of X ∗, denoted X = {xj; 1 ≤ j ≤ J}, such that in each sub-group indexed by xj,
Bxj , or more simply Bj, is a Bernoulli random variable, conditioning on X = xj with
pxj = pj and qj = 1 − pj. Let Nj = ∑n

i=1 1[Xi=xj ]
. {Nj; 1 ≤ j ≤ J} is a multinomial

vector of size n with its realization {nj; 1 ≤ j ≤ J}. The first sample of size n,
{(Bi, Xi); 1 ≤ i ≤ n}, may be thought of as a pair (Bi, Xi), where Xi is a random
element on X = {xj; 1 ≤ j ≤ J} with probability distribution λ = {λj; 1 ≤ j ≤ J},
and Bi is conditionally Bernoulli with pj given Xi = xj. Let Yj = ∑n

i=1 Bi1[Xi=xj ]
and
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p̂j = Yj/Nj be the frequency and the relative frequency of the sample of size n in the j
th sub-group. Another iid element, denoted (Bn+1, Xn+1), is to be taken.

2. A tree classifier is defined as follows: given Xn+1 = x ∈ X , (a) if p̂x > 0.5, Bn+1 is
projected to be 1 (a success); (b) if p̂x < 0.5, Bn+1 is projected to be 0 (a failure); or (c)
if p̂x = 1 − p̂x = 0.5, a fair coin is tossed to determine the classification of Bn+1.

There is a long list of issues involved with constructing a classifier as described above,
some of which are fundamental and some are technical. To see a comprehensive discussion,
one may refer to, for example, [3]. The volume of methodologies for developing classifiers
has increased rapidly in recent decades, but mostly in the realm of data science rather than
statistics. There are good reasons why much of the development of classifiers is on the
side of data science. One of the most distinctive characteristics of data science, as opposed
to statistics, is the highly non-parametric nature of the associated methodologies. Unlike
many traditional statistical models, which usually have a low-dimensional data space, data
science models are more general, more flexible and more complex. As such, they have a
tendency to be over-zealous in dynamically searching and establishing features based on the
sample in the data space. This phenomenon is sometimes known as “heat seeking” to data
scientists, which may be thought of as over-fitting in the usual statistical terminologies. On
top of the said “heating seeking”, there exists a fact that is exacerbating the situation: many
important quantities of interest in developing and evaluating a classifier depend on the
parameter p∨ = max{p, 1 − p}, and the usual and natural estimator p̂∨ = max{ p̂, 1 − p̂}
of p∨ has an upward bias. This fact may be plainly seen in a very simple setting.

1. Let the binary alphabet be denoted L = {ℓ1, ℓ2} and associated with a probability
distribution P(ℓ1) = p and P(ℓ2) = 1 − p.

2. Let p∨ = max{p, 1 − p} and p∧ = min{p, 1 − p}, and assume p∨ > p∧.
3. Let the letter, corresponding to probability p∨, be denoted ℓ∨, that is,

ℓ∨ = arg maxℓ∈L P(ℓ). Letter ℓ∨ is also referred to as the true letter.

Any reasonable performance measure of a simple classifier based on an iid Bernoulli
sample is basically a function of p∨ (and p∧). Therefore, the quality of an estimator of p∨
becomes essential to the quality of the estimator of such a performance measure, which could
in turn guide the entire process of constructing a binary classifier. However, a good estimator
of p or q = 1 − p does not necessarily imply a good estimator of p∨ = max{p, 1 − p}. For
example, the relative frequencies p̂ and q̂ = 1 − p̂ based on an iid Bernoulli sample are
uniform minimum variance unbiased estimators of p and q = 1 − p; but p̂∨ = max{p̂, 1 − p̂}
is upwardly biased since the function f (p) = max{p, 1 − p} is a convex function, and
hence, by Jensen’s inequality, E(max{ p̂, 1 − p̂}) ≥ max{E( p̂), E(1 − p̂)} = p∨. In fact, the
bias could be quite significant when the sample size n is small. This simple observation has
profound implications in the process of constructing a binary classifier, or more generally
a binary tree classifier as every node of a tree resembles a simple binary classifier. The
upward bias tends to overestimate p∨, hence exaggerating the confidence in selecting
ℓ̂∨ = arg maxℓ∈L P̂(ℓ) as the likely true letter.

In this article, several relevant results are presented in the subsections of Section 2.
These results may be thought to belong to two categories. The first contains motivational
arguments leading to the definitions of the level of confidence and the level of utility of a bi-
nary classifier. Along the way, a general entropy and a notion of entropic objects, including
an entropic binomial distribution, are defined. The second contains some consideration of
the estimation of the levels of confidence and utility, which includes an introduction to the
notion of an entropic maximum likelihood estimator (emle), as opposed to the maximum
likelihood estimator (mle). The article then proposes a weighted average of the mle and
the emle of p∨ as a bias-alleviating estimator of p∨. Several numerical calculations and
simulation studies are also reported in the same section. Finally, the article ends with a few
concluding remarks in the last section, including several recommendations to practitioners
on how to incorporate the findings of this article into practice.
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2. Main Results
2.1. Entropies and Entropic Objects

Consider a general countable alphabet, L = {ℓk; k ≥ 1}, along with an associated
probability distribution, p = {pk; k ≥ 1}. Let p↓ = {p(k); k ≥ 1} be the non-increasingly
re-arranged p, that is, for every k, k ≥ 1, p(k) ≥ p(k+1). A general notion of entropy was
first given in [4], but is given below for a self-contained presentation.

Definition 1. A function f (p) is referred to as an entropy if f (p) depends on p only through p↓,
that is, f (p) = f (p↓).

Definition 1 not only defines general entropies but also implies a notion of label-
independence. An entropy is a measure that is invariant with regard to the labels of the
underlying alphabet. Many well-known entropies studied in the existing literature include
Shannon’s entropy Hs = −∑k≥1 pk ln pk as in [5], Rényi’s entropy Hr = ln

(
∑k≥1 pα

k
)
/

(1 − α) for some α where 0 < α < ∞ and α ̸= 1 as in [6], the Tsallis entropy
Ht = (1 − ∑k≥1 pα

k )/ (α − 1) for any α > 1 as in [7], and the generalized Simpson’s entropy
Hgs = ∑k≥1 pu

k (1 − pk)
v for any pair of integers u ≥ 1 and v ≥ 0, as in [8,9]. It may

be interesting to note that p(k) for any k is an entropy, and in particular, p∨ = p(1) is
an entropy.

In the spirit of Definition 1, the adjective “entropic” is adopted to describe objects that
are label-independent. For example, a sample of size n from a countable alphabet may be
summarized by a multinomial random array Y = {Yk; k ≥ 1}, which may be re-arranged
non-increasingly into Y↓ = {Y(k); k ≥ 1} and referred to as the entropic statistics associated
with Y. Similarly, while the elements of p = {pk; k ≥ 1} are multinomial parameters, these
of p↓ may be referred to as entropic multinomial parameters. It may be interesting to note
that, by the same token, a classifier, or a decision tree, is also entropic in nature and that an
exercise of developing a classifier is also entropic.

2.2. Entropic Binomial Distributions

Consider a Bernoulli population with probability p and an iid sample of size n taken
from it. The sample may be summarized by a binomial random variable Y ∼ B(n, p) with
probability distribution

P(y) = P(Y = y) =
n!

y!(n − y)!
py(1 − p)n−y (1)

for integer y, 0 ≤ y ≤ n. Let Y∨ = max{Y, n − Y}. The probability distribution of Y∨ is

P∨(y) =P(Y∨ = y)

=

{
P(Y∨ = y), for y > n − y or y > n/2;
P(Y∨ = y), for y = n − y or y = n/2.

=

{
n!

y!(n−y)! [p
y
∨(1 − p∨)n−y + pn−y

∨ (1 − p∨)y], for n/2 < y ≤ n;
n!

y!(n−y)! [p∨(1 − p∨)]n/2, for y = n/2.
(2)

P∨(y) of (2) is referred to as the entropic binomial distribution. It is to be noted that
the entropic binomial distribution is parameterized by the entropic parameter, p∨, and not
by the binomial parameter p. Also to be noted is the fact that all the probabilities in (2)
are entropies by Definition 1. Furthermore, it is to be noted that the binomial probability
of (1) is defined on a binomial sample space, while (2) is defined on an aggregated binomial
sample space. The difference between the two is an important point to be exploited in
this article.

Consider a mixture of several Bernoulli populations, each of which has probability pj,

for integers 1 ≤ j ≤ J, with non-negative mixing weights, λj, such that ∑J
j=1 λj = 1. An

iid sample of size n may be summarized into {(Nj, Yj); 1 ≤ j ≤ J}, where {Nj; 1 ≤ j ≤ J}
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is a multinomial vector with size n and category probabilities {λj; 1 ≤ j ≤ J}, and, given
{Nj = nj; 1 ≤ j ≤ J}, {Yj|Nj = nj; 1 ≤ j ≤ J} is a vector of independent binomial random
variables with probabilities {pj; 1 ≤ j ≤ J}. It then follows that the probability distribution
of {(Nj, Yj); 1 ≤ j ≤ J} is as given below. Writing N = {Nj; 1 ≤ j ≤ J}, n = {nj; 1 ≤ j ≤ J}
as a realization of N, Y = {Yj; 1 ≤ j ≤ J} and y = {yj; 1 ≤ j ≤ J} as a realization of Y,

P((N, Y) =(n, y)) = P(Y = y|N = n)P(N = n)

=

[
J

∏
j=1

nj!
yj!(nj − yj)!

p
yj
j (1 − pj)

nj−yj

](
n!

n1!n2! · · · nJ !

J

∏
j=1

λ
nj
j

)

=
n!

∏J
j=1[yj!(nj − yj)!]

J

∏
j=1

[
λ

nj
j p

yj
j (1 − pj)

nj−yj
]
. (3)

Let Yj,∨ = max{Yj, Nj − Yj} and let yj,∨ = max{yj, nj − yj} be a realization of Yj,∨
for every j, 1 ≤ j ≤ J. The probability distribution of {(Nj, Yj,∨); 1 ≤ j ≤ J} is as
given in (4) below. Let Y∨ = {Yj,∨; j = 1, · · · , J} where Yj,∨ = max{Yj, nj − yj}, let
y∨ = {yj,∨; 1 ≤ j ≤ J} be a realization of Y∨, and let pj,∨ = max{pj, 1 − pj} for every j,
1 ≤ j ≤ J. It is easily seen that, by way of (3), assuming pj ̸= 0.5 for every j and for yj,
nj/2 ≤ yj ≤ nj for all j, 1 ≤ j ≤ J,

P((N, Y∨) = (n, y∨)) = P(Y∨ = y∨|N = n)P(N = n)

=
n!

∏J
j=1[yj!(nj − yj)!]

J

∏
j=1

{
λ

nj
j

[
p

yj
j,∨(1 − pj,∨)

nj−yj + p
nj−yj
j,∨ (1 − pj,∨)

yj 1[yj>nj/2]

]}
. (4)

Remark 1. The probability in (4) is not an entropy in the sense of Definition 1 but a product of
entropies, each of which is defined with respect to a Bernoulli sub-population indexed by j, 1 ≤ j ≤ J.

2.3. Levels of Confidence and Utility

In the two-stage contemplation of constructing a tree classifier described in Section 1,
there are two desirable events as follows, both of which pertain to the (n+ 1) th observation
(Bn+1, Xn+1).

1. C = Xn+1 falls into a sub-population (or a tree node), say Xn+1 = xj for some j,
where the classifier correctly identifies the true letter based on the sample of size n,
{(Bi, Xi); 1 ≤ i ≤ n}.

2. U = Bn+1 is correctly predicted based on the sample of size n, {(Bi, Xi); 1 ≤ i ≤ n}.

Definition 2. The probability of C, P(C), is referred to as the level of confidence, and the probability
of U, P(U), is referred to as the level of utility.

To be instructive, consider first the levels of confidence and utility in the case of a
single Bernoulli population. Let e(n) be the indicator function that n is an even integer.

P(C) =P(ℓ̂∨ = ℓ∨) = P(Y > n − Y) + e(n)P(Y = n/2)/2

=1 − P(Y ≤ n/2) + e(n)P(Y = n/2)/2 (5)

= ∑
n/2<y≤n

n!
y!(n − y)!

py
∨(1 − p∨)n−y +

n!e(n)
2[(n/2)!]2

[p∨(1 − p∨)]n/2,

P(U) =p∨ P(C) + (1 − p∨)(1 − P(C)), (6)

where Y ∼ B(n, p∨). It may be interesting to note that both (5) and (6) are entropies. The
proof of the following fact is trivial.

Fact 1. Assuming p∨ > 1 − p∨, limn→∞ P(C) = 1 and limn→∞ P(U) = p∨.
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Tables 1 and 2 below give the level of confidence and the level of utility, according
to (5) and (6), for several combinations of sample size n and p∨. Given a desired level of
confidence or a level of utility, an appropriate sample size may be found at every level of p∨.
For example, in Table 1, at a desired confidence level of 95% and p∨ = 0.75, the minimum
sample size is n = 9. Similarly to reach a utility level of 0.70 with p∨ = 0.75, a minimum
sample of size n = 5 is required. In practice, however, p∨ is unknown, and therefore, either
an empirical value exists or it needs to be estimated to make a judgment as to whether a
sample size is adequate. The estimation of p∨ is discussed in the next subsection.

Table 1. Confidence levels, P(C), as a function of n and p∨.

p∨ 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
n = 1 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
n = 2 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
n = 3 0.50 0.57 0.65 0.72 0.78 0.84 0.90 0.94 0.97 0.99 1.00
n = 4 0.50 0.57 0.65 0.72 0.78 0.84 0.90 0.94 0.97 0.99 1.00
n = 5 0.50 0.59 0.68 0.76 0.84 0.90 0.94 0.97 0.99 1.00 1.00
n = 6 0.50 0.59 0.68 0.76 0.84 0.90 0.94 0.97 0.99 1.00 1.00
n = 7 0.50 0.61 0.71 0.80 0.87 0.93 0.97 0.99 1.00 1.00 1.00
n = 8 0.50 0.61 0.71 0.80 0.87 0.93 0.97 0.99 1.00 1.00 1.00
n = 9 0.50 0.62 0.73 0.83 0.90 0.95 0.98 0.99 1.00 1.00 1.00
n = 10 0.50 0.62 0.73 0.83 0.90 0.95 0.98 0.99 1.00 1.00 1.00
n = 15 0.50 0.65 0.79 0.89 0.95 0.98 1.00 1.00 1.00 1.00 1.00
n = 20 0.50 0.67 0.81 0.91 0.97 0.99 1.00 1.00 1.00 1.00 1.00
n = 25 0.50 0.69 0.85 0.94 0.98 1.00 1.00 1.00 1.00 1.00 1.00
n = 30 0.50 0.71 0.86 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00
n = 35 0.50 0.72 0.89 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00
n = 40 0.50 0.74 0.90 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00
n = 45 0.50 0.75 0.91 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
n = 50 0.50 0.76 0.92 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
n = 60 0.50 0.78 0.94 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
n = 70 0.50 0.80 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
n = 80 0.50 0.81 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
n = 90 0.50 0.83 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
n = 100 0.50 0.84 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
n = 200 0.50 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
n = 300 0.50 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

In the case of a tree structure, where there are at least J ≥ 2 nodes, the forms of P(C)
and P(U) are slightly more complex. First, let it be noted that N = {N1, · · · , NJ} is a multi-
nomial random vector with fixed size n and multinomial probabilities, λ = {λ1, · · · , λJ},
that is,

P(N = {n1, · · · , nJ}) =
(

n
n1, · · · , nJ

) J

∏
j=1

λ
nj
j . (7)

However, the marginal distribution of each Nj is a binomial, that is,

P(Nj = nj) =

(
n
nj

)
λ

nj
j
(
1 − λj

)n−nj (8)

subject to 0 ≤ nj ≤ n. Therefore, for each j, 1 ≤ j ≤ J, letting Cj = {ℓ̂j,∨ = ℓj,∨} be the
event that the true letter at the j th node is correctly identified,
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P(Cj) = P(ℓ̂j,∨ = ℓj,∨)

=
n

∑
m=1

P(ℓ̂j,∨ = ℓj,∨|Nj = m)P(Nj = m)

=
n

∑
m=1

{[
1 − P(Yj ≤ m/2) + e(m)P(Yj = m/2)/2

][ n!
m!(n − m)!

λm
j (1 − λj)

n−m
]}

(9)

where Yj ∼ B(m, pj,∨);

P(C) =
J

∑
j=1

λj P(Cj) and (10)

P(U) =
J

∑
j=1

λj[pj,∨ P(Cj) + (1 − pj,∨)(1 − P(Cj))] (11)

where P(Cj) is as in (9).

Table 2. Utility levels, P(U), as a function of n and p∨.

p∨ 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
n = 1 0.50 0.51 0.52 0.55 0.58 0.63 0.68 0.75 0.82 0.91 1.00
n = 2 0.50 0.51 0.52 0.55 0.58 0.63 0.68 0.75 0.82 0.91 1.00
n = 3 0.50 0.51 0.53 0.57 0.61 0.67 0.74 0.81 0.88 0.94 1.00
n = 4 0.50 0.51 0.53 0.57 0.61 0.67 0.74 0.81 0.88 0.94 1.00
n = 5 0.50 0.51 0.54 0.58 0.63 0.70 0.77 0.83 0.89 0.95 1.00
n = 6 0.50 0.51 0.54 0.58 0.63 0.70 0.77 0.83 0.89 0.95 1.00
n = 7 0.50 0.51 0.54 0.59 0.65 0.71 0.78 0.84 0.90 0.95 1.00
n = 8 0.50 0.51 0.54 0.59 0.65 0.71 0.78 0.84 0.90 0.95 1.00
n = 9 0.50 0.51 0.54 0.60 0.66 0.73 0.79 0.85 0.90 0.95 1.00
n = 10 0.50 0.51 0.54 0.60 0.66 0.73 0.79 0.85 0.90 0.95 1.00
n = 15 0.50 0.52 0.56 0.62 0.68 0.74 0.80 0.85 0.90 0.95 1.00
n = 20 0.50 0.52 0.56 0.62 0.69 0.75 0.80 0.85 0.90 0.95 1.00
n = 25 0.50 0.52 0.56 0.63 0.69 0.75 0.80 0.85 0.90 0.95 1.00
n = 30 0.50 0.52 0.57 0.64 0.70 0.75 0.80 0.85 0.90 0.95 1.00
n = 35 0.50 0.52 0.58 0.64 0.70 0.75 0.80 0.85 0.90 0.95 1.00
n = 40 0.50 0.52 0.58 0.64 0.70 0.75 0.80 0.85 0.90 0.95 1.00
n = 45 0.50 0.53 0.58 0.64 0.70 0.75 0.80 0.85 0.90 0.95 1.00
n = 50 0.50 0.53 0.58 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
n = 60 0.50 0.53 0.59 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
n = 70 0.50 0.53 0.59 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
n = 80 0.50 0.53 0.59 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
n = 90 0.50 0.53 0.59 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
n = 100 0.50 0.53 0.59 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
n = 200 0.50 0.54 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
n = 300 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Example 1. Suppose a binary tree classifier has J = 2 nodes. The three parameters of the binary
classifier are λ, and p1,∨ and p2,∨, where λ is the partition weights, λ1 = λ and λ2 = 1 − λ, and
p1,∨ and p2,∨ are the maximum probabilities in two partitions, respectively. By (9),
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P(C1) =
n

∑
m=1

{
[1 − P(Y1 ≤ m/2) + e(m)P(Y1 = m/2)/2]

[
n!

m!(n − m)!
λm(1 − λ)n−m

]}
P(C2) =

n

∑
m=1

{
[1 − P(Y2 ≤ m/2) + e(m)P(Y2 = m/2)/2]

[
n!

m!(n − m)!
(1 − λ)mλn−m

]}
.

P(C) =λ P(C1) + (1 − λ)P(C2), (12)

P(U) =λ[p1,∨ P(C1) + (1 − p1,∨)(1 − P(C1))]

+ (1 − λ)[p2,∨ P(C2) + (1 − p2,∨)(1 − P(C2))]. (13)

Tables 3–8 show calculated levels of confidence and utility for several combined values of the
underlying parameters, {λ, p1,∨, p2,∨}, according to (12) and (13).

Table 3. Confidence level, P(C), with J = 2 and λ = 0.5.

(p1,∨, p2,∨) (0.6, 0.6) (0.6, 0.7) (0.6, 0.8) (0.6, 0.9) (0.7, 0.7) (0.8, 0.8) (0.9, 0.9)

n = 5 0.5358 0.5752 0.6107 0.6419 0.6145 0.6855 0.7480

n = 10 0.6045 0.6577 0.7017 0.7360 0.7109 0.7989 0.8675

n = 20 0.6574 0.7252 0.7726 0.8017 0.7930 0.8879 0.9460

n = 30 0.6941 0.7691 0.8136 0.8351 0.8441 0.9331 0.9761

n = 40 0.7232 0.8015 0.8410 0.8561 0.8798 0.9588 0.9890

n = 50 0.7475 0.8268 0.8609 0.8712 0.9061 0.9742 0.9949

n = 100 0.8303 0.8999 0.9137 0.9151 0.9696 0.9971 0.9999

n = 200 0.9130 0.9546 0.9565 0.9565 0.9961 1.0000 1.0000

n = 300 0.9524 0.9759 0.9762 0.9762 0.9994 1.0000 1.0000

Table 4. Confidence level, P(C), with J = 2 and λ = 0.75.

(p1,∨, p2,∨) (0.6, 0.6) (0.6, 0.7) (0.6, 0.8) (0.6, 0.9) (0.7, 0.7) (0.8, 0.8) (0.9, 0.9)

n = 5 0.5392 0.5500 0.5601 0.5694 0.6341 0.7159 0.7820

n = 10 0.6215 0.6384 0.6536 0.6670 0.7447 0.8347 0.8921

n = 20 0.6925 0.7159 0.7356 0.7515 0.8371 0.9159 0.9514

n = 30 0.7338 0.7614 0.7832 0.7993 0.8819 0.9448 0.9688

n = 40 0.7650 0.7956 0.8183 0.8337 0.9093 0.9596 0.9781

n = 50 0.7900 0.8230 0.8459 0.8602 0.9275 0.9686 0.8941

n = 100 0.8679 0.9062 0.9259 0.9339 0.9664 0.9882 0.9963

n = 200 0.9314 0.9686 0.9792 0.9811 0.9877 0.9978 0.9998

n = 300 0.9565 0.9884 0.9935 0.9939 0.9944 0.9996 1.0000

Table 5. Confidence level, P(C), with J = 2 and λ = 0.90.

(p1,∨, p2,∨) (0.6, 0.6) (0.6, 0.7) (0.6, 0.8) (0.6, 0.9) (0.7, 0.7) (0.8, 0.8) (0.9, 0.9)

n = 5 0.5902 0.5917 0.5931 0.5944 0.7156 0.8140 0.8785

n = 10 0.6579 0.6611 0.6641 0.6669 0.8047 0.8906 0.9261

n = 20 0.7432 0.7487 0.7537 0.7581 0.8952 0.9466 0.9577

n = 30 0.7955 0.8024 0.8085 0.8138 0.9336 0.9633 0.9699

n = 40 0.8311 0.8391 0.8459 0.8517 0.9515 0.9702 0.9762

n = 50 0.8573 0.8660 0.8737 0.8795 0.9606 0.9740 0.9801

n = 100 0.9249 0.9365 0.9453 0.9514 0.9743 0.9833 0.9895

n = 200 0.9621 0.9764 0.9852 0.9898 0.9830 0.9917 0.9964

n = 300 0.9715 0.9868 0.9944 0.9974 0.9880 0.9956 0.9986
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Table 6. Utility level, P(U), with J = 2 and λ = 0.5.

(p1,∨, p2,∨) (0.6, 0.6) (0.6, 0.7) (0.6, 0.8) (0.6, 0.9) (0.7, 0.7) (0.8, 0.8) (0.9, 0.9)

n = 5 0.5072 0.5265 0.5592 0.6028 0.5458 0.6113 0.6984

n = 10 0.5209 0.5526 0.6001 0.6574 0.5844 0.6794 0.7940

n = 20 0.5315 0.5743 0.6321 0.6942 0.6172 0.7328 0.8568

n = 30 0.5388 0.5882 0.6493 0.7099 0.6376 0.7600 0.8809

n = 40 0.5446 0.5983 0.6560 0.7179 0.6519 0.7753 0.8912

n = 50 0.5495 0.6060 0.6670 0.7227 0.6624 0.7845 0.8959

n = 100 0.5661 0.6269 0.6822 0.7330 0.6878 0.7983 0.9000

n = 200 0.5826 0.6405 0.6913 0.7413 0.6984 0.8000 0.9000

n = 300 0.5905 0.6451 0.6952 0.7452 0.6998 0.8000 0.9000

n = ∞ 0.6000 0.6500 0.7000 0.7500 0.7000 0.8000 0.9000

Table 7. Utility level, P(U), with J = 2 and λ = 0.75.

(p1,∨, p2,∨) (0.6, 0.6) (0.6, 0.7) (0.6, 0.8) (0.6, 0.9) (0.7, 0.7) (0.8, 0.8) (0.9, 0.9)

n = 5 0.5078 0.5037 0.5035 0.5067 0.5536 0.6296 0.7256

n = 10 0.5243 0.5311 0.5436 0.5608 0.5979 0.7008 0.8137

n = 20 0.5385 0.5522 0.5731 0.5988 0.6348 0.7495 0.8611

n = 30 0.5468 0.5636 0.5880 0.6166 0.6528 0.7669 0.8751

n = 40 0.5530 0.5721 0.5988 0.6287 0.6637 0.7757 0.8825

n = 50 0.5580 0.5790 0.6071 0.6375 0.6710 0.7811 0.8873

n = 100 0.5736 0.6000 0.6305 0.6560 0.6866 0.7929 0.8970

n = 200 0.5863 0.6162 0.6450 0.6711 0.6949 0.7987 0.8998

n = 300 0.5913 0.6216 0.6485 0.6738 0.6978 0.7997 0.9000

n = ∞ 0.6000 0.6250 0.6500 0.6750 0.7000 0.8000 0.9000

Table 8. Utility level, P(U), with J = 2 and λ = 0.90.

(p1,∨, p2,∨) (0.6, 0.6) (0.6, 0.7) (0.6, 0.8) (0.6, 0.9) (0.7, 0.7) (0.8, 0.8) (0.9, 0.9)

n = 5 0.5180 0.5106 0.5037 0.4973 0.5862 0.6884 0.8028

n = 10 0.5516 0.5277 0.5250 0.5233 0.6219 0.7343 0.8408

n = 20 0.5486 0.5495 0.5521 0.5564 0.6581 0.7680 0.8662

n = 30 0.5591 0.5622 0.5675 0.5747 0.6734 0.7780 0.8759

n = 40 0.5662 0.5705 0.5774 0.5861 0.6806 0.7821 0.8810

n = 50 0.5715 0.5765 0.5843 0.5940 0.6842 0.7844 0.8841

n = 100 0.5850 0.5922 0.6024 0.6140 0.6897 0.7900 0.8916

n = 200 0.5924 0.6019 0.6137 0.6258 0.6932 0.7950 0.8971

n = 300 0.5943 0.6050 0.6171 0.6287 0.6952 0.7974 0.8989

n = ∞ 0.6000 0.6100 0.6200 0.6300 0.7000 0.8000 0.9000

Consider two possible splits of the Bernoulli population with probability p∨ = 0.70, along
with a no-split, as follows.

1. Split A: λ = 0.9, p1,∨ = 0.75 (hence p2,∨ = 0.75);
2. Split B: λ = 0.2, p1,∨ = 0.75 (hence p2,∨ = 0.6875);
3. No Split: λ = 1 and p∨ = 0.70.

The levels of confidence as functions of the sample size n are plotted in Figure 1, where the
thick solid curve is of No Split, the thin solid curve is of Split A, and the dashed curve is of Split
B. Similarly, Figure 2 shows the three curves for the levels of utility. The fact that these curved
cross, converge and dominate provides a basis for contemplation in the process of constructing and
evaluating classifiers.
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Calculations of P(C) and P(U) for more general cases may be carried out easily
according (10) and (11).
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Figure 2. Utility levels of competing splits.

2.4. MLE and Entropic MLE

In practice, both the confidence and utility levels are unknown and therefore need to
be estimated. Consider first the case of a homogeneous Bernoulli population. Since P(C)
and P(U) are functions of p∨, their estimation boils down to that of p∨ = max{p, 1 − p}.
Perhaps the most natural estimator of p∨ is the maximum likelihood estimator (mle) under
the binomial distribution in (1),

p̂∨ = max{ p̂, 1 − p̂} (14)

where p̂ = Y/n, and the corresponding mles of P(C) and P(U) in (5) and (6) are

P̂(C) =
n

∑
y=⌊n/2⌋+1

n!
y!(n − y)!

p̂y
∨(1 − p̂∨)n−y +

n!/2
(n/2)!(n/2)!

[ p̂∨(1 − p̂∨)]n/2 × e(n), (15)

P̂(U) =1 − P̂(C)(1 − p̂∨)− p̂∨(1 − P̂(C)). (16)

The following three facts collectively indicate a tendency of over-estimation
by (15) and (16).

Fact 2. Suppose p ∈ (0, 1). Then E( p̂∨) > p∨.

A proof of Fact 2 is given in Section 1.

Fact 3. The confidence level, P(C) of (5), is an increasing function of p∨.

Proof. It is best to prove the fact in two separate cases: n is odd and even. Assuming n is
odd, rewriting (10) gives
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P(C) =
n

∑
y=⌊n/2⌋+1

n!
y!(n − y)!

py
∨(1 − p∨)n−y +

n!/2
(n/2)!(n/2)!

[p∨(1 − p∨)]n/2 × 1[n is even]

=
n

∑
y=⌊n/2⌋+1

n!
y!(n − y)!

py
∨(1 − p∨)n−y =

n

∑
y=(n+1)/2

n!
y!(n − y)!

py
∨(1 − p∨)n−y

=P(Y ≥ (n + 1)/2) = P(2Y ≥ n + 1) = P(Y ≥ (n − Y) + 1)

=P(Y > n − Y) (17)

where Y is a binomial random variable with distribution B(n, p∨). Noting that p∨ > 0.5 by
assumption and that the event {Y > n − Y} is the event of “more successes than failures in
a sample of size n”, it follows that P(C) increases as p∨ does.

Similarly assuming n is even,

P(C) =P(Y ≥ (n + 1)/2) + P(Y = n/2)− n!/2
(n/2)!(n/2)!

[p∨(1 − p∨)]n/2

=P(Y ≥ n/2)− n!/2
(n/2)!(n/2)!

[p∨(1 − p∨)]n/2

=P(2Y ≥ n)− n!/2
(n/2)!(n/2)!

[p∨(1 − p∨)]n/2

=P(Y ≥ n − Y)− n!/2
(n/2)!(n/2)!

[p∨(1 − p∨)]n/2 (18)

where Y is a binomial random variable with distribution B(n, p∨). Noting that p∨ > 0.5
by assumption and that the event {Y > n − Y} is the event of “no fewer successes than
failures”, it follows that P(Y ≥ n −Y) increases as p∨ does. On the other hand, the negative
term in (18) is a strictly decreasing function of p∨ for p∨ ∈ [0.5, 1). It follows that P(C) is
increasing in p∨.

Fact 4. The utility level, P(U) of (11), is an increasing function of p∨.

Proof. Noting P(U) = P(C)p∨ + (1 − P(C))(1 − p∨) of (11), taking the derivative of P(U)
with respect to p∨, and letting P′(C) denote the derivative of P(C) with respect to p∨,

P′(U) = P′(C)p∨ + P(C)− P′(C)(1 − p∨)− (1 − P(C))

= P′(C)(2p∨ − 1) + (2 P(C)− 1). (19)

Noting P′(C) > 0 as shown in Fact 3, p∨ > 0.5 (and hence 2p∨ > 1) and P(C) ≥ 0.5
(and hence 2 P(C) ≥ 1), it follows that P′(U) > 0 for p∨ ∈ (0.5, 1).

On the other hand, let the maximizing value of p∨ in the likelihood of the entropic
binomial distribution (2) be referred to as the entropic maximum likelihood estimator
(emle), denoted p̃∨, and let g( p̃∨), for any function g(·), be referred to as the emle of g(p∨).
p̃∨ tends to underestimate p∨ with smaller samples. However, it provides an opportunity
to offset the upward bias of the mle, p̂∨, in various ways, for example, by means of a
weighted average

p̂♭∨ = wp̂∨ + (1 − w) p̃∨ (20)

where w, 0 ≤ w ≤ 1, may be data-based. More specifically, the following is the proposed
estimator of p∨ of this article, with w = p̂∨.

p̂♭∨ = p̂∨ p̂∨ + (1 − p̂∨) p̃∨ = p̃∨ + p̂∨( p̂∨ − p̃∨), (21)

which may be viewed as an under-estimator, p̃∨, with a non-negative correction term,
p̂∨( p̂∨ − p̃∨).
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Example 2. Suppose an iid Bernoulli sample yields Y = 5 and n − Y = 2. The likelihood of the
binomial distribution (1) is proportional to py(1 − p)n−y, the dashed curve given in Figure 3, and
the mle of p∨ is p̂∨ = 5/7 = 0.7134, as the dashed arrow points to, and the mles of P(C) and
P(U), by (15) and (16), are, respectively,

P̂(C) =
7

∑
y=4

7!
y!(7 − y)!

(5/7)y(2/7)7−y = 0.8917,

P̂(U) =1 − 0.8917(1 − 5/7)− (5/7)(1 − 0.8917) = 1 − 0.8917(2/7)− (5/7)(0.1083)

=0.6679.

The entropic likelihood of the entropic binomial distribution (2) is represented by the solid
curve in Figure 3. The entropic maximum likelihood estimator (emle) of p∨ is p̃∨ = 0.6667, as the
solid arrow points at, and the emles of P(C) and P(U), by (15) and (16), are, respectively,

P̃(C) =
7

∑
y=4

7!
y!(7 − y)!

(0.6667)y(1 − 0.6667)7−y = 0.8267

P̃(U) =1 − 0.8267(1 − 0.6667)− (0.6667)(1 − 0.8267) = 0.6089

By (21), (15) and (16), p̂♭∨ = 0.7000, and

P̂♭
(C) =

7

∑
y=4

7!
y!(7 − y)!

(0.7)y(1 − 0.7)7−y = 0.8740

P̂♭
(U) =1 − 0.8740(1 − 0.7)− (0.7)(1 − 0.8740) = 0.6496.

It may be interesting to note that, in this case,

p̃∨ ≤ p̂♭∨ ≤ p̂∨ (22)

P̃(C) ≤ P̂♭
(C) ≤ P̂(C), and (23)

P̃(U) ≤ P̂♭
(U) ≤ P̂(U). (24)

It is to be mentioned that the qualitative difference between the two likelihood functions
in Figure 3 remains the same in general: the values of emles are lower than those of mles. It is
important to understand that the binomial distribution leads to an mle of p, and then one of
p∨ = max{p, 1 − p}, while the entropic binomial distribution estimates p∨ directly via the
likelihood of Y∨. The inequalities in (22)–(24) are deterministically true in general, which gives
an opportunity for a reduction in the biases of p̂∨, P̂(C) and P̂(U).
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2.5. Several Numerical Studies

Several simulation studies were conducted, and the results are presented in
Tables 16 and 17 for the bias and the mean squared errors (MSE) of p̂∨, p̃∨, and p̂♭∨
respectively. Each simulated case is based on ten thousand random samples. Results are
tabulated for combinations of four p∨ values {0.6, 0.7, 0.8, 0.9} crossed with ten values of
n from 5 to 50. The MSE values are quite stable across the three estimators in question.
Therefore, the comparison is mainly of the biases of the estimators. It is observed that
the simulated bias of emle, p̃∨, is significantly lower than that of the mle, p̂∨, for smaller
values of p∨ and with smaller samples, and the bias of the proposed weighted average
estimator, p̂♭∨, snugs in between. This is a fact well suggested by Facts 2–4. The weighted
average, p̂♭∨, seems to do better than p̂∨ across the board. In the study range of p∨, the
bias of p̂♭∨ seems to be controlled when the sample size reaches n = 20 or n = 30, as
evidenced by the fact that the simulated bias is controlled under 2% and 1%, while the bias
of p̂∨ becomes controlled when the sample size reaches n = 40 to n = 50. The observed
difference between the required sample sizes is the advantage of the proposed estimator.
However, it is also observed that the required sample size to reach a reasonable precision,
say the bias is under 2% or 1%, respectively, depends on the value of p∨. The smaller the
p∨, the larger the sample required. In that sense, the biases tabulated in Tables 16 and 17
do not tell the whole story. In fact, the first part of Table 9 contains the biases for a very
small value of p∨ = 0.51, which shows that the mle, p̂∨, needs n = 200 to have bias under
2% and n = 500 to have a bias under 1%. It is once again seen that the proposed estimator,
p̂♭∨, performs much better.

Table 9. Biases with very small p∨.

Bias of p̂∨ p̃∨ p̂♭
∨ P̂(C) P̂

♭
(C) P̂(U) P̂

♭
(U)

p∨ 0.51 0.51 0.51 0.51 0.51 0.51 0.51

n = 100 0.0307 0.0121 0.0220 0.1847 0.1242 0.0268 0.0207

n = 200 0.0192 0.0062 0.0130 0.1518 0.0915 0.0186 0.0141

n = 300 0.0142 0.0042 0.0094 0.1284 0.0711 0.0148 0.0113

n = 400 0.0112 0.0023 0.0069 0.1094 0.0502 0.0124 0.0092

n = 500 0.0093 0.0016 0.0056 0.0951 0.0375 0.0108 0.0080

n = 600 0.0080 0.0009 0.0046 0.0826 0.0257 0.0096 0.0071

n = 700 0.0069 0.0005 0.0038 0.0710 0.0146 0.0086 0.0063

n = 800 0.0061 0.0001 0.0032 0.0608 0.0049 0.0079 0.0057

Several simulation results for estimating the levels of confidence and utility in the case
of one single Bernoulli population are given in Tables 18 and 19. It is observed that the
biases are quite large across the board for smaller values of p̂∨ and with smaller samples,
albeit the biases are much smaller for the estimators of P(U) than for those of P(C). For
example, when p∨ = 0.6, for the biases in Table 18 to be under 1%, a node size of n = 300 is
needed. When p∨ = 0.7, for the biases in Table 18 to be under 1%, a node size of n = 70 is
needed. It may be interesting to note that, in Table 19, in estimating P(U) when p∨ = 0.6 for
a bias under 1%, a node size of only n = 70 is needed. When p∨ = 0.7, for a bias under 1%,
a node size of only n = 20 is needed. An increasing trend in bias, as p∨ decreases, is clearly
observed. To give a more complete picture, the second part of Table 9 gives biases of the
mle and the proposed estimators, of P(C) and P(U), at p∨ = 0.51. It is clearly seen that the

mle, P̂∨(C) of P(C) performs very poorly, while the proposed estimator, P̂♭
∨(C) does much

better though is not necessarily satisfactory. It may be interesting to note that, in estimating
P(U), the mle and the proposed estimator are comparable in bias as the sample size varies.
One could say that, for lack of a better term, P(U) is easier to estimate than P(C).

The simulation studies reported above give a glimpse of how p∨, the level of confi-
dence and the level of utility may be estimated on a very limited scope, mostly focusing on
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a single Bernoulli population. However, more general and more complex situations may
be easily carried out in similar manners.

Example 3. One of the most popular illustrative examples of a decision tree in data science involves
predicting whether a randomly selected golfer goes to play the game under a set of weather conditions.
A sample of n = 14 is given in Table 10.

Table 10. Golfing and weather.

Outlook Temp Humidity Windy Play Golf

Rainy Hot High False No

Rainy Hot High True No

Overcast Hot High False Yes

Sunny Mild High False Yes

Sunny Cool Normal False Yes

Sunny Cool Normal True No

Overcast Cool Normal True Yes

Rainy Mild High False No

Rainy Cool Normal False Yes

Sunny Mild Normal False Yes

Rainy Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Sunny Mild High True No

Many questions about this data set may be asked. For illustration purposes, let the question be,
if only one covariate is used, which of the four, among Outlook, Temp, Humidity and Wind, is the
best predictor. Obviously, the sample size is too small to convey any meaningful reliability of the
results and therefore is ignored. Several key statistics for each of the four factors are tabulated in
Tables 11–14. The statistics include nj, yj, λ̂j, p̂j,∨, P̂(Cj), and P̂(Uj) for each j, specifically noting
that (9)–(11) are the basis of the plug-in estimators.

Table 11. Outlook with J = 3.

Outlook Rainy Overcast Sunny

nj 5 4 5

yj 2 4 3

λ̂j 5/14 4/14 5/14

p̂j,∨ 3/5 4/4 3/5

P̂(Cj) 0.8418 0.7397 0.8418

P̂(Uj) 0.5684 0.7397 0.5684

Table 12. Temperature with J = 3.

Temp Hot Mild Cool

nj 4 6 4

yj 2 4 3

λ̂j 4/14 6/14 4/14

p̂j,∨ 2/4 4/6 3/4

P̂(Cj) 0.6426 0.9408 0.7268

P̂(Uj) 0.5000 0.6470 0.6134
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Table 13. Humidity with J = 2.

Humidity High Normal

nj 7 7

yj 3 6

λ̂j 7/14 7/14

p̂j,∨ 4/7 6/7

P̂(Cj) 0.9246 0.9915

P̂(Uj) 0.5606 0.8511

Table 14. Wind with J = 2.

Windy False True

nj 8 6

yj 6 3

λ̂j 8/14 6/14

p̂j,∨ 6/8 3/6

P̂(Cj) 0.9916 0.8547

P̂(Uj) 0.7458 0.5000

The estimated overall levels of confidence and utility are tabulated for each of the four covariates
in Table 15. For comparison, the estimated Gini’s information impurities for the respective covariates
are also tabulated. It is clear that for the estimated levels of confidence and utility, Humidity is
the best predictor, followed by Wind and then Outlook, and Temp is the worst. Incidentally, the
estimated Gini’s information impurities also support the same ranking (Tables 16–19).

Table 15. Estimated levels of confidence and utility.

Weather Outlook Temp Humidity Windy

P̂(C) 0.8126 0.7945 0.9581 0.9329

P̂(U) 0.6173 0.5954 0.7059 0.6405

ĝλ 0.7143 0.7976 0.3673 0.4286

Table 16. Biases in estimating p∨.

Bias of p̂∨ p̃∨ p̂♭
∨

p∨ 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9

n = 5 0.1021 0.0468 0.0158 0.0037 0.0468 −0.0014 −0.0141 −0.0077 0.0781 0.0284 0.0048 −0.0001

n = 6 0.0743 0.0278 0.0076 0.0025 −0.0016 −0.0370 −0.0364 −0.0136 0.0490 0.0063 −0.0070 −0.0028

n = 7 0.0740 0.0282 0.0073 0.0020 0.0231 −0.0111 −0.0160 −0.0055 0.0544 0.0137 −0.0008 −0.0004

n = 8 0.0578 0.0183 0.0048 0.0013 0.0056 −0.0212 −0.0165 −0.0036 0.0385 0.0038 −0.0029 −0.0004

n = 9 0.0578 0.0184 0.0040 0.0008 −0.0202 −0.0434 −0.0301 −0.0070 0.0292 −0.0036 −0.0078 −0.0018

n = 10 0.0471 0.0125 0.0024 0.0008 0.0058 −0.0161 −0.0101 −0.0013 0.0310 0.0016 −0.0022 0.0000

n = 20 0.0212 0.0031 0.0010 0.0007 −0.0138 −0.0140 −0.0019 0.0006 0.0067 −0.0039 −0.0002 0.0006

n = 30 0.0122 0.0015 0.0007 0.0005 −0.0098 −0.0052 0.0002 0.0027 −0.0013 0.0005 0.0005 0.0005

n = 40 0.0078 0.0009 0.0008 0.0005 −0.0125 −0.0031 0.0007 0.0005 −0.0011 −0.0008 0.0007 0.0005

n = 50 0.0052 0.0007 0.0006 0.0004 −0.0093 −0.0009 0.0006 0.0004 −0.0012 0.0000 0.0006 0.0004
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Table 17. Mean squared errors in estimating p∨.

MSE of p̂∨ p̃∨ p̂♭
∨

p∨ 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9

n = 5 0.0250 0.0237 0.0232 0.0162 0.0320 0.0360 0.0358 0.0223 0.0282 0.0277 0.0276 0.0183

n = 6 0.0274 0.0237 0.0224 0.0144 0.0274 0.0386 0.0413 0.0244 0.0230 0.0263 0.0271 0.0171

n = 7 0.0193 0.0192 0.0189 0.0122 0.0209 0.0270 0.0271 0.0159 0.0197 0.0219 0.0217 0.0133

n = 8 0.0183 0.0191 0.0180 0.0109 0.0215 0.0292 0.0273 0.0138 0.0181 0.0218 0.0209 0.0118

n = 9 0.0150 0.1063 0.0157 0.0097 0.0200 0.0321 0.0146 0.0308 0.0147 0.0202 0.0198 0.0111

n = 10 0.0147 0.0161 0.0147 0.0088 0.0175 0.0233 0.0199 0.0100 0.0150 0.0184 0.0165 0.0093

n = 20 0.0076 0.0093 0.0078 0.0044 0.0114 0.0143 0.0092 0.0044 0.0086 0.0111 0.0083 0.0044

n = 30 0.0056 0.0067 0.0052 0.0029 0.0086 0.0054 0.0053 0.0029 0.0064 0.0074 0.0029 0.0029

n = 40 0.0045 0.0051 0.0039 0.0022 0.0071 0.0064 0.0040 0.0022 0.0054 0.0056 0.0040 0.0022

n = 50 0.0038 0.0041 0.0031 0.0018 0.0057 0.0046 0.0032 0.0018 0.0045 0.0043 0.0031 0.0018

Table 18. Biases in estimating P(C).

Bias of P̂(C) P̃(C) P̃♭
(C)

p∨ 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9

n = 20 −0.0004 −0.0610 −0.0213 −0.0014 −0.1192 −0.1183 −0.0311 −0.0016 −0.0479 −0.0834 −0.0251 −0.0015

n = 30 −0.0318 −0.0460 −0.0067 −0.0001 −0.1149 −0.0712 −0.0082 −0.0001 −0.0685 −0.0562 −0.0073 −0.0001

n = 40 −0.0479 −0.0309 −0.0020 −0.0000 −0.1423 −0.0489 −0.0023 −0.0000 −0.0872 −0.0382 −0.0022 −0.0000

n = 50 −0.0561 −0.0199 −0.0006 0.0000 −0.1301 −0.0279 −0.0007 0.0000 −0.0877 −0.0232 −0.0007 0.0000

n = 60 −0.0594 −0.0125 −0.0002 −0.0000 −0.1258 −0.0169 −0.0002 −0.0000 −0.0878 −0.0143 −0.0002 −0.0000

n = 70 −0.0599 −0.0079 −0.0000 −0.0000 −0.1245 −0.0104 −0.0000 −0.0000 −0.0875 −0.0089 −0.0000 −0.0000

n = 80 -0.0595 −0.0049 −0.0000 -0.0000 −0.1116 −0.0060 −0.0000 −0.0000 −0.0820 −0.0054 −0.0000 −0.0000

n = 90 −0.0570 −0.0031 -0.0000 −0.0000 −0.1023 −0.0036 −0.0000 −0.0000 −0.0766 −0.0033 −0.0000 −0.0000

n = 100 −0.0531 −0.0020 -0.0000 −0.0000 -0.0993 −0.0025 −0.0000 −0.0000 −0.0729 −0.0022 −0.0000 −0.0000

n = 200 −0.0222 −0.0000 −0.0000 0.0000 −0.0337 −0.0000 −0.0000 0.0000 −0.0272 −0.0000 −0.0000 0.0000

n = 300 −0.0074 −0.0000 −0.0000 0.0000 −0.0096 −0.0000 −0.0000 0.0000 −0.0084 −0.0000 −0.0000 0.0000

Table 19. Biases in estimating P(U).

Bias of P̂(U) P̃(U) P̃♭
(U)

p∨ 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9

n = 20 0.0408 0.0024 −0.0043 0.0000 0.0252 −0.0065 −0.0062 0.0000 0.0302 −0.0033 −0.0054 0.0000

n = 30 0.0250 −0.0030 −0.0011 0.0006 0.0129 −0.0077 −0.0015 0.0006 0.0180 −0.0055 −0.0013 0.0006

n = 40 0.0158 −0.0033 0.0002 0.0005 0.0055 −0.0058 0.0001 0.0005 0.0090 −0.0048 0.0002 0.0005

n = 50 0.0098 −0.0024 0.0004 0.0005 0.0017 −0.0036 0.0004 0.0004 0.0048 −0.0030 0.0004 0.0005

n = 60 0.0060 −0.0014 0.0006 0.0004 −0.0014 −0.0021 0.0006 0.0004 0.0016 −0.0018 0.0006 0.0004

n = 70 0.0033 −0.0008 0.0005 0.0005 −0.0028 −0.0012 0.0005 0.0005 −0.0006 −0.0010 0.0005 0.0005

n = 80 0.0013 −0.0004 0.0005 0.0004 −0.0038 −0.0006 0.0005 0.0004 −0.0038 −0.0005 0.0005 0.0004

n = 90 −0.0001 −0.0000 0.0005 0.0004 −0.0046 −0.0001 0.0005 0.0004 −0.0028 −0.0001 0.0005 0.0004

n = 100 −0.0007 −0.0002 0.0004 0.0004 −0.0046 −0.0003 0.0004 0.0004 −0.0032 −0.0003 0.0004 0.0004

n = 200 −0.0021 −0.0002 0.0002 0.0002 −0.0030 −0.0002 0.0002 0.0002 −0.0027 −0.0002 0.0002 0.0002

n = 300 −0.0010 −0.0003 0.0002 0.0002 −0.0011 −0.0003 0.0002 0.0002 −0.0011 −0.0003 0.0002 0.0002

3. Summary

This article proposes two performance measures, P(C) and P(U), that are linked to
probabilities of two desirable label-invariant events in the sampling/developing process
of a binary tree construction. They are referred to as the level of confidence and the level
of utility of a binary classifier. A core component of these measures is the larger of the
probabilities in a Bernoulli trial, that is, p∨ = max{p, 1 − p}. Several properties of p∨, P(C)
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and P(U) are discussed. Also discussed is the estimation of these quantities. However,
let it be noted that, although P(C) and P(U) are the measures of central interest in this
article, the estimation of p∨ is important in its own right, since it could be a key element in
evaluating many aspects of a binary classifier beyond those considered in this article.

One of the most distinct features identified in this article is the upward bias of the
usual mle of p∨, namely p̂∨. This bias may be significant and increases as p∨ decreases
toward 0.5 with a fixed n. Because of that, the biases of the mles of P(C) and P(U), namely
P̂(C) and P̂(U), have the same issues though to different extents. To control the said biases
to within a reasonable bound, for example, 1% or 2%, a required sample size may need to
be very large.

In terms of practice, several recommendations are made below, which may provide
some useful guidance.

1. Small sample size considerations are important because, in developing a tree classifier,
the perpetual question is whether to go further into the next layer, regardless of the
macro modeling logic one may use. At the end of splitting, the sample size races
toward zero. No matter what macro logic is employed in construction, a tree always
comes to nodes to be developed with samples of smaller sizes. One of the most
important questions is whether the sample size is sufficiently large to be statistically
meaningful. To answer this question, the best approach is to have a prior empirical
judgment on the range for p∨. If a range is judged as reasonable, say [pa, pb), where
0.5 < pa < pb ≤ 1, then that pa may be used to determine the appropriate sample
size via Formulas (5) and (6) at a given desired level, say 95% for P(C) and another
practically chosen level for P(U), noting that P(U) has a ceiling, that is, P(U) ≤ p∨,
according to Fact 1.

2. If no sufficient prior knowledge exists for p∨, then a preliminary estimate for it is
needed. The proposed estimator in (20), p̂♭∨, is preferred to the usual mle, p̂∨. The
estimated p∨ is then used in Formulas (5) and (6) to produce estimated levels of
confidence and utility, which in turn could give baseline information for further
adjustments, such as pruning or further splitting. Of course, in such estimation, a
reasonable sample size is needed. A recommended initial minimum sample size,
according to Table 17 with a reasonable range [0.6, 0.9), is n = 40 if p̂∨ is used and
n = 20 if p̂♭∨ is used.

3. For a given binary tree classifier with J ≥ 2 leaves or nodes, both the level of confi-
dence and the level of utility after pj,∨ is estimated for each and every j, 2 ≤ j ≤ J. The
formulas of (10) and (11) may be used, with the mle of λ, λ̂j = nj/n, and the mle or
the proposed estimator of P(Cj) and P(Uj) for each and every j, 1 ≤ j ≤ J, to produce
estimates of overall levels of confidence and utility. Noting that both (10) and (11)
are λ-weighted averages, the overall level of confidence or the overall level of utility
may be negatively affected if individual nodes have particularly low P(Cj) or P(Uj)
for some j, 1 ≤ j ≤ J. If individual nodes are found to be low in confidence or utility,
some repair or adjustment may be called for.

The main objective of this paper is to add two measures of performance to the literature
of development and evaluation of a binary tree classifier. The measures have intuitive and
simple probabilistic meanings. As such, some basic questions, like the relationship between
the parameters and sample sizes, may be naturally considered and described in a style of
classic statistics. However, it must be noted that it is not meant to replace or take away
anything from the collection of methodologies in modern data science. It is hoped that the
discussion of this article serves as a starting point for much more to come as data science
advances and evolves.
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