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Abstract: Optimization is a highly relevant area of research due to its widespread applica-
tions. The development of new optimization algorithms or the improvement of existing
ones enhances the efficiency of various fields of activity. In this paper, an improved Soft
Island Model (SIM) is considered for the Tent-map-based Fish School Search algorithm with
Exponential step decay (ETFSS). The proposed model is based on a probabilistic approach
to realize the migration process relying on the statistics of the overall achievement of each
island. In order to generate the initial population of the algorithm, a new initialization
method is proposed in which all islands are formed in separate regions of the search space,
thus forming clusters. For the presented SIM-ETFSS algorithm, numerical experiments
with the optimization of classical test functions, as well as checks for the presence of some
known defects that lead to undesirable effects in problem solving, have been carried out.
Tools, such as the Mann–Whitney U test, box plots and other statistical methods of data
analysis, are used to evaluate the quality of the presented algorithm, using which the
superiority of SIM-ETFSS over its original version is demonstrated. The results obtained
are analyzed and discussed.

Keywords: evolutionary optimization; swarm intelligence; Fish School Search; Soft Island
Model; center-bias operator; unevenness defect; Mann–Whitney U test

1. Introduction
Despite the rapid development of computing technology, the growth of its perfor-

mance has not always kept pace with the ever-accelerating increase in the volume of data
to be processed and analyzed everywhere. To reduce the existing gap, algorithms and
methods are required that can not only cope with huge volumes of data but also take into
account their complexity, variability, incompleteness and vagueness. Decision making
under such conditions becomes a real challenge for classical approaches to data processing.

For example, the problem of pattern recognition was initially considered as a math-
ematical problem, where the object is described by a set of features, and the methods of
analysis are reduced to strict computations. The approaches used for this purpose, such as
the k-nearest neighbors method (kNN) [1] and histograms of oriented gradients (HOG) [2],
although they showed high efficiency in simple tasks of recognizing different objects and
shapes in images, were gradually replaced by more flexible models of neural networks, for
which the previously mentioned continuous increase in the amount of information was
even useful, positively affecting the amount of training data. Such intelligent methods
for analyzing and processing information have recently even surpassed average human
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capabilities. The best model for image classification for the ImageNet dataset, presented
back in 2014, outperformed the average human results in terms of accuracy [3]. Currently,
intelligent algorithms have many applications in such fields as medicine [4,5], economics [6],
social sciences [7], natural sciences [8–10] and many others.

One of the key tasks in data processing and analysis is optimization, the relevance
of which is confirmed by the variety of its applications. The need for optimization arises,
for example, in the course of genetic research [11], route planning in complex transporta-
tion networks [12], managing connections to a database [13], tuning hyperparameters
of machine learning models [14–16], directly in the learning process itself [17,18] and in
many other areas. The solution of an optimization problem in the general case is to find
extreme (minimum or maximum) values of some arbitrary objective function. From the
mathematical point of view, this problem consists of finding such a vector of parameters
x∗ ∈ RD that f (x∗) = min

x∈Ω
f (x) or f (x∗) = max

x∈Ω
f (x), where f : RD → R is the function

to be optimized; D is the number of parameters of the function (dimension of the search
space); Ω is the region of admissible values that defines the search space.

As it was mentioned earlier, traditional mathematical optimization methods, such as
algorithms based on Newton’s method [19] or variations of gradient descent [20], are not
flexible enough in the context of ever-increasing data complexity, structure and volume;
therefore, heuristic optimization algorithms [21] based on various heuristics that do not
impose any additional requirements on the objective function, except for the possibility of its
calculation, are gaining popularity. An important feature of such algorithms is their ability
to work under conditions of the uncertainty and incompleteness of data, which makes them
a versatile and flexible tool for solving complex practical problems. However, population-
based algorithms also have limitations. For example, in [22], the authors discuss the lack of
rigorous mathematical proofs or guarantees of convergence of such algorithms. In order to
resolve this problem, they propose a framework that combines population-based algorithms
with deterministic algorithms for which convergence has been proven. However, the hybrid
algorithms obtained in this way become more computationally complex compared to their
original versions.

Despite the fact that some heuristic optimization algorithms can cope with specific
problems or classes of problems much better than other algorithms, one cannot unequivo-
cally make conclusions about their exclusive superiority. It is known that the performance
of an algorithm evaluated in finding an optimal solution, averaged over all possible prob-
lems, does not depend on the specifics and principles of the optimization algorithm, so
it is equal for any two algorithms. This statement is a consequence of the so-called “No
Free Lunch” theorem proven in 1996 [23]. Thus, there cannot exist any one universal
algorithm that demonstrates superiority over all other algorithms in solving absolutely
every problem. For this reason, in order to solve real practical problems, it always makes
sense to consider and apply different optimization algorithms, analyze the results obtained
by using them and make conclusions about which particular algorithm is best suited in a
given case. For example, ref. [24] proposes a four-stage approach for analyzing different
heuristic algorithms to identify the most suitable one for solving a specific problem. The
proposed approach suggests first testing the algorithms for the presence of defects, such
as the center-bias operator [25], then evaluating their accuracy and speed in solving test
problems and finally excluding algorithms that do not belong to the Pareto front based on
the analysis results.

On the other hand, modern heuristic algorithms are often hybrid, combining several
fundamentally different optimization methods chosen “on the fly” from assumptions about
the terrain of the function to be optimized, made based on the analysis of past iterations [26].
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However, even if there is a classifier that perfectly accurately determines the type of
problem to be solved and the most suitable optimization algorithm for it in the course of
its work, it is not guaranteed that among the set of heuristics that this hybrid algorithm
possesses, there will necessarily be one for which the results cannot be surpassed by any
other algorithm, since for this purpose, the hybrid algorithm must include an infinite set
of all possible optimization algorithms. Therefore, the study and improvement of already
existing heuristic algorithms still remains an urgent task, even despite the seemingly
“losing” position of some algorithms in relation to others, expressed by the results of their
work on known optimization problems. The ideas and principles obtained in the course of
studying the possibilities of the development and modification of such algorithms can be
useful, among other things, for creating better hybrid approaches.

This paper proposes an island modification of the Tent-map-based Fish School Search
algorithm with Exponential step decay (ETFSS) [27], proposed in co-authorship by one
of the authors of this paper. As the name suggests, this algorithm is based on the Fish
School Search (FSS) algorithm, which is inspired by the behavior of a school of fish in
an aquarium and belongs to the population-based optimization algorithms, a subclass of
a broader category of heuristic algorithms. The Soft Island Model (SIM) [28] is taken as
the basis of the island model in this paper, but it has undergone extensive modifications.
Specifically, we enhanced the probabilistic approach inherent to SIM by incorporating
statistics from each individual island, and also, we excluded situations of the complete
disappearance of islands by implementing a new hyperparameter controlling the minimum
number of fish (agents) that should remain on each island during each iteration of the
algorithm. Additionally, we propose a new approach to population initialization involving
the cluster-based generation of agents relative to their islands.

To confirm statistically significant differences in either direction between the results
obtained by different algorithms during their comparison, we use the Mann–Whitney
U test. The choice of this test is justified by the fact that the samples being compared
are independent, and their distributions do not necessarily follow a normal distribution.
Additionally, the application of the Mann–Whitney U test is widely used in the context of
population-based optimization algorithm comparisons [29–31].

The rest of the paper is organized as follows. Section 2 is devoted to the review of works
related to the current study. Section 3 describes all key aspects of the research, including a
detailed description of the Tent-map Based Fish School Search algorithm with Exponential
step decay in Section 3.1, an improved Soft Island Model in Section 3.2, a new approach
to cluster-based population initialization in Section 3.3, a description of known defects in
population algorithms, such as the center-bias operator (CBO) [25] and the unevenness
defect (UD) [32] and how to detect them in Section 3.4, and details and mathematical
definitions for all test functions used in the experiments in Section 3.5. Section 4 presents
the results of the conducted experiments, including analyzing the performance of the
proposed algorithm and comparing it with the original island-free version of ETFSS under
different values of hyperparameters in Section 4.1, testing the algorithm for the presence
of the aforementioned defects in Section 4.2 and demonstrating an example of using the
proposed algorithm on a real data problem in Section 4.3. Section 5 summarizes the results
of the study and suggests directions of future research.

2. Related Work
In [33–40], such classical population-based optimization algorithms as Artificial Bee

Colony (ABC), Culture Algorithm (CA), Differential Evolution (DE), Genetic Algorithm
(GA), Hill Climbing (HC), Memetic Algorithm (MA), Particle Swarm Optimization (PSO)
and Ant Lion Optimizer (ALO) are presented. Despite some of these algorithms being com-
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paratively old, the heuristics implemented in them are still used both in other algorithms
and in the modernizations of their basic versions. For example, the DE algorithm was first
presented back in 1997, but its numerous modifications are still used for solving complex
optimization problems [29].

In [41], the original Fish School Search (FSS) algorithm is presented, which is a basic
version of ETFSS, an island modification of which is the subject of this paper. The heuristics
used in the FSS algorithm to optimize the objective function are borrowed from the behavior
of real fish that join groups (schools) in order to increase their chances of survival. Driven
by swarm intelligence, a school of fish is able to search for food sources and avoid predators
much more efficiently than each fish individually.

In [42,43], the application of the ETFSS algorithm is considered both for solving
classical optimization test problems and for selecting weights for the hidden layer of the
Extreme Learning Machine (ELM) model. In both cases, the performance of ETFSS is
compared to other well-known algorithms, such as the Genetic Algorithm (GA) [36] and
Particle Swarm Optimization (PSO) [39], as well as its original version, Fish School Search
(FSS) [41]. As a result of the experiments, the authors draw conclusions not only about the
superiority of ETFSS over other analogs in the context of solving the problems considered
in the paper but also about the feasibility of its application to real practical problems.

In [44], a hybrid island model inspired by the natural phenomenon of stigmergy is
presented. Natural stigmergy is a mechanism of a spontaneous indirect interaction between
individuals, which consists of leaving marks in the environment that stimulate further
activity of other individuals. By means of stimergy, individual agents of populations
self-organize and maintain a certain level of cooperation through indirect communication.
The Stgm-IM model proposed by the authors was tested in relation to different popular
optimization algorithms, and as a result, the authors recorded statistically significant
superiority of the island model over the basic versions of the algorithms.

In [45], the optimization problem of an augmented kinetic turbine with a sectioned
diffuser parameterized with thirty degrees of freedom was considered. Since this problem
is computationally complex, for its solution, the authors propose to use an island model
capable of parallelizing the main optimization algorithm. As a result of the work, it
is concluded that the use of the island model not only helps to significantly accelerate
computation but also leads to better results.

In [46], different coevolutionary optimization scenarios were considered and analyzed.
The authors particularly emphasized the “self-play” scenario, in which several “players”
compete with each other in a “game” in order to determine one champion who “plays”
better than the others. In the context of the coevolutionary approach to optimization,
each “player” represents a particular algorithm, and “self-play” refers to the solution of
an optimization problem of some objective function. By competing with each other, a
winner is identified among the algorithms, which can be considered the most suitable for
solving a particular problem. The authors have proven that the basic principles of the “No
Free Lunch” theorem are inapplicable for such a coevolutionary scenario, since there exist
such hybrid approaches that realize the mechanism of selecting specific algorithms under
changing conditions, and selected algorithms show higher performance compared to other
algorithms on average for all possible problems. This fact justifies the use of island models
and only increases the relevance of research in this direction.

In [47,48], modern approaches to the implementation of co-evolutionary modifications
for existing optimization algorithms are presented using Phasor Particle Swarm Optimiza-
tion (PPSO) [49] and Brain Storm Optimization (BSO) [50] as examples. As a result, both
works achieve much better results due to the integration of the co-evolution model into the
problem-solving process by classical algorithms.
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In [30,51,52], different ways to adapt the parameters of the Differential Evolution (DE)
algorithm [35] directly in the process of solving an optimization problem are considered.
Since this algorithm is very sensitive to the values of hyperparameters, its behavior can be
flexibly controlled depending on the available information about the terrain of the objective
function obtained during previous iterations. To analyze and incorporate this information,
the authors apply different mathematical and statistical models, including Taylor series
and Cauchy and Student’s t-distribution. The resulting self-adaptive algorithms show
qualitative results on well-known benchmarks, such as CEC 2017 [53] and CEC 2022 [54].

3. Materials and Methods
3.1. The Tent-Map-Based Fish School Search Algorithm with Exponential Step Decay

As already mentioned, the ETFSS algorithm is a modification of the Fish School
Search (FSS) algorithm. The idea of the original algorithm is to simulate the behavior
of fish swimming around the aquarium and interacting with each other in search of
as much food as possible. In the context of the optimization problem, a school of M
such fish represents a population of M points (agents) in the feature space RD, a search
area represents the aquarium and the amount of food is determined by the value of the
objective (optimizable) function f . Each iteration of the algorithm consists of four main
stages: individual movement, feeding, collective instinctive movement and collective
volitional movement.

3.1.1. Individual Movement Stage

Each agent takes a random step in a random direction, the maximum length of which
is set as a hyperparameter. If the value of the objective function has not improved after the
move, the agent returns to the initial position. Thus, at the t-th iteration of the algorithm,
random moves ∆x(t)i for the i-th agent xi are calculated as follows:

∆x(t)i = step(t)ind·rand, (1)

where rand denotes a vector of random numbers drawn from [0, 1); the dimensionality of
rand is the same as the dimensionality of the agent xi; step(t)ind denotes the maximum step
length for an individual movement during the t-th iteration; i = 1, M.

Before the movement is directly implemented, the differences of the objective func-
tion ∆ f (t)i between the agents’ initial positions x(t)i and the agents’ potential positions

x(t)i + ∆x(t)i after the individual movement has not yet been implemented are calculated:

∆ f (t)i = f
[

x(t)i

]
− f

[
x(t)i + ∆x(t)i

]
, (2)

where i = 1, M; square brackets denote the calculation of the function.
A relocation is performed only if it leads to an improvement of the objective function

value in the context of solving the minimization problem:

x(t+1)
i,ind =

{
x(t)i + ∆x(t)i , ∆ f (t)i > 0

x(t)i , ∆ f (t)i ≤ 0
, (3)

where x(t+1)
i,ind denotes the position of the i-th agent after making an individual movement;

i = 1, M.



Stats 2025, 8, 10 6 of 35

3.1.2. Feeding Stage

Depending on how much the value of the objective function has improved or deteri-
orated during the random moves performed at the first stage, the weight wi of each i-th
agent changes accordingly. It is obvious that the weights will increase only for those agents
that changed their position during the individual movement, since the movement was
performed only if the value of the objective function improved. The weights of the other
agents remaining in their places will decrease.

The weight of the agents is bounded: it can only take values from the range [1, wmax],
where wmax is one of the hyperparameters of the algorithm. At initialization, each agent
is assigned a weight of 0.5·wmax. The weight of the i-th agent at the t-th iteration of the
algorithm changes as follows:

w(t+1)
i = w(t)

i +
∆ f (t)i

max
j

∆ f (t)j

, (4)

where w(t)
i and w(t+1)

i denote the weight of the i-th agent at the t-th and (t + 1)-th iterations

of the algorithm, respectively; i = 1, M; j = 1, M; the weight w(t+1)
i after calculating

Formula (4) is limited to the range [1, wmax].
According to the formulas above, if the i-th agent remained in place during the

individual movement, it means that ∆ f (t)i ≤ 0, which in turn leads to a negative value
in the numerator of the fraction of Formula (4) and hence a decrease in the weight of the
agent.

After the feeding stage, new differences in the values of the objective function ∆ f (t)i,ind
are calculated according to the individual movement already performed:

∆ f (t)i,ind =

{
∆ f (t)i , ∆ f (t)i > 0

0, ∆ f (t)i ≤ 0
. (5)

where i = 1, M.

3.1.3. Collective-Instinctive Movement Stage

The entire population moves along the average direction of improvement of the
objective function value calculated during individual movement. The position of each i-th
agent xi at the t-th iteration of the algorithm during the collective-instinctive movement
x(t+1)

i,ins is specified as follows:

x(t+1)
i,ins = x(t+1)

i,ind +
∑M

j=1 ∆x(t)j ·∆ f (t)j,ind

∑M
j=1 ∆ f (t)j,ind

, (6)

where M is the number of agents in the population; the second term in the right part of the
equation (fraction) is a constant equal for each agent at the t-th iteration of the algorithm;
i = 1, M; j = 1, M.

3.1.4. Collective-Volitive Movement Stage

In order to maintain the balance between exploration and exploitation, all agents move

either towards the common barycenter B(t) at the current t-th iteration or in the opposite
direction, depending on whether the total weight of all agents has increased or decreased
during the previous stages. Each agent takes its own random step in this direction, the
maximum length of which is the second hyperparameter of the algorithm.
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The common barycenter of agents is calculated as follows:

B(t)
=

∑M
j=1 w(t+1)

j ·x(t+1)
j,ins

∑M
j=1 w(t+1)

j

. (7)

Then, Formula (8) is applied to calculate the agents’ positions after the collective-
volitive movement x(t+1)

i,vol if ∑M
j=1 w(t+1)

j > ∑M
j=1 w(t)

j ; otherwise, Formula (9) is applied:

x(t+1)
i,vol = x(t+1)

i,ins − step(t)vol ·rand·
x(t+1)

i,ins − B(t)∥∥∥x(t+1)
i,ins − B(t)

∥∥∥ , (8)

x(t+1)
i,vol = x(t+1)

i,ins + step(t)vol ·rand·
x(t+1)

i,ins − B(t)∥∥∥x(t+1)
i,ins − B(t)

∥∥∥ , (9)

where rand denotes a vector of random numbers drawn from [0, 1); the dimensionality
of rand is the same as the dimensionality of the agent xi; step(t)vol denotes the maximum
step length for the collective-volitive movement during the t-th iteration; i = 1, M; double
vertical lines ∥·∥ denote the norm of the vector.

After all of the described stages, each agent moves along the coordinates of the realized
collective-volitive movement, i.e., x(t+1)

i = x(t+1)
i,vol , and the step lengths for individual and

collective-volitive movement decay according to a predetermined linear law.
Figure 1 shows an example of population development during four main stages in

the optimization of a function of two variables f (x1, x2). White dots with a blue contour
on the graphs denote agents, the same blue color represents the traces of their movement
during the stage and green and red contours denote agents that increased and decreased
their weight during the feeding stage, respectively. The background color in the subfigures
represents the landscape of the objective function, ranging from lower values (blue) to
higher values (red).
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Figure 1. The four main stages of one iteration of the FSS algorithm from left to right: (a) individual
movement; (b) feeding; (c) collective-instinctive movement; (d) collective-volitive movement.

In the modification of the FSS algorithm proposed in [27] called ETFSS, the authors
propose to use chaotic tent-maps to generate the pseudo-random numbers used at different
stages of optimization, and the step lengths for the stages of individual and collective-
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volitive movement of agents to decay according to the exponential law at each t-th iteration
of the algorithm:

step(t+1)
ind = step(1)ind·exp

(
−5t

T

)
, (10)

step(t+1)
vol = step(1)vol ·exp

(
−5t

T

)
, (11)

where step(1)ind and step(1)vol denote the initial values for the maximum step lengths of individ-
ual and collective-volitive movement, respectively; T is the total number of iterations of
the algorithm.

Algorithm 1 summarizes all of the ETFSS steps.

Algorithm 1: ETFSS pseudocode.

Input:

f —objective function for minimization;
M—total number of agents (population size);
T—total number of iterations of the algorithm;
wmax—maximum weight of an agent;
step(1)ind, step(1)vol—initial values for the maximum step lengths.

1. for each i-th agent in population do:
2. Initialize random position of the agent x(1)i ;
3. Initialize the weight of the agent equal to 0.5·wmax;
4. Calculate the initial value of objective function f

[
x(1)i

]
;

5. end for
6. for each t−th iteration of the total number of T do:
7. for each i-th agent in population do:
8. Calculate individual movement ∆x(t)i using Formula (1);

9. Calculate the value of the objective function with the individual

movement applied f
[

x(t)i + ∆x(t)i

]
;

10. Calculate the difference of the objective function values ∆ f (t)i using
Formula (2);

11. Apply the individual movement using Formula (3);

12. Update the weight of the agent after the individual movement using
Formula (4);

13. Limit the weight to the range [1, wmax];

14. Recalculate the difference of the objective function values after the
individual movement has been applied using Formula (5);

15. Apply the collective-instinctive movement using Formula (6);
16. end for
17. Calculate common barycenter of all agents using Formula (7);
18. for each i-th agent in population do:
19. Apply the collective-volitive movement using Formulas (8) or (9);
20. Calculate the value of the objective function after the movement;
21. end for
22. Update step(t+1)

ind using Formula (10) and step(t+1)
vol using Formula (11);

23. Find the local best solution (found during the t-th iteration);
24. Recalculate the global best solution (found over all iterations up to the t-th).
25. end for
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3.2. The Modified Soft Island Model

In order to improve the convergence of population-based optimization algorithms,
as well as to ensure the possibility of speeding up their operation through parallelization,
island models are used. The principle of their work is based on dividing the entire pop-
ulation of M agents into N isolated groups, called islands, where each group solves the
optimization problem autonomously. But at certain time intervals (for example, every few
iterations of the algorithm), information is exchanged between the islands by means of the
migration of agents from one island to another. The structure and nature of migration are
determined by the topology of connections between islands [55], which can take various
forms: ring [56,57], torus [58], lattice [59] and others.

The Soft Island Model (SIM) proposed in [28] realizes a probabilistic approach to the
implementation of migrations. Thus, during migrations, each agent stays on its initial island
with probability P and moves to any other island except the initial one with probability
1 − P. In this case, the value of probability P does not change during the optimization
process and is a hyperparameter. The main difference between this model and others is that
the migration topology presented in SIM is based on probabilities, so it assumes that the
number of agents at islands changes during iterations. This model has been implemented
for such well-known population-based algorithms as differential evolution (DE) [35] and
particle swarming (PSO) [39] and has shown a statistically significant improvement in
the results of optimization problems compared to the corresponding classical island-free
versions of these algorithms.

In this paper, we propose to modify SIM as applied to the ETFSS algorithm by adding
the possibility of changing the values of migration probabilities for agents by taking into
account the overall achievements of the islands to which they belong. For this purpose, at
each t-th iteration after the feeding stage, the difference in its total weight ∆W(t)

k compared
to the previous iteration is calculated for each k-th island:

∆W(t)
k =

{
0, W(t)

k < W(t−1)
k

W(t)
k − W(t−1)

k , W(t)
k ≥ W(t−1)

k

, (12)

where W(i)
k denotes the sum of weights of all agents belonging to the k-th island at the

t-th iteration of the algorithm, i.e., W(t)
k = ∑M

i w(t)
i ; k = 1, N; i = 1, M; N is the number of

islands; M is the number of agents in one island (the population of the island).
The migration process is proposed to be carried out after the completion of all four

main ETFSS stages and the decay of step lengths at each t-th iteration of the algorithm.
Based on analogy with the original Soft Island Model, for the presented algorithm, it is
necessary to pre-specify the value of the hyperparameter P.

The probability of an agent belonging to the k-th island to migrate to the h-th island
depends on whether h is equal to k:

P(t)
h =


P +

∆W(t)
h

∑N
j=1 ∆W(t)

j

(1 − P), h = k,

∆W(t)
h

∑N
j=1 ∆W(t)

j

(1 − P), h ̸= k.
(13)

It should be noted that the agent stays on the same island if h = k and migrates to h-th
island otherwise.

According to Formula (13), each agent will stay on its initial island during the t-th
iteration with probability not less than P. The probability of migration to another island
does not exceed 1 − P and depends on how the total weights of agents of all islands have
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changed. The implication is that islands closer to the global extremum are more likely to
increase their total weights during the individual movement stage, so their populations
are more likely to increase. Thus, the most “successful” islands are given more resources
to refine the optimal solution. At the same time, the idea of the probabilistic approach
naturally counteracts “monopolization” among islands, since in the process of migrations,
any island can get a new agent that represents a solution that is so much better than
the other agents that it can significantly shift the barycenter of the island in its direction,
strongly affecting its overall results during the collective-volitive movement.

However, this approach does not exclude the possibility of the complete disappearance
of islands in the process of the optimization. With a large number of iterations, it may
happen that only one of all islands remains, i.e., the algorithm degenerates into a classical
version of ETFSS and ceases to take advantage of the advantages of the island model. To
prevent the complete disappearance of islands, we propose to set the minimum number of
agents L that can include one island as an additional hyperparameter of the algorithm. At
each t-th iteration on each k-th island, it is proposed to randomly select exactly L agents
that will not participate in the migration process at the current iteration, so they will remain
on their islands regardless of the probabilities calculated by Formula (13). Thus, it makes
sense to generate populations so that the number of agents on each island is initially greater
than L. Then, at any iteration of the algorithm, no island can completely disappear, because
there will always be at least L agents on it.

Algorithm 2 summarizes the modified Soft Island Model applied to the ETFSS.

Algorithm 2: SIM-ETFSS pseudocode.

Input:

f —objective function for minimization;
N—total number of islands;
S—initial number of agents belonging to one island (population size);
T—total number of iterations of the algorithm;
wmax—maximum weight of an agent;
step(1)ind, step(1)vol—initial values for the maximum step lengths;
P—probability hyperparameter.

1. for each k-th island of the total number of N do:

2. Initialize S agents as the population of the island (lines 1–5 of Algorithm 1);

3. end for
4. for each t-th iteration of the total number of T do:
5. for each k-th island of the total number of N do:
6. Perform the steps of the ETFSS (lines 7–21 of Algorithm 1) for k-th island;
7. Calculate the difference in the total weight ∆W(t)

k using Formula (12);
8. for each h-th island of the total number of N do:

9. Calculate the probability of an agent to migrate to the h-th island from the k-
th island using Formula (13);

10. end for
11. for each i-th agent of the k-th island do:
12. Migrate to another island or not according to the calculated probabilities;
13. end for
14. end for
15. Update step lengths (line 22 of Algorithm 1);
16. Update local and global best solutions (lines 23–24 of Algorithm 1).
17. end for
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3.3. Cluster-Based Population Initialization

The initial generation of populations in island models usually includes N × S random
points in the search space, where N is the number of islands and S is the initial number
of agents on each island. Thus, N different groups of S agents in each group are obtained.
However, this approach does not create conditions for competition between islands, since
each island is in an equal situation with the others during initialization. As a result, the
effect of cooperative interaction between islands is rather random, at least at the very
beginning of population development.

In this paper, we propose a new approach for the generation of initial populations, in
which each island forms its own space within a search area in which agents belonging to it
are generated. The sizes of such regions are set so that the sum of the hypervolumes of all
islands equals the hypervolume of the entire search area. Thus, the length of the side of the
hyperrectangle, within which the agents of one island will be generated, along the dim axis
is calculated as follows:

r(island)
dim =

r(space)
dim

D
√

N
, (14)

where r(island)
dim is the length of the side of the hyperrectangle of one island along the dim axis;

r(space)
dim is the length of the side of the hyperrectangle of the whole search area along the

dim axis; D is the dimensionality of the problem to be solved; N is the number of islands.
For each island, a random point is generated, which is its center, and a population

is generated around it, taking into account the size of the hyperrectangle of the island.
Figure 2 shows examples of the classical approach, Figure 2a, and the approach proposed
in this paper, Figure 2b, for generating an initial population in a two-dimensional search
space and its distribution over three islands. The rectangles with dotted borders in the
Figure 2b indicate the boundaries of the islands of the corresponding color.
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The proposed approach creates unequal conditions for islands when initiating their
populations, thus increasing competition between them. In addition, the roles of islands in
the task of optimizing certain parts of the search area are specified, and migrations become
more reasonable.

Although the cluster-based generation of populations does not cover the entire search
area, as can be seen in Figure 2b, it cannot be said that the remaining space will be ignored
by the algorithm. Some SIM-ETFSS stages implement search diversification (exploration)
in one way or another, so during optimization, individual agents may move to areas that
were not initially covered by any island, if, of course, moving to these areas is justified and
can potentially lead to an improvement of the objective function based on the heuristics
used in the algorithm.

Algorithm 3 shows the main steps of the cluster-based initialization of island populations.

Algorithm 3: Cluster-based initialization of island populations.

Input:

N—total number of islands;
S—initial number of agents belonging to one island (population size);
D—dimensionality of the problem to be solved;

r(space)
1 , r(space)

2 , . . . , r(space)
D —lengths of the search area along all D dimensions.

1. for each dim-th dimension of the total number of D do:
2. Calculate the length of the island area along dim-th axis using Formula (14);
3. end for
4. for each k-th island of the total number of N do:
5. Place the island area at a random location in the entire search space;
6. Initialize island population of S agents inside its area.
7. end for

Line 5 of Algorithm 3 assumes that the island area must be completely within a search
space, i.e., a random agent satisfying the search space constraints can be generated at any
point in the island area.

3.4. Testing for Defects

As mentioned earlier, the creation of new optimization algorithms and improvement
of existing ones is an urgent direction for research in the area under study, so at the moment
there is a huge number of different heuristics used in solving optimization problems.
However, fundamentally new approaches do not always turn out to be exceptionally
useful, and sometimes even on the contrary, they have some implicit defects that have an
extremely negative impact on the optimization process. For this reason, it makes sense
to check the SIM-ETFSS algorithm presented in this paper for such known defects as the
center-bias operator (CBO) [25] and the unevenness defect (UD) [32].

3.4.1. The Center-Bias Operator

The defect caused by the presence of the center-bias operator manifests itself in
the uneven exploration of the entire available search area, giving greater preference to
the space closer to its center. As a result, population-based algorithms possessing this
defect show better results based on those problems for which the global extremum of the
objective function coincides or is located in the vicinity of the center of the given search
area, with much less qualitative results in cases where the optimal solution is located
on the periphery. To achieve this undesirable effect, the center-bias operator itself does
not necessarily have to be directly implemented in the algorithm but can be indirectly
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manifested due to the internal logic of its operation or the features of the applied heuristics.
Figure 3 shows a visualization of the algorithm behavior with such a defect on the example
of minimizing a function of the two variables f (x1, x2). The background color in the
subfigures represents the landscape of the objective function, ranging from lower values
(blue) to higher values (red).
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In [24,25], a simple method of detecting the center-bias operator is presented. For this
purpose, it is proposed to prepare a set of Q test functions and to select search areas for
them in such a way that global extremums are located in close proximity to their centers.

Then, it is proposed to create a similar set of the same test functions, but the search
areas for them should be shifted along each axis by 10% of the search range length (it
is assumed that the search area is defined in the form of a hypercube, and the search
range lengths are the same for all dimensions). For each test function from both sets,
20 independent runs of the optimization algorithm should be performed, followed by the
calculation of errors (the difference between the actual optimal solution and the found one).

Thus, for each function fq at q = 1, Q, there will be 20 values V(q)
u =

(
v(q)u,1, v(q)u,2, . . . , v(q)u,20

)
obtained with the “unbiased” search area and 20 values V(q)

s =
(

v(q)s,1 , v(q)s,2 , . . . , v(q)s,20

)
obtained with

the “biased” search area. The estimate of the presence of the center-bias operator CBOscore is calculated
using the following formula:

CBOscore =

 Q

∏
q=1

∑20
j=1 v(q)s,j

∑20
j=1 v(q)u,j


1
Q

. (15)

The geometric mean obtained in Formula (15) is an estimate of the presence of the center-bias
operator in the considered algorithm. If CBOscore > 10, it is considered that the algorithm copes
with the problems for which the sought optimal value is in the center of the search area an order of
magnitude better than the others, which is a manifestation of a defect.

3.4.2. The Unevenness Defect

The unevenness defect manifests itself in the fact that the quality of optimization depends on
the geometric shape of the search area. The closer its shape is to a hypercube, the better results such
algorithms produce. In [32], it is shown that, contrary to logic, some population algorithms begin
to show much lower quality results if the search area is reduced unevenly along different axes. In
other words, narrowing the search area does not lead to the expected improvement in the quality of
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optimization but, on the contrary, becomes the cause of the algorithm’s performance degradation.
Figure 4 shows a visualization of the behavior of the algorithm subject to the unevenness defect,
using the example of minimizing a function of two variables f (x1, x2). The background color in the
subfigures represents the landscape of the objective function, ranging from lower values (blue) to
higher values (red).
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The following approach is proposed in [32] for unevenness defect detection. Similar to the CBO
detection method, first of all, it is proposed to prepare a set of Q different test functions and to select
search areas for them so that global extremums are located in close proximity to their centers, and the
areas themselves have the same length along all axes.

Then, it is proposed to create almost the same set of the same test functions but to reduce the

search areas along each axis so that the length of the range r(space)
dim along the dim axis becomes 2 times

less than r(space)
dim−1 . For example, if the original search area for a function of three variables was given

as x1, x2, x3 ∈ [−60, 60], then it must be transformed to the following form after reduction:
x1 ∈ [−60, 60]
x2 ∈ [−30, 30]
x3 ∈ [−15, 15]

.

As in the case of CBO detection, for each test function from both prepared sets it is proposed to
perform 20 independent runs of the optimization algorithm with the subsequent calculation of errors
(the difference between the actual optimal solution and the found one).

To detect the unevenness defect, it is proposed to use the one-tailed Mann–Whitney U test,

which compares 20 results V(q)
o =

(
v(q)o,1 , v(q)o,2 , . . . , v(q)o,20

)
obtained for the first set of functions with

20 results V(q)
r =

(
v(q)r,1 , v(q)r,2 , . . . , v(q)r,20

)
obtained for the second set for all test functions fq, where

q = 1, Q. The median ratio is proposed to numerically represent the unevenness defect score UD(q)
score

for the function fq:

UD(q)
score =

median
(

v(q)o,1 , v(q)o,2 , . . . , v(q)o,20

)
median

(
v(q)r,1 , v(q)r,2 , . . . , v(q)r,20

) . (16)

The lower the score calculated using Formula (16), the more the algorithm is susceptible to
this defect.
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3.5. Benchmark Functions

Table 1 lists all the test functions that will be used within the experiments with the
SIM-ETFSS algorithm.

Table 1. Test functions for optimization. The letters “U” and “M” denote unimodal and mul-
timodal functions, respectively. The letters “S” and “N” denote separable and non-separable
functions, respectively.

Designation Function Name Type Search Range for
Each Dimension

f1 Sphere U, S [−100, 100]
f2 Schwefel 2.22 U, N [−100, 100]
f3 Schwefel 1.2 U, N [−100, 100]
f4 Schwefel 2.21 U, S [−100, 100]
f5 Rosenbrock U, N [−30, 30]
f6 Step U, S [−100, 100]
f7 Quartic with noise U, S [−1.28, 1.28]
f8 Schwefel 2.26 M, S [−500, 500]
f9 Rastrigin M, S [−5.12, 5.12]
f10 Ackley M, N [−32, 32]
f11 Griewank M, N [−600, 600]
f12 Drop-Wave M, N [−5.12, 5.12]
f13 Alpine 1 M, S [−10, 10]
f14 HappyCat M, N [−20, 20]
f15 HGBat M, N [−15, 15]
f16 Discus U, S [−100, 100]
f17 Bent Cigar U, S [−100, 100]
f18 Xin-She Yang M, N [−6.28, 6.28]
f19 Salomon M, N [−20, 20]
f20 Zakharov U, N [−10, 10]

The test functions listed in Table 1 differ both in the terrain complexity and other characteristics.
Since there are differences in the definitions of these functions by different authors [60,61], the
definitions used in this paper are given below, with x ∈ RD, where D is the dimensionality of the
problem, i.e., x = (x1, x2, . . . , xD)

T :

f1(x) =
D

∑
i=1

x2
i ,

f2(x) =
D

∑
i=1

|xi|+
D

∏
i=1

|xi|,

f3(x) =
D

∑
i=1

 i

∑
j=1

xj

2

,

f4(x) = max(|x1|, . . . , |xD|),

f5(x) =
D−1

∑
i=1

(
100
(

xi+1 − x2
i

)2
+ (xi − 1)2

)
,

f6(x) =
D

∑
i=1

⌊|xi|+ 0.5⌋2,

f7(x) =
D

∑
i=1

ix4
i + λ, where λ is a random value from [0, 1),

f8(x) = 418.9828872724337·D −
D

∑
i=1

xisin
(√

|xi|
)

,

f9(x) = 10·D +
D

∑
i=1

(
x2

i − 10cos(2πxi)
)

,
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f10(x) = −20exp

−0.2

√√√√ 1
D

D

∑
i=1

x2
i

− exp

(
1
D

D

∑
i=1

cos(2πxi)

)
+ e + 20,

f11(x) = 1 +
1

4000

D

∑
i=1

x2
i −

D

∏
i=1

cos
(

xi√
i

)
,

f12(x) = 1 −
1 + cos

(
12
√

∑D
i=1 x2

i

)
2 + 0.5∑D

i=1 x2
i

,

f13(x) =
D

∑
i=1

|xisin(xi) + 0.1xi|,

f14(x) = 0.5 +

∣∣∣∣∣ D

∑
i=1

x2
i − D

∣∣∣∣∣
0.25

+
0.5∑D

i=1 x2
i + ∑D

i=1 xi

D
,

f15(x) = 0.5 +

√√√√√
∣∣∣∣∣∣
(

D

∑
i=1

x2
i

)2

−
(

D

∑
i=1

xi
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.

Each of the 20 test functions assumes the solution of the minimization problem and has an
optimal value equal to zero.

This set of test functions will be later used both for approbation of the proposed SIM-ETFSS
algorithm and for checking it for the presence of various defects.

The main advantage of this set of test functions in the context of approbation and the analysis
of the proposed SIM-ETFSS algorithm is its diversity. This set contains both simple symmetric and
separable functions (e.g., f1 or f4), and more complex asymmetric functions with difficult terrain
(e.g., f11 or f15). At the same time, the search area ranges of different functions vary significantly,
which allows the algorithm’s ability to solve problems of different data scales to be evaluated.

As mentioned earlier, this set consists of well-known classical test functions, but recently more
complex benchmarks, such as CEC [53,54], have been increasingly used to approbate optimization
algorithms. The complexity of such benchmarks usually consists of applying various biases, nonlinear
transformations and compositions to classical test functions.

The lack of complexity in the presented set of test functions is partially compensated for by the
fact that the proposed SIM-ETFSS algorithm is additionally tested for the presence of a center-bias
operator and an unevenness defect. Thus, the possible dependence of the quality of optimization
results on the position of the global extremum or the shape and scale of the search area is excluded.

4. Results
The evaluation of the island modification of the ETFSS algorithm presented in this paper and its

comparison with the original version was performed using the Python 3.12.1 programming language
in the JupyterLab 4.3.4 environment on a MacBook Pro 13 2017 A1708 (Apple Inc., Cupertino,
CA, USA) test machine with macOS 13.7.1 (22H221). The characteristics of the test machine are
summarized in Table 2.



Stats 2025, 8, 10 17 of 35

Table 2. Characteristics of the test machine.

Unit Parameter Value

CPU

Type Intel® Core™ i5-7360U
Clock rate 2.3 GHz (2 cores)

Architecture 64-bit
Cache 4 MB shared L3

Manufacturer Intel Corporation, Santa Clara, CA, USA

RAM
Type 8 GB LPDDR3

Clock rate 2133 MHz

Manufacturer Samsung Electronics Co., Ltd., Seoul,
Republic of Korea

4.1. Algorithm Performance

To estimate the SIM-ETFSS algorithm proposed in this paper, 20 independent runs of the opti-
mization process were performed with different hyperparameter values for each of the test functions
of the dimensions 5, 10, 50 and 100 presented in Table 1. All the values of the hyperparameters of the
algorithm that were searched during the experiments are presented in Table 3.

Table 3. Hyperparameter values for the experiments. Letters R and C denote classical and cluster-
based population initialization, respectively. The last column shows the cumulative sum for the total
number of variants for both single island (first term) and multiple islands (second term).

Hyperparameter of the
SIM-ETFSS Algorithm

Variable Values: Total Number of
VariationsFor Single Island For Multiple Islands

Test function f1, f2, . . . , f20 f1, f2, . . . , f20 20 + 20
Dimensionality D 5, 10, 50, 100 5, 10, 50, 100 80 + 80

Number of islands N 1 2, 3, 4, 5 80 + 320
Probability P 1.0 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 80 + 1920

Initialization method R R, C 80 + 3840
Number of iterations T 20·D 20·D 80 + 3840

Population size M 120 120 80 + 3840
Minimum island size L

⌈
M
N ·0.1

⌉ ⌈
M
N ·0.1

⌉
80 + 3840

Total: 3920

Since 20 independent runs were performed for each variant of the algorithm, a total of
3920·20 = 78400 runs were performed.

In [42,43], a comparison of the ETFSS algorithm with both its original version FSS and other
classical algorithms, such as the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), was
presented. The comparison was performed both on classical test functions and on the task of fitting
values for the hidden layer weights of the Extreme Learning Machine (ELM) model. In both cases,
the ETFSS algorithm showed its advantage over its counterparts, so in this paper, it was decided to
focus on the comparison of the new SIM-ETFSS algorithm with its island-free version ETFSS, as well
as on the analysis of the influence of hyperparameter values on the quality of optimization.

For the SIM-ETFSS with only one island, the classical population initialization method was used
(Figure 2a), since this configuration is fully equivalent to the original island-free ETFSS algorithm, and
the hyperparameter P, as well as the initialization method, do not affect the results produced in this
case. For 2, 3, 4 and 5 islands, the value of hyperparameter P was chosen from the range 0.0 to 1.0 with
a step of 0.2. Both the classical approach and the cluster-based initialization method presented in this
paper were used to generate the initial population. The step lengths for the individual and collective-
volitive movement of agents were respectively initialized with values equal to 1% and 0.5% of the
search area range length from Table 1. The value for the hyperparameter wmax was set to 5000 for all
experiments. Since all the compared algorithms use the same heuristic for optimization, inspired by
fish behavior, they perform the same number of objective function evaluations for the same number
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of iterations. Therefore, to ensure the same computational budget [31] for each algorithm, the number
of iterations is fixed for each problem and depends on its dimensionality.

The values for the algorithm’s hyperparameters presented in Table 3 and below it were chosen
empirically, based on the necessity to provide variability in the values, the decisions of the authors of
the original articles when conducting similar experiments [27,28,41] and the computational capabili-
ties of the test machine (Table 2), which impose significant time constraints on running the algorithm
with a large number of iterations or a large population size.

Thus, 49 variants of the SIM-ETFSS algorithm (1 variant for a single island and 4·6·2 = 48 variants
for multiple islands, according to the number of permuted values for N, P, and initialization methods,
respectively, as shown in Table 3) were tested for each of the 80 tasks (20 test functions with 4 variants
of each dimension), for each of which 20 independent runs were performed. Table 4 presents the
combinations of hyperparameters that showed the best (lowest in the context of the minimization
problem to be solved) in terms of median of the 20 optimal values found (across 20 runs) for each of
the problems to be solved.

Table 4. Combinations of SIM-ETFSS hyperparameter values that showed the best median results
for each of the 80 test problems. The letter “C” denotes cluster-based initialization of populations
for each island in a separate region, and the letter “R” denotes the classical approach to initial
population generation.

Function D=5 D=10 D=50 D=100

f1 N = 5, P = 0.4, (C) N = 4, P = 0.6, (C) N = 4, P = 0.4, (C) N = 5, P = 0.2, (C)
f2 N = 4, P = 0.8, (C) N = 5, P = 0.2, (C) N = 4, P = 0.2, (C) N = 2, P = 0.2, (R) ∗
f3 N = 5, P = 0.6, (C) N = 5, P = 0.4, (C) N = 5, P = 0.2, (C) N = 5, P = 0.2, (C)
f4 N = 5, P = 0.0, (C) N = 5, P = 0.4, (C) N = 5, P = 0.2, (C) N = 5, P = 0.2, (C)
f5 N = 5, P = 0.0, (C) N = 5, P = 0.4, (C) N = 5, P = 0.4, (C) N = 5, P = 0.4, (C)
f6 N = 5, P = 0.8, (C) N = 5, P = 0.6, (C) N = 5, P = 0.4, (C) N = 5, P = 0.2, (C)
f7 N = 5, P = 0.2, (C) N = 4, P = 0.2, (C) N = 5, P = 0.4, (C) N = 5, P = 0.2, (C)
f8 N = 2, P = 0.0, (R) ∗ N = 5, P = 0.2, (R) ∗ N = 2, P = 0.4, (R) ∗ N = 2, P = 0.4, (R) ∗
f9 N = 4, P = 0.8, (C) N = 5, P = 0.0, (C) N = 4, P = 0.6, (C) N = 5, P = 0.2, (C)
f10 N = 5, P = 0.4, (C) N = 4, P = 0.4, (C) N = 5, P = 0.4, (C) N = 3, P = 0.4, (C)
f11 N = 5, P = 0.8, (C) N = 5, P = 0.2, (C) N = 5, P = 0.2, (C) N = 5, P = 0.2, (C)
f12 N = 5, P = 1.0, (C) N = 5, P = 0.6, (C) N = 5, P = 0.6, (C) N = 5, P = 0.6, (C)
f13 N = 4, P = 0.4, (C) N = 5, P = 0.4, (C) N = 4, P = 0.0, (C) N = 3, P = 0.8, (C)
f14 N = 5, P = 0.2, (C) N = 5, P = 0.2, (C) N = 4, P = 0.4, (C) N = 5, P = 0.0, (C)
f15 N = 5, P = 0.0, (C) N = 5, P = 0.0, (C) N = 5, P = 0.4, (C) N = 5, P = 0.2, (C)
f16 N = 5, P = 0.2, (C) N = 4, P = 0.4, (C) N = 5, P = 0.2, (C) N = 5, P = 0.2, (C)
f17 N = 5, P = 0.0, (C) N = 5, P = 0.2, (C) N = 4, P = 0.4, (C) N = 5, P = 0.2, (C)
f18 N = 5, P = 0.0, (C) N = 2, P = 0.4, (C) N = 2, P = 0.0, (R) ∗ N = 3, P = 1.0, (R) ∗
f19 N = 4, P = 0.0, (C) N = 5, P = 0.4, (C) N = 4, P = 0.6, (C) N = 5, P = 0.2, (C)
f20 N = 5, P = 0.2, (C) N = 5, P = 0.2, (C) N = 5, P = 0.2, (C) N = 3, P = 0.2, (C)

* Combinations of hyperparameter values with classical random initialization.

As can be seen from Table 4, the original version of ETFSS did not show superiority over
its island modification SIM-ETFSS in any of the experiments, as the number of islands in the best
combination of hyperparameters for each task was greater than one. The best hyperparameter value
P, meanwhile, varied widely both between different tasks and between different dimensions within
the same task. Figure 5 shows a histogram of the number of the best median results obtained by the
algorithm with different values of the hyperparameter P, according to Table 4.

Exclusively for the purpose of visualizing the dependence of the optimization quality on the
choice of the P hyperparameter value, we normalized all the obtained results with respect to each of

the 80 problems (20 test functions of 4 variants of dimensions): each b-th value v( fq : RD→R)
b obtained

during the optimization of the function fq of dimension D was normalized by the following formula:

z( fq : RD→R)
b =

v( fq : RD→R)
b − µ( fq : RD→R)

σ( fq : RD→R) , (17)
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where µ( fq :RD→R) is the mean among all values v( fq :RD→R)
b ; σ( fq :RD→R) is the standard deviation

among all values v( fq :RD→R)
b ; q = 1, 20; b = 1, 960; D = 5, 10, 50, 100.
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Figure 5. Histogram of the number of the best median results of all conducted experiments with
different values of the hyperparameter P. The percentages of the total number of results are shown
in brackets.

The maximum value for b, equal to 960, is obtained based on the fact that 48 different variants
of the SIM-ETFSS algorithm were tested for each problem for with more than one island, each with
20 independent runs (Table 3). The results of the single-island algorithm runs are not included in the
analysis because only a single value of P = 1.0 was used to obtain them, which does not make sense
in the context of comparing different values of this hyperparameter.

The proposed normalization will make it possible to combine the results obtained using different
values of hyperparameters for each of the 80 problems. This will allow the consistency of the obtained
results to be visually estimated in the context of investigating the behavior of the algorithm in
different conditions.

Thus, Figure 6 presents the analysis of all results (after normalization) for each of the 20 test
functions with respect to different values of the hyperparameter P in the form of box plots. Since
each test function assumes a minimization problem, lower positions of the boxes along the Y-axis on
the diagram, particularly the box boundaries and the median lines within the boxes, correspond to
better optimization results.

Figure 6 shows that using the value P = 1.0 in most cases leads to noticeably lower quality
results. This behavior can be considered expected, since running an algorithm with such a hyper-
parameter is equivalent to N independent parallel runs of an algorithm with a smaller population
size. This is due to the fact that the migration process cannot be carried out, because the minimum
probability for each agent to stay on its island is equal to one.

On the other hand, setting P = 0.0 means a complete shutdown of external control over the
migration process. In this case, the probabilities for each agent to “move” to another island are
formed only on the basis of the total achievements of the whole island for the past iteration. As can
be seen from Figure 6, this strategy turned out to be the most preferable in only one case (only for the
function f18).
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The optimal value for the hyperparameter P is most often P = 0.2 or P = 0.3, which is fully
consistent with the distribution of best median results shown in Figure 5.

The convergence of the algorithm can be evaluated using the variance of the obtained results,
which is visually represented in Figure 6 as the height of boxes (not including whiskers). As can be
seen, the best convergence of the algorithm is most often demonstrated with optimal values of the
hyperparameter P discussed earlier.

Figure 7 shows a histogram of the number of the best median results obtained using the
algorithm with different numbers of islands, according to Table 4.
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Figure 7. Histogram of the numbers of the best median results of all conducted experiments with
different values of the hyperparameter N. The percentages of the total number of results are shown
in brackets.

As it was mentioned earlier, there was not a single result with N = 1 among the best median
results. At the same time, one can see a tendency of the quality of the results to increase with an
increasing number of islands.

Similar to the analysis of all the results obtained for different values of the hyperparameter P
performed earlier, in order to consider the dependence of the optimization quality on the number of
islands, we also performed data normalization for all test functions fq for q = 1, 20 for all dimensions
D = 5, 10, 50, 100 using Formula (17). This time, however, all 980 values were considered for each
of the 80 problems, including the data obtained using the single island algorithm.

Figure 8 shows the analysis of all results (after normalization) for each of the 20 test functions
with respect to different values of hyperparameter N and population initialization methods. By anal-
ogy with Figure 6, the diagram shows that lower positions of the boxes along the Y-axis, particularly
the box boundaries and the median lines within the boxes, corresponding to better optimization
results, since each test function assumes a minimization problem.

From Figure 8, it can be seen that the original island-free ETFSS algorithm, which is equivalent
to the SIM-ETFSS algorithm with a single island, performs worse in comparison to its islanded
version in most cases.
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However, the difference between the two is equally noticeable for all test functions. For example,
in the case of f18 (Xin-She Yang), the medians of the results for different numbers of islands can be
considered comparable. In order to explain this fact, we propose to examine the raw data for the
f18 function on a logarithmic scale in more detail. Figure 9 shows the box plot for this function of
dimension 100 for P = 0.2.
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Figure 9. Comparison of the original version of ETFSS (one island) with the SIM-ETFSS algorithm
(two or more islands) based on the optimization of the function f18 (Xin-She Yang) of dimension 100
for P = 0.2.

Figure 8 also shows the convergence of the algorithm when using different numbers of islands
and different methods of population initialization. For this purpose, the variance of the results,
represented by the height of the corresponding boxes on the plot, can be evaluated. In most cases, it
is clearly seen that the results of the island-free ETFSS algorithm for almost all problems have a much
larger spread than the results of the proposed island modification with a different numbers of islands.
In addition, it is worth noting that the use of cluster-based initialization of populations (blue boxes in
Figure 8) most often leads to better convergence of the algorithm compared to the use of classical
random initialization (red boxes in Figure 8).

Figure 9 shows that the best values found by all algorithms when optimizing the function f18

are located close to zero, i.e., to the global extremum. One of the advantages of the island model is to
increase the convergence speed of the algorithm, but in this case, given the initially narrow search
area for the function f18, as well as the smoothness and symmetry of the terrain in the vicinity of its
global extremum, we can conclude that this problem is initially simple. Therefore, the key aspect of
the result was not the convergence rate, but the population size, which is always larger for the ETFSS
algorithm than for any SIM-ETFSS island for N > 1.

Another standout example in Figure 8 is the function f2 (Schwefel 2.22). Similar to the previous
case, we propose to take a closer look at the raw data (without normalization) for this function.
Figure 10 shows a box plot for this function of dimension 10 for P = 0.6.

Unlike the previous example, Figure 10 shows that the results obtained during the optimization
of the function f2 are far from the global extremum. All versions of the algorithm mediocrely coped
with the task, so their results are comparable. However, it is impossible not to mention the noticeable
advantage of cluster-based initialization over the classical initialization approach.

According to Table 4, among the initialization methods, cluster-based population generation
for each island in a separate region proved to be the best option in most cases. For a more detailed
comparison, the one-tailed Mann–Whitney U test with an acceptable significance level α = 0.01 was
applied to each of the 1920 results of the experiment with the number of islands not equal to one
(80 tasks for 2, 3, 4, and 5 islands with 6 variants of values for P), which serves as an indicator of the
advantage of one method of initialization over another in the case of its presence. The results of its
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application, grouped with respect to the dimensionality of the problem D, the number of islands N
and the values of the hyperparameter P, are presented in Figure 11 in the form of bar diagrams.
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Figure 11a shows that as the dimensionality of the problem decreases, the influence of the choice
of a particular method of initial population generation on the algorithm’s performance decreases,
as evidenced by the number of situations for which no statistically significant differences were
observed. Nevertheless, it cannot be overlooked that for each of the dimensions, cluster-based
generation was often better than the classical random approach. It can be assumed that the observed
tendency for the differences between the two methods of initialization to decrease with increasing
problem dimensionality is due to the so-called “curse of dimensionality”, because the number of
iterations required to solve the problem is linearly related to the problem dimensionality, which is
not comparable to the real increase in the computational complexity required to solve the problem as
the number of its dimensions increases.

On the other hand, Figure 11b shows that with an increasing number of islands, the superiority
of the cluster-based initialization of populations over classical random generation becomes more
and more noticeable, which is confirmed by the decrease in cases with no statistically significant
differences.

At the same time, it can be observed from Figure 11c that the advantages of different methods
of initialization do not depend on the choice of the value of P, since the number of results of the
Mann–Whitney U test is distributed uniformly over all values of the hyperparameter P.

The SIM-ETFSS performance can be further examined by analyzing island interactions through-
out all iterations of the algorithm. It is particularly interesting to consider the different values of the
hyperparameter P, which can be used to visually assess the dynamics of migrations.

Figure 12a shows an example of a migration map for the f9 (Rastrigin) function for P = 0.8,
where the Y-axis corresponds to a population of 60 agents uniformly distributed over three islands,
and the X-axis corresponds to iterations of the algorithm starting from iteration zero, where the
population was generated using cluster-based initialization. Figure 12b shows a plot of the change in
the number of agents in the islands based on the iterations of the algorithm.

This example shows that during the optimization of the objective function, the islands actively
compete with each other, either increasing their population several times or losing agents to more
“successful” rivals. For example, the third island, shown in Figure 12 in blue, from the very beginning
showed lower quality results compared to other islands, so it lost almost all of its agents during
the first 20 iterations. But then, starting at about the 30th iteration, its performance improved and
it absorbed most of the agents from the remaining islands, but after about another 20 iterations, it
lost them again. The remaining two islands also actively competed with each other for the entire
100 iterations.

This example demonstrates that population development in the SIM-ETFSS algorithm is much
like an evolutionary process in which the most “adaptable” islands that are close to the optimal value
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of the function being optimized crowd out the others, increasing their own resources for finding and
refining solutions.
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Due to the existing constraint on the minimum number of agents belonging to a single island,
no island can completely disappear, so competition can continue throughout the iterations of the
algorithm. In Figure 12b, this fact is particularly evident in the lower part of the graph.

Similarly, it is proposed to consider the migration process for a lower value of the hyperparame-
ter P. Figure 13 shows an example for the same test function f9 (Rastrigin) but for P = 0.2.
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Figure 13. Example of the evolution of a population of 60 agents distributed over three islands
over 100 iterations for P = 0.2: (a) migration map; (b) changes in agent numbers across islands
during iterations.

Figure 13 shows that a low value of the hyperparameter P leads to an expectedly richer and more
dynamic migration process, as can be seen from the frequency of changes in the island population
during iterations of the algorithm.
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4.2. Defect Detection

Since the best configuration of the SIM-ETFSS algorithm during conducted experiments turned
out to be a model with five islands at P = 0.2, it was decided to use these values for hyperparameters
to test the algorithm for the presence of the center-bias operator and the unevenness defect in its
comparison with the original island-free model.

4.2.1. Testing for the Presence of a Center-Bias Operator

Table 5 shows the results of testing the original version of ETFSS, equivalent to SIM-ETFSS with
a single island, with the SIM-ETFSS algorithm itself for the presence of a center-bias operator. All
functions from Table 1 of dimension 30 were used for testing. The other values of the hyperparameters
of the algorithm, except for the already mentioned N = 5 and P = 0.2, are the same as in Table 3.

Table 5. Results of testing the algorithm for the presence of a center-bias operator. The letter “C”
denotes the cluster-based initialization of populations for each island in a separate region; the letter
“R” denotes the classical approach to the initial population generation.

Function
Values of the Algorithm Hyperparameters

N = 1, (R) N = 5, (C) N = 5, (R)

f1 9.83 × 10−1 1.08 × 100 1.02 × 100

f2 4.16 × 10−1 1.36 × 100 6.89 × 100

f3 1.33 × 100 1.26 × 100 1.41 × 100

f4 1.00 × 100 9.83 × 10−1 1.01 × 100

f5 1.07 × 100 1.18 × 100 1.08 × 100

f6 1.02 × 100 1.03 × 100 1.01 × 100

f7 1.03 × 100 1.03 × 100 1.15 × 100

f8 1.09 × 100 9.41 × 10−1 9.25 × 10−1

f9 1.01 × 100 1.01 × 100 1.05 × 100

f10 1.02 × 100 1.01 × 100 1.01 × 100

f11 1.00 × 100 1.07 × 100 1.13 × 100

f12 1.00 × 100 1.00 × 100 1.00 × 100

f13 1.25 × 100 1.20 × 100 1.10 × 100

f14 9.59 × 10−1 1.14 × 100 1.10 × 100

f15 1.03 × 100 1.09 × 100 1.10 × 100

f16 1.07 × 100 1.15 × 100 1.10 × 100

f17 1.01 × 100 1.03 × 100 1.15 × 100

f18 1.37 × 100 1.00 × 100 1.00 × 100

f19 1.01 × 100 1.02 × 100 1.03 × 100

f20 1.09 × 100 1.12 × 100 1.06 × 100

CBOscore 1.02 × 100 1.08 × 100 1.18 × 100

As mentioned earlier, CBOscore is a measure of the ratio of the quality of results obtained during
optimization of test functions with a shifted global extremum to the quality of results obtained during
optimization of initial functions with the optimal value in the center of the search area. In this case,
the presence of the center-bias operator is registered if this measure exceeds the number 10 [25]. All
the results presented in Table 5 are close to 1, which indicates the absence of the center-bias operator
for both ETFSS and its island modification SIM-ETFSS presented in this paper.

4.2.2. Testing for the Presence of an Unevenness Defect

Table 6 presents the results of testing for the presence of the unevenness defect in ETFSS and
SIM-ETFSS [32]. The functions from Table 1 of dimension 30 were used for testing. Other values of
the hyperparameters of the algorithm, except for the already mentioned N = 5 and P = 0.2, are the
same as in Table 3.
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Table 6. The results of testing the algorithm for the unevenness defect. The letter “C” denotes the
cluster-based initialization of populations for each island in a separate region; the letter “R” denotes
the classical approach to initial population generation.

Function
Values of the Algorithm Hyperparameters

N = 1, (R) N = 5, (C) N = 5, (R)

f1 4.42 × 107 2.21 × 107 1.96 × 107

f2 2.14 × 1031 8.70 × 1030 8.42 × 1030

f3 3.52 × 102 7.79 × 104 5.72 × 104

f4 1.60 × 101 3.08 × 103 3.01 × 103

f5 4.20 × 106 1.42 × 106 1.41 × 106

f6 1.79 × 104 3.13 × 1012 3.19 × 1012

f7 3.29 × 104 1.17 × 105 1.83 × 105

f8 5.36 × 10−1 ∗ 4.21 × 10−1 ∗ 4.37 × 10−1 ∗
f9 4.60 × 101 3.93 × 104 4.01 × 104

f10 5.79 × 100 2.40 × 103 2.28 × 103

f11 6.36 × 102 5.10 × 104 4.81 × 104

f12 1.51 × 101 7.01 × 100 1.53 × 101

f13 3.39 × 102 3.84 × 103 3.36 × 103

f14 4.30 × 101 3.55 × 101 3.37 × 101

f15 2.05 × 103 1.30 × 103 1.22 × 103

f16 9.32 × 102 1.39 × 104 1.55 × 104

f17 1.51 × 107 3.26 × 107 4.17 × 107

f18 8.29 × 10−8 ∗ 8.42 × 10−8 ∗ 8.39 × 10−8 ∗
f19 1.63 × 101 2.40 × 101 2.45 × 101

f20 3.10 × 102 8.78 × 105 1.05 × 106

* Cases with a statistically significant decrease in optimization quality when the search area is reduced.

The values for all test functions fq, where q = 1, 20, shown in Table 6, are the ratios of the

median results UD(q)
score obtained by searching for an extremum in the original search area to the

median results obtained by a similar search but in a disproportionately (unevenly) reduced search
area. As expected, the values for the function f8 (Schwefel 2.26) turned out to be less than one, since
the extremum of this function, which is on the periphery of the search space, may not enter the
bounded region when it is reduced. For the rest of the functions a significant increase in the quality of
results is observed when the search area is reduced, which indicates that the considered algorithms
are resistant to the unevenness defect. The only exception is the function f18 (Xin-She Yang), on which
all the tested algorithms demonstrated instability to the unevenness defect.

4.3. The Solution of the Real Data Problem Using the SIM-ETFSS Algorithm

As an example of a real data problem, the diagnosis of breast cancer based on the numerical
features extracted from images of a fine needle aspirate of a breast mass is considered. The dataset is
available in the UCI Machine Learning Repository [62] and contains 569 records (objects) described
by 30 features. The classification problem of determining whether a breast mass is malignant
is considered.

An Extreme Learning Machine (ELM) model [63] is proposed to solve this problem. The ELM
model is a single-hidden layer feedforward neural network (SLFN) with an input layer of Kin neurons,
a hidden layer of Khid neurons and an output layer of Kout neurons. The forward propagation of the

model for a set of
ˆ

N objects is carried out as follows:

Ypred = σ
(
XinWin + β

)
Wout, (18)

where Ypred ∈ RN̂×Kout denotes the matrix of values predicted by the model; σ denotes the sigmoidal

activation function [63]; Xin ∈ RN̂×Kin denotes the matrix of input values; Win ∈ RKin×Khid denotes the
input layer weight matrix; β ∈ RKhid denotes the bias vector for the hidden layer; Wout ∈ RKhid×Kout

denotes the output layer weight matrix.
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Any nonlinear activation function can be used instead of σ, but the sigmoidal function is the
most commonly used. The key feature of this model is the way it is trained. For this purpose, the
values of input layer weights Win and the values of the hidden layer biases β are initialized with
random numbers, and the matrix Wout is calculated as follows:

Wout =
(
σ
(
XinWin + β

))†Yout, (19)

where (·)† denotes the Moore–Penrose pseudoinverse matrix calculation; Yout ∈ RN̂×Kout denotes the
matrix of correct answers for the Xin.

Since the pseudoinverse matrix calculation is used instead of a gradient-based methods, ELM
trains very fast and produces high-quality results. To evaluate the quality of the model according
to Algorithm 4, the value of the estimation metric is calculated using 10-fold cross-validation and
the F1-score.

Algorithm 4: ELM model estimation metric.

Input:
Win—input weights;
β—hidden layer biases.

1. for each fold in 10-fold cross-validation do:

2. Create a new ELM model and initialize it with Win and β;

3.
Scale the train subset of the fold so that the mean is 0 and the standard deviation is
1, and apply this transformation to the test subset of the fold;

4. Train the ELM model on a scaled train subset of the fold using Formula (19);

5.
Perform a forward propagation on a scaled test subset of the fold using Formula
(18);

6. Calculate the F1-score value of the result of forward propagation;

7. end for
8. Calculate the mean value of all F1-score values obtained by cross-validation.

The size of the hidden layer Khid is a hyperparameter of the ELM model and directly
affects the quality of the results it produces [63], so different values of Khid from the set
{10, 20, 30, . . . , 180, 190, 200} were considered. For each value, we calculate 1000 scores using
Algorithm 4 with random values for Win and β taken from the range [−1, 1]. According to the results
shown in Figure 14, the best value for Khid that maximizes the estimation metric is Khid = 110 (red
dashed line).
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Figure 14. The results of considering different values of Khid.
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Thus, an ELM model with Kin = 30, Khid = 110, Kout = 1 is proposed to solve the problem of
the breast cancer diagnosis. The malignant class is labeled as 1, and the benign class is 0.

In order to improve the results produced by the ELM model, the SIM-ETFSS algorithm is
proposed to optimize the values of input weights Win and biases β similar to the work [42]. A small
number of iterations and agents is enough to demonstrate the advantages of using the population-
based algorithm. The chosen values of the SIM-ETFSS hyperparameters are presented in Table 7.

Table 7. SIM-ETFSS hyperparameter values.

Hyperparameter Value

Number of islands N 3
Population size M 30

Number of iterations T 20
Probability P 0.2

Minimum island size L 2
Initial individual step length step(1)ind

0.5

Initial collective-volitive step length step(1)vol
0.25

Agent’s maximum weight limitation wmax 5000
Initialization method Cluster-based

The SIM-ETFSS algorithm is used to maximize the ELM estimation metric according to Al-
gorithm 4. Each agent of the algorithm is a vector containing all values of Win and β, i.e., the
dimensionality of the problem to be solved is D = Kin × Khid + Khid = 30 × 110 + 110 = 3410. The
search area along each dimension is defined by the range [−1, 1].

During T = 20 iterations, the SIM-ETFSS algorithm performs M + T × M × 2 = 1230 objective
function evaluations (according to lines 4, 9, 20 of Algorithm 1), so for comparison, it was decided
to set it against the random search algorithm, which estimates the ELM model 1230 times using
Algorithm 4 with random values for Win and β taken from the range [−1, 1], and selects the best
(maximum) result.

For the SIM-ETFSS algorithm and the random search algorithm, 20 independent runs each were
performed, and the results are shown as box plots in Figure 15.
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Figure 15 shows that even with a small number of iterations and agents, the use of the SIM-
ETFSS algorithm is more advantageous than the random search algorithm, as it significantly improves
the quality of the results produced. To further validate the obtained results, the Mann–Whitney U
test with a significance level α = 0.05 was applied, and as a result, the SIM-ETFSS algorithm was
found to have statistically significant superiority over the random search algorithm.

5. Discussion
The improved Soft Island Model for the ETFSS algorithm presented in this paper implements a

probabilistic approach for the implementation of agent migrations based on the gathering of statistics
on the total island achievements in the context of optimizing the objective function at each t-th
iteration of the algorithm. In this case, the topology of the migrations can be regulated by means
of a hyperparameter P, as was shown when considering migration maps. To prevent the complete
disappearance of islands, the hyperparameter L was provided during the optimization, specifying
the minimum number of agents that should always be at one island.

In order to initialize the algorithm, a new approach to initial population generation was pro-
posed, where each island is allocated its own independent space within a search area, within which
its agents are generated. To compare this approach with the classical random initialization shown in
Figure 2a, a statistical analysis method, such as the Mann–Whitney U test, was applied. It was used
to calculate the number of situations for which there was an advantage of one method of initialization
over the other among all the experiments conducted. The obtained results were grouped by different
values of D, N, P and presented in the form of bar charts, which clearly showed not only the superi-
ority of the cluster-based initialization proposed in this paper over the classical random approach,
but also the correlation of the obtained results with some hyperparameters of the algorithm.

As part of the main experiments to analyze the performance of SIM-ETFSS compared to its
island-free version ETFSS, different visualizations were proposed to show different aspects of the
distribution statistics of the results. For the construction of some of the diagrams, data normalization
was carried out to allow for a compact presentation of all the results for easy interpretation.

The SIM-ETFSS algorithm was also tested for known defects, such as the center-bias operator
and the unevenness defect. Measures of central tendency (median, mean, geometric mean), as well
as the previously mentioned Mann–Whitney U test, were used to detect them. As a result, it was
concluded that neither the original ETFSS algorithm nor its island modification SIM-ETFSS proposed
in this paper are subject to any of the mentioned defects.

As an example of applying SIM-ETFSS to a real data problem, a breast-cancer-diagnosis dataset
was considered. It was found that the use of the presented algorithm can statistically significantly
improve the performance of the ELM model and increase the classification quality.

According to the conducted statistical analysis, the SIM-ETFSS algorithm proposed in this
paper has shown superiority over its island-free counterpart ETFSS, so it can be more effectively
applied in solving optimization problems. Among the main advantages of the proposed algorithm
are its high performance on large-scale problems, as well as the absence of a center-bias operator and
the unevenness defect. Moreover, as demonstrated in the experiments, the hyperparameters of the
SIM-ETFSS algorithm are highly interpretable, which simplifies the process of tuning the algorithm
for specific problems. A limitation can be identified as the lack of convergence proofs, which is a
common issue for all population-based optimization algorithms. However, when implementing our
algorithm, we calculate estimates of the median and variance for the best values found based on the
results of a number of independent runs of the algorithm and draw the corresponding conclusions.
This is a common practice in the field of population-based optimization algorithms. Estimates for the
median (or the mean) should be close to the corresponding values characterizing the known global
extremum (in the case where optimization experiments are carried out for a known test function).
If information about the global extremum is unknown, it is customary to focus on estimates for
variances. The calculated estimates for variances should be minimal. It should be noted that there is
a large set of tools used to estimate the convergence of population-optimization algorithms [31].

One of the significant contributions of this work is the high performance of the presented
algorithm based on high-dimensional problems. This makes it possible to use it to choose parameter
values for neural networks and other machine learning models instead of classical gradient-based
approaches. Since population-based algorithms consider the entire available search space without
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prioritizing certain dimensions, the algorithm proposed in this paper is not subject to such well-
known problems as an explosive and vanishing gradient, which can be especially useful for training
multilayer neural networks.

For example, ref. [64] discusses the use of population-based optimization algorithms to train a
recurrent neural network (RNN) to solve the time series-based volatility forecasting problem. The
authors note that the use of gradient-based methods negatively affects the model’s ability to account
for long-term dependencies. The application of population-based algorithms, according to their
results, leads to improved model performance in the considered task.

As mentioned earlier, the need for optimization in one form or another arises in a wide range of
problems from different spheres of activity, so the practical contribution of this study is to expand the
range of methods for solving different problems.

Further research can be aimed at improving the SIM-ETFSS algorithm proposed in this paper, as
well as at a comparative analysis of other island models as applied to ETFSS. The model presented in
this paper assumes that migrations happen at each iteration of the optimization algorithm. However,
it makes sense to consider the possibility of the implementation of periodic migrations, which will be
carried out only once after some predetermined number of iterations (period). For this purpose, it
is necessary to develop a mechanism for accumulating information about the quality of the work
performed by each island, so that it could be used to calculate probability values for each agent
to either migrate or stay on its island. The accumulation of information can be implemented, for
example, by computing the cumulative change in the weights of all agents over the period. In
addition, more sophisticated approaches can be considered, such as computing a weighted average
adjusted so that changes in agents’ weights in the last iterations of the period contribute more (or,
conversely, less) to the overall island score.

In order to increase competition between islands, it also makes sense to consider using different
combinations of hyperparameter values for agents from different islands. This will allow, for example,
to increase the performance of some islands relative to others when passing certain places on the
surface of the objective function or upon reaching a certain number of iterations, taking into account
that the maximum step lengths for individual and collective-volitive movements of the agents of the
SIM-ETFSS algorithm change over time.

The cluster-based initialization of populations presented in this paper was implemented using
a pseudo-random number generator based on chaotic tent-maps, naturally developing the concept of
the original ETFSS algorithm. However, this approach does not guarantee a high degree of coverage
of the entire solution space, especially for a large number of islands, for which clusters may be much
smaller than the original search area. It is worthwhile to pay attention to this feature in future research
and consider other methods of pseudorandom number generation that provide better coverage of the
search space, for example, the Latin hypercube [65] or Sobol’ [66] methods.

Since the presented SIM-ETFSS algorithm has shown good results when optimizing classical
test functions, it makes sense to test it on more complex problems, e.g., CEC [53,54].
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