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Abstract: In this article, we document the use of hail cannons in Mexico to dispel or suppress
heavy rain episodes, a common practice among farmers, without scientific evidence to support
its effectiveness. This study uses two rain databases: one compiled from the Global Precipitation
Measurement (GPM) mission and the other generated with the implementation of the Weather
Research and Forecasting (WRF) model. The aim is to explore the association between heavy
rain episodes and hail cannon locations. The analysis includes two geographic features: a pair of
coordinates and a 3 km radius area of influence around each hail cannon. This dimension is based on
the size and distribution of the heavy rainfall events. This study analyzes four years of half-hourly
rain data using the Python ecosystem environment with machine learning libraries. The results show
no relationship between the operation of hail cannons and the dissipation or attenuation of heavy
rainfall events. However, this study highlights that the significant differences between the GPM
and WRF databases in registering heavy rain events may be attributable to their own uncertainty.
Despite the unavailability of ground-based observations, the inefficiency of hail cannons in affecting
the occurrence of heavy rain events is evident. Overall, this study provides scientific evidence that
hail cannons are inefficient in preventing the occurrence of heavy rain episodes.

Keywords: WRF; remote sensing; hail cannon; heavy rainfall

1. Introduction

The history of building devices for weather modification is long. In 1880, an Italian
professor of mineralogy stated that it was conceivable that the formation of hailstones
could be prevented by injecting smoke particles (to serve as condensation nuclei) by means
of cannons fired at thunderstorms [1]. The concept of using cannons to provide nuclei
to suppress hail was experimented with in 1896 by M. Albert Stiger, the Burgomaster of
Windisch-Feistritz (a municipality in the province of Syria, Austria) and a famous wine
grower [2]. Stiger was inspired by a desire to help relieve the enormous hail losses in his
province [1]. Using backyard tests over a period of several years, he had evolved a vertical-
pointing muzzle-loading mortar, resembling a very large upright megaphone. When fired,
it produced a large smoke ring that whistled loudly as it rose to a height of typically 300 m
above the cannon [1]. This reference may be one of the first that documented the cloud
seeding nuclei through a seeding device. Meanwhile, numerous concepts and hypotheses as
to how seeding works were purported [3]. By using the analogy of a megaphone to describe
a hail cannon can be a helpful way to convey the basic concept, but it is important to note
that hail cannons are more complex devices, designed for a specific purpose. The analogy
might be useful to provide a simple understanding, especially for a general audience, but it
does not capture all the nuances of how hail cannons work. As if a megaphone amplifies
sound to make it louder, allowing it to travel farther, a hail cannon uses a loud noise, often
a shockwave, to disrupt the formation of hailstones. The shockwaves created by the hail
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cannon act as a disturbance in the atmosphere, interfering with the process that leads
to the formation of hail. Just as a megaphone’s sound is directed in a specific direction,
hail cannons are usually aimed at the area where crops need protection. The goal is to
disrupt hail formation in that specific, localized region. The tight relationship between crop
production systems and rainfall events is obvious, in essence, in areas where agricultural
activities are dependent on rain-fed systems. Rainfall events are particularly important in
agricultural production systems: extreme precipitation causes numerous issues, including
flooding, crop damage, health hazards, water contamination [4–6], and sediment transport.

Extreme rainfall events negatively impact the primary economic sector. The last decade
has witnessed an increase in the number of extreme weather events globally [7]. In addition,
the economic output around the world is at an all-time high in terms of production and
profitability. However, global warming and extreme weather are modifying the natural
ecosystem and the human social system, leading to the appearance of extreme climate
events that have an adverse impact on the world economy (ibidem). In particular, in
production systems, extreme weather events can reduce crop yields, leading to reduced
productivity across various industries [8] (i.e., by breaking branches, stems and leaves; and
causing early or damaged fruits). Moreover, extreme weather events can lower vegetation
net primary productivity rates, diminish water harvest, and result in associated soil effects
(i.e., increased erosion rates; affecting pedogenic processes; and washing away soil organic
carbon, soil nutrients, and organic matter). In addition, these events can promote the
appearance of soil–plant pathogens, i.e., fungus, phytoplasma, and nematodes. Therefore,
the economic impacts can be significant, with some estimates suggesting that the costs of
extreme weather events are expected to increase in the coming years.

The atmospheric conditions accompanying extreme precipitation events have been
well-documented, and no single factor has been found to correlate perfectly with heavy
rainfall [9]. According to [10], extreme weather conditions such as heat waves, droughts,
and floods have been shown to have a significant impact on production economics. These
events can disrupt supply chains. Heavy rain events, severe convective storms, and overall
changes in spatial distribution events and their intensity are now regularly observed. Sadly,
these disasters disproportionately harm poor people in low-income regions that have had
minimal contributions to the buildup of greenhouse gasses. The summer of records has
been characterized by extreme heatwaves sweeping across the globe, as well as by other
natural disasters, such as flooding, hurricanes, and wildfires [11]. These events can occur
anywhere, but are almost exclusively observed during the summer season, and are usually
accompanied by heavy rain, strong winds, lightning, and hail [12]. It is important to note
that the timing and intensity of severe weather events can be influenced by regional climate
patterns, local geography, and atmospheric conditions. While summer is a common season
for severe weather in many places, it is not a universal rule. The association between severe
weather and the summer season can vary depending on the geographic location and the
increased warmth and humidity during these months, creating conditions favorable for the
development of convective storms; hurricanes and tropical storms can bring heavy rainfall,
strong winds, and storm surges, particularly during the late summer and early fall. The
summer months can also see an increase in heavy rainfall events, which is often associated
with slow-moving or stalled weather systems that can dump large amounts of rain over a
specific area.

In Mexico, heavy rainfall events during the summer season are not uncommon, and
they are often associated with the North American Monsoon (NAM). The NAM typically
occurs from June to September and brings a significant increase in moisture to the region,
leading to convective storms and heavy rainfall.

• The monsoon typically begins in southern Mexico in early June and progresses north-
ward to the southwestern United States by early July [13,14]. This seasonal shift in
wind patterns brings moist air from the Gulf of Mexico and the Gulf of California into
the region. As this moist air rises, it cools and condenses, leading to the development
of convective storms.
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• The intensity and frequency of heavy rainfall events can vary across different regions
of Mexico. Coastal areas, mountainous terrain, and inland plains may experience
different patterns of rainfall.

• The combination of intense rainfall and the topography of some regions can increase
the risk of flash floods and river flooding.

• Mexico is also prone to tropical cyclones (hurricanes and tropical storms), especially
on the Pacific and Atlantic coasts. These systems can bring heavy rainfall, strong
winds, and storm surges.

Hail cannons are commonly used in agricultural regions to protect crops from hail-
storms [15]. In Mexico, their installation and operation are widely accepted measures
among agricultural producers, who believe that these devices can protect against extreme
weather events by cracking hailstones through the generation of shockwaves. The speed
at which a shockwave propagates can vary, depending on several factors, including the
medium through which it travels. In the atmosphere, the speed of sound, and therefore the
speed of a shockwave, is influenced by factors such as temperature and pressure. In gen-
eral, the speed of sound in the Earth’s atmosphere at sea level is approximately 343 m per
second under standard conditions (at 20 degrees Celsius). However, this speed can change
with variations in temperature and pressure. However, there is no scientific evidence to
support this unproven technological solution. While it is widely believed that once the
hailstone is broken up into small pieces, it will melt and reach the ground as raindrops, the
scientific community has not yet demonstrated if hail cannon sound waves cause these
cracking effects.

The effectiveness of hail cannons is still unclear, and the scientific opinion on their
use as a weather modification tool is debatable. For example, Bordeaux wine producers
had an elaborate system in place to protect their vines from hail: a network of cannons
that generated shockwaves to limit the formation of large hailstones. Nevertheless, the
proprietors of the châteaux expressed dissatisfaction, as the system proved ineffective in
safeguarding their crops amid recent storms in the region [16].

The aim of this research is to investigate the spatial relationship between heavy
rainfall episodes and hail cannon device locations by applying spatial analysis techniques.
Specifically, we aim to analyze the geographic distribution and clustering of heavy rainfall
events relative to the spatial distribution of hail cannon installations. Through this analysis,
we seek to elucidate any potential spatial patterns or correlations that may exist between
the presence of hail cannons and the occurrence of heavy rainfall, thereby contributing to a
better understanding of the localized meteorological effects of hail cannon usage. To the
best of our knowledge, previous studies have not specifically addressed this relationship
by using grid data arrays to determine whether any reduction, dissipation, or suppression
of heavy rainfall events associated with the location of hail cannons have occurred.

This study does not focus on cloud physics but instead uses satellite images and
modeled data of rain to identify the potential relationship between the hail cannon location
and convective clouds on a wide scale.

2. Materials and Methods
2.1. Study Area

This study covers three relevant agricultural regions in Mexico, where 51 monitoring
sites are located, and the data coordinates were shared with many reserves from the device
owners. The state of Michoacán (MICH) has 22 locations, the state of Jalisco (JAL) has
14 installed devices, and the state of San Luis Potosí (SLP) has 15 hail cannons (Figure 1,
shown inside Figure 1B). The cannons’ areas of influence include large-scale farms and
small anthropogenic constructions that are affected by heavy rain events. Due to the
reluctance of the owners to share the schedule of operations, we assume that the devices
operate at short intervals (4 to 7 s) for the entire period since the storm approaches the
cannon’s location until it has passed the protected area. The surface protected by such an
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isolated system is a circle with a radius of approximately 500 m, and the effectiveness of
the protection decreases as the distance from the installation location increases [17].
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Figure 1. Geospatial distribution of hail cannons and schematization of point coordinates and their
area of influence (B). Subfigure (A) is a representation of the study region in Mexico.

Figure 1 shows the geospatial distribution of hail cannons in three agricultural regions
in Mexico. The figure also includes a schematic representation of the point coordinates
and the proposed area of influence, which is a 3 km buffer around each hail cannon.
This distance is arbitrary and has no previous scientific basis, as manufacturers typically
advertise a protection area of 500 m around the device. However, the 3 km buffer was
chosen to cover at least a 5 × 5 pixels matrix, with the centroid pixel matching the position of
the cannon. This buffer is considered the area where heavy rain events could potentially be
affected by the operation of the hail cannon. The meteors in the Jalisco and Michoacán zones
are born at a latitude of 15◦ N, approximately. Generally, the first meteors travel towards
the west, moving away from national coasts, while those formed from July onwards,
which are of greater power, usually follow a parabolic path. The shape of the Mexican
Pacific coast makes them travel parallel to the coast and, when taking the second branch
of the trajectory, they penetrate inland north of Cabo Corrientes, affecting the states of
Nayarit, Sinaloa, Sonora, and the extreme southern part of the Baja California Peninsula.
However, during its first branch, it will bring torrential rains to the coasts of Chiapas,
Oaxaca, Guerrero, Michoacán, Colima, and Jalisco, which are located in the hurricane’s
dangerous semicircle [18]. The San Luis Potosí region is affected by the events originating
from the second matrix zone. This zone is located in the southwestern portion of the Gulf
of Mexico, in the warm waters that form the so-called Campeche Sound. It becomes active
in the first fortnight of June, at a latitude close to 20◦ N. The initial meteors, characterized
as rainy systems, run parallel to the coast of Veracruz and gradually intensify in such a way
that those born from July onwards reach full development (ibidem).
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2.2. Dataset Description

The dataset used in this study covers a period of four years, from January 2014 to
January 2018. It includes 140,256 records of rainfall data collected every 30 min. The data
were declared external in x, y, and z form and were used to approximate the function
f: z = f(x, y), which returns a function that uses spline interpolation to find the value of new
points. The dataset was integrated from two databases, the WRF and GPM databases, which
were both 10 km in spatial resolution and were composed of independent and identically
distributed data. To frame the dataset on geographic features, scripts were written in
the Pandas library, a data analysis and manipulation tool built on top of the Python
programming language [19]. The importance of Python, particularly through the Pandas
library, lies in its ability to handle datasets and the capabilities required by programming
experts. Emphasizing the ability to write and execute custom algorithms adds a layer of
skill and control, showcasing a deeper understanding of data analysis and manipulation.
Custom algorithms can be tailored to specific research needs, providing a more flexible and
nuanced approach compared to off-the-shelf models. This demonstrates a higher level of
expertise and adaptability in dealing with the unique challenges or requirements of a given
dataset or research question. Statistical downscaling by multiple regressions to a 1 km
thematic grid surface was applied on both databases. The 3 km area of influence buffer
was used as a vector mask to obtain the zonal statistics, excluding the central pixel from
the statistical zone analysis (Figure 2).
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Figure 2. Schematization of a heavy rainfall event; the 3 km radius of area of influence was represented
as a regular surface of a 1 km grid (upper right) in a matrix of 5 × 5 pixels, while the point coordinates
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2.3. Description of a Heavy Rainfall Event

In rainfall data analysis, the statistical context of improving data quality and reliability
starts by filtering out values of 0 mm and those less than 0.1 mm. This is because rainfall
measurements are typically recorded in discrete units (e.g., millimeters), and values of
0 mm or very small values may represent non-measurable or negligible precipitation
events. Removing such values can help ensure that the analysis focuses on significant
rainfall events. Excluding non-plausible data points, such as extreme outliers or erroneous
measurements, is essential for improving the quality of the dataset. Non-plausible data
points could arise from measurement errors, instrument malfunctions, or other factors. By
filtering out these data points, we can reduce the likelihood of biased results and ensure
that the analysis is based on reliable data. This is especially important when dealing with
large datasets, as it can help to reduce computational time and resources. The definition of a
heavy rainfall event as at least 15 mm of precipitated water over 30 min is also a reasonable
threshold, as it is in line with the definition provided by the IPCC (Intergovernmental Panel
on Climate Change) Special Report on Extremes: “an extreme (weather or climate) event
is generally defined as the occurrence of a value of weather or climate variable above (or
below) a threshold value near the upper (or lower) ends (tails) of the range of observed
values of the variable” [20]. According the National Weather Service of Mexico, a heavy
rainfall event “is a heavy, abundant, sudden rain of short duration. It is characterized
by the fact that the composition of droplets or solid particles is greater than the elements
corresponding to other types of precipitation” [21]. It is important to establish a clear
and consistent definition of what constitutes a heavy rainfall event in order to accurately
analyze and compare data across different regions and time periods (Figure 2).

As schematized in Figure 2, the output of the algorithm is a binary thematic image
that stores both 0’s and 1’s, indicating whether an extreme rainfall event has occurred or
not. The 1 km grid surface is a downscaled grid of the original 10 km grid of the GPM and
WRF databases and was half-hourly interpolated. The pixel value that matches with the
hail cannon location is extracted from this array. The nearest centroid to the geographic
point x, y, z data in the satellite-origin and re-scaled-origin databases is represented by
the downright triangle vertex (C1, C2, and C3), while the segment “d” and the dotted line
circumference represent the 3 km area of influence.

2.4. GPM Database Description

The GPM mission is a satellite-based mission that provides measurements of precipi-
tation from space every 3 h [22], with an unprecedented resolution of 0.1◦ and 30 min [23].
The GPM_3IMERGHH product, which was used in this study, is the third-level precip-
itation product of GPM and covers an area of ±60◦ N/S [22,24]. This product provides
essential 2D, 3D, and/or 4D data on precipitation ranging from rain microphysics and
snow particles to global patterns of precipitation. The GPM IMERG product is a similar
precipitation product that combines microwave, infrared, and gauge estimates [25]. The
GPM images were chosen because of their extended capability to measure light rain and
falling snow, which account for significant proportions of precipitation at mid- and high-
latitudes [23]. The output file format of HDF5 has a spatial coverage of −180◦, −60◦, +180◦,
and +60◦, and a spatial resolution of 0.1◦ (~10 km).

2.5. WRF Database Description and Model Configuration

The Weather Research and Forecasting model with the Unified Environmental Model-
ing System (WRF-UEMS) version 3.2 [26] was used in this study to simulate half-hourly data
at a spatial resolution output of 10 km. The WRF model configuration included 35 terrain-
following vertical levels and several physics options, such as the BMJ (Betts-Miller-Janjić)
cumulus scheme [27], the Thompson microphysics [28], the Mellor–Yamada–Janjić (MYJ)
planetary boundary layer scheme [29], and the Noah land surface model (LSM; [30]). The
BMJ scheme was chosen for its ability to improve rainfall prediction and show better
features of cyclonic circulation [31]. However, it is relevant to emphasize that the BMJ
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scheme is a cumulus parameterization scheme used in numerical weather prediction mod-
els, and its performance can vary under different atmospheric conditions and regions. It
was designed to improve the representation of sub-grid scale convection, particularly in
the tropics. While it has demonstrated success in capturing certain features of convective
processes, its performance may not be consistent in all areas or for all weather scenarios.
The effectiveness of a parameterization scheme such as BMJ can depend on factors such as
the following:

• Geographic location. Different regions have distinct climatic and atmospheric char-
acteristics. It is of general recommendation that schemes that perform well in one
region may not perform as well in another, and local and regional re-parameterization
is mandatory.

• Seasonal variation. The performance of parameterization schemes can be influenced
by seasonal variations in atmospheric conditions.

• Model resolution. The resolution of the numerical model can also affect the perfor-
mance of the parameterization schemes. Some schemes may be better suited for higher
resolution models.

• Specific weather phenomena. The scheme may perform differently in capturing
different types of weather phenomena (e.g., convective storms, tropical cyclones,
temperature profile, etc.).

• Model configuration. The overall configuration of the numerical weather prediction
model, including the choice of other parameterization schemes and model physics,
can impact the results.

The Thompson microphysics scheme was chosen for its ability to generate cloud
properties in proper conditions where hail events are possible. It is therefore more suitable
to reproduce convective clouds, which more dominated by rain species typical of tropical
clouds [32]. The Thompson microphysics scheme is a type of cloud microphysics parame-
terization used in atmospheric models, particularly in the context of cloud and precipitation
processes. Like any parameterization scheme, its performance can be influenced by various
factors, and its suitability may vary across different scenarios and geographic regions. As
for the BMJ scheme, geographic and climatic variation can be sensitive; different regions
may have distinct cloud and precipitation characteristics, and a microphysics scheme that
performs well in one region may not be optimal for another. Another relevant factor to
mention is the temperature and moisture regimes. Microphysics schemes are often de-
signed to simulate processes such as cloud droplet activation, raindrop formation, and
ice processes. Their performance can be influenced by the prevailing temperature and
moisture conditions.

Recent review studies have shown that although many studies on the evaluation
and comparison of PBL parameterization schemes have been undertaken, there is still
no uniform conclusion on which PBL parameterization scheme performs best [33]. The
MYJ planetary boundary layer (PBL) scheme is a widely used parameterization scheme
in atmospheric models, particularly in numerical weather prediction and atmospheric
research. It is designed to represent the processes occurring in the planetary boundary
layer, which is the lowest part of the atmosphere influenced by the earth’s surface. The
MYJ scheme was selected because of its computational performance and its ability to
perform well in complex terrain conditions such as Mexico [34]. The Noah Land Surface
Model (LSM) is a widely used component in atmospheric models, and it plays a crucial
role in representing interactions between the land surface and the atmosphere. The Noah
LSM was chosen because of its ability to provide multi-options for atmospheric physical
processes [35,36], its versatility for a range of applications across different spatial and
temporal scales, and its balance between accuracy and computational efficiency. However,
it has been reported to have biases in simulating runoff and snowmelt.
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Pre-Processing the Dataset

Interpolation is a widely used technique in spatial data analysis, and it is used to
estimate values for unsampled points. Deterministic methods, such as barycentric methods,
space-partitioning methods, and splines, estimate the value at unknown points based on
a weighted sum of the value at close points [37]. These methods do not use probabilistic
theory [38] and create surfaces based on either the extent of similarity or the degree of
smoothing [39]. On the other hand, stochastic methods, such as regression, local regression,
and kriging, infer the value of the unknown point as the value at a point supposed to have
similar features. The nearest neighbor interpolation assigns the value of the closest known
observation to the unknown point [37]. In this study, two Python (v.3.6.2) scripts were
written to perform a pre-processing task due to a) the considerable number of files and disk
space, b) the allocation of hard disk drive resources to store temporary and final output files,
and c) the need to map the necessary consumption of computing resources. The scripts were
performed in two phases. First, the original files in native-NetCDF (Network Common Data
Form) format were transformed to a plain text (CSV format; Comma Separated Values).
Second, the GPM and WRF rainfall datasets that lay inside the spatial limits of this study
were subset. The interpolated surfaces were created using the CSV files of the rainfall data
and centroid coordinates.

In the output process, several libraries were used, including SciPy, NumPy, and
GDAL/OGR, to pre-process and interpolate the rainfall data. The SciPy library [40] was
used to fit a function to the rainfall data, and the NumPy library was used for N-dimensional
array manipulation. The GDAL/OGR libraries were used for raster and vector data
format translation and to access various vector file formats, including ESRI shapefiles,
S-57, GeoJSON, SDTS, PostGIS, Oracle Spatial, and Mapinfo. To obtain statistics by area of
influence, we used the zonal statistics function, which utilizes the NumPy and GDAL/OGR
libraries. The zonal statistics function, following a raster-based method, is widely used in
environmental and geophysical studies [41].

2.6. Rainfall Data

The four-year dataset was assembled at 30 min intervals; no missing data were ob-
served (Figure 3). A few things to enhance are the following: cumulative rainfall data are
presented daily because of the difficulty of representing in one figure the whole 30 min
series data set. The number of anti-hail cannons was consistent throughout the period.
As shown in Figure 4, the contrast between the GPM database and the WRF database, as
well as the serial data period and the region, regarding the number and intensity of heavy
rainfall events, was notable. Only cumulative rainfall above 15 mm is shown (Figure 4).
Assigning a minimum volume of rain to categorize an event as heavy rainfall can depend
on various factors, including regional climatology, local infrastructure, and the impact on
the environment. In meteorology, heavy rainfall is often categorized based on the rate of
precipitation, usually measured in millimeters per hour.

We suggested the 15 mm of rain in an interval of 30 min as a specific criterion that
we can use, but the appropriateness of this threshold depends on the context. We are well
aware that it is not uncommon for meteorological agencies to use thresholds like this, but
they may also consider factors such as the local average rainfall, the drainage capacity of
the area, and the potential for flooding.

In scientific terms, heavy rainfall is often defined in terms of intensity, such as rainfall
rates exceeding a certain threshold over a specified time period. The specific thresholds can
vary, and they may be established based on historical data, hydrological considerations,
and the vulnerability of the region.
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Figure 3. Half-hourly rainfall data from one of the 51 monitoring locations, with capital letters
(A) and (B) indicating the areas of influence from GPM-origin and WRF-origin, respectively. Points
(C) and (D) denote the coordinates database for GPM-origin and WRF-origin, respectively. The
discrepancies between datasets are evident when focusing on specific rainfall periods (outlined by
the dotted square), namely July–August (a), early September (b), and winter season (c).

Observing Figure 3, it is notable that discrepancies exist between the GPM and WRF
databases across various rainfall periods. These disparities may stem from multiple factors,
including inherent uncertainties within both datasets. The complexity of forecasting con-
vective and dominant precipitation events using the WRF model, could contribute to these
observed differences [42]. Additionally, model-based products excel during cold seasons,
while satellite-based products perform better during warm seasons [43]. Comparing WRF-
modeled rainfall data with satellite-estimated data is a common practice in meteorological
research and offers valuable insights into model performance. Sensitivity analyses and
validation against ground-based observations typically enhance the robustness of such
comparisons; unfortunately, ground-based observations are lacking in this study. These
findings imply that the differences depicted in Figure 3 may be influenced by the season
and type of precipitation. Further research is warranted to delve deeper into these factors.
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Figure 4. The annual ratio of heavy rain events by database, region, and year for both the area of
influence and point coordinate data. The positive ratio (+) indicates that the number of heavy rain
events was greater at the hail cannon location (pair coordinates) than in the area of influence, while
the negative ratio (−) indicates the opposite, where the number of episodes within the 3 km of the
area of influence was greater than in the hail cannon location. The dotted and filled circle symbols
denote the same, representing the number of episodes by geographic feature.

3. Results

The data analysis showed that the MICH region had the highest number of heavy rain
events in the period and experienced the highest number of events among regions. In 2014,
47 events were recorded in MICH (17 in JAL and 29 in SLP), followed by 34 events in 2015
(16 in JAL and 3 in SLP), 29 events in 2016 (16 in JAL and 0 in SLP), and 34 events in 2017
(1 in JAL and 3 in SLP). During the rainy season, which usually lasts from June to September,
heavy rainfall was observed in all regions, with a clear dependence on the time of the year
(July to August, early September, and winter season).

The differences between the databases and the geographic features were also sig-
nificant. The algorithm identified a greater number of heavy rainfall events in the WRF
database than in the GPM database. In the area of influence, 58 heavy rain events were
observed in the WRF database, compared to 46 in the GPM database, while in the mask
with point-to-point compensation analysis, 82 heavy rain events were observed in the
WRF database, compared to 43 in the GPM database (unmatched t test = 0.0001; Figure 4).
The MICH region had the largest number of heavy rain events in both databases, with
45 events observed in the WRF database and only 2 in the GPM database. The ratio of
the number of heavy precipitation episodes was determined to illustrate the differences
between databases, geographic regions, and geographic features (Figure 4).

The graph reveals that the number of heavy rain events varied greatly between the
different regions and databases, as well as between geographic features. In general, the
WRF database identified a greater number of heavy rain events compared to the GPM
database. The MICH region had the highest number of events in the period, with the largest
difference observed between databases.

The annual analysis shows that the maximum number of heavy rain events was
recorded in 2014, with a decreasing trend in the following years. In addition, the differences
between the geographic features were significant, with a higher number of events detected
at the point coordinates than in the area of influence. This finding suggests that the hail
cannon location is not the most suitable location for monitoring heavy rain events in
the region.
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Figure 4 shows that there is no visible trend or pattern between the two geographic
features, despite the common belief in the protective role of hail cannons against the
occurrence of hailstorms and heavy rain events. In addition, notable differences in the
estimates of rainfall data between the databases are apparent (Figure 5).
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It is important to note that the data presented in Figure 5 only show a correlation
between the number of heavy rain events and the location of the hail cannon. Correlation
does not imply causation, and further research would be necessary to determine if the
hail cannon is actually impacting the rainfall in the region. It is also possible that other
factors, such as local topography, may be influencing the distribution of heavy rain events
in the area. Therefore, it is important to interpret these findings with caution and not draw
definitive conclusions without further investigation.

4. Discussion

The extensive processing of large-scale data, including machine learning and data
mining tasks, demands substantial computing resources [44], often facilitated by high-
performance computing platforms and distributed frameworks such as Apache Hadoop
and Spark. These resources enable parallel processing, accelerating data analysis. How-
ever, ensuring adequate computing power and storage capacity is essential. Scientifically,
challenges arise in data quality, statistical inference, and reproducibility, being addressed
through techniques such as data cleaning, statistical modeling, and version control systems.
The lack of scientific evidence supporting the effectiveness of hail cannons in altering ex-
treme rainfall events underscores the importance of relying on empirical data and scientific
research. The controversy surrounding hail cannon usage and its uncertain environmental
and weather impacts necessitates further research for a comprehensive understanding.

Our study focused on evaluating the relationship between heavy rain events and hail
cannon locations, finding no evidence supporting hail cannons’ dissipation or attenuation
effects on heavy rain occurrence. Future research adjustments include matching data
registration frequency with extreme rain event durations and incorporating additional
weather device records near hail cannon locations, such as dual-polarization radar data.
The dual-polarization radar can discern between heavy rains and hail conditions in the
atmosphere. In orographic complex terrain, long-range radar estimations are not able to
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identify the rain areas correctly due the blockage caused by mountains and the growth of
low-level precipitation [45,46].

While hail events and heavy rainfall share similar atmospheric triggers, it is crucial
to conduct rigorous scientific studies to establish any causal relationship between hail
cannon activity and heavy rain occurrence. Further research should prioritize incorporating
ground-based weather station networks to enhance dataset robustness.

The integration of multiple data sources and the use of code pipelines for automation
contribute to a more comprehensive analysis, highlighting the importance of computing
resources in large-scale data processing. This study emphasizes the need for efficient and
scalable processing methods, as datasets grow in size and complexity [47].

However, the results of this study do not yield robust information to accurately
determine any association between hail cannons operations and the occurrence of heavy
rain events in the study regions. While manufacturers claim that hail cannons can dissipate
hail formation and affect the process of storm cloud formation, there is no scientific evidence
to support their claims. We reiterate that the lack of scientific literature on this topic is
evident, and further research is needed. It is reasonable to associate different weather
phenomena such as hail and convective storm because both events can be triggered by the
same atmospheric conditions, particularly in the context of severe thunderstorms.

It is important to approach scientific studies with a critical and unbiased perspective
and to base conclusions on rigorous experimental and observational evidence. While it is
understandable that farmers may hold beliefs about the effectiveness of hail cannons in
preventing hail formation and reducing rainfall intensity, it is important to evaluate these
claims using scientific methods to determine their validity.

We proposed, for future studies, reasonable and necessary items to improve the under-
standing of the relationship between hail cannons and heavy rainfall events. Matching the
frequency of data registration with the duration of extreme rain events (5 to 10 min [48]),
would allow for a better exploration of the potential association between hail cannons
and heavy rainfall events. Additionally, incorporating ground data from other weather
devices [47] near the hail cannon location, such as rainfall, relative humidity, wind in-
tensity, wind direction, and air temperature, would enrich the dataset and provide more
comprehensive information for analysis.

However, the lack of willingness on the part of the owners of the hail cannon devices
to share information about their operation frequency and period is a limitation that needs
to be addressed. Obtaining this information would be important to better understand the
potential effects of hail cannons on weather patterns.

In this study, the use of multiple data sources and an integrated data framework
can improve the accuracy and reliability of large-scale data analysis. The relevance of
multisource data integration might provide robust information on the scale at which
hail cannons operate, compared to the scale of atmospheric processes that lead to heavy
rainfall events. Hail cannons typically operate on a very localized scale, aiming to disrupt
the formation of hailstones in a small area. In contrast, heavy rainfall events are often
driven by large-scale atmospheric patterns and processes that are influenced by factors
such as temperature gradients, moisture content, and air mass movements on regional
or even global scales. The operation principle is that hail cannons operate by creating
shockwaves or sound pulses that are intended to disrupt the formation of hailstones within
thunderstorm clouds. While their primary aim is to reduce the size of hailstones, the
energy produced by hail cannons could potentially interfere with atmospheric stability
and cloud development. This disruption may alter the microphysical processes within
clouds, potentially affecting precipitation patterns. In addition, while hail cannons may
have some impact on local weather patterns, their effects are likely to be minimal compared
to the complex interplay of atmospheric variables that contribute to heavy rainfall, such
as moisture availability, instability, and lifting mechanisms. The use of hail cannons
generates localized disturbances in the atmosphere, which could impact the vertical motion
of air masses and cloud dynamics. These disturbances might influence the distribution
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and intensity of precipitation in the immediate vicinity of the hail cannon deployment
area. However, the extent of this influence would likely be limited to a relatively small
spatial scale.

Acknowledging the limitations or uncertainties associated with our study, we note
that these could include factors such as the availability of data, the accuracy of hail cannon
usage records, or the complexity of atmospheric processes that were not fully accounted
for in our analysis. In this study we have conducted research on the influence of hail
cannons on precipitation. It is essential to provide a detailed statistical analysis of our
findings. This could involve comparing precipitation data from periods when hail cannons
were active versus inactive, while controlling for other relevant factors that may influence
precipitation patterns.

5. Conclusions

Using the term “hail cannon” to specifically indicate its purpose in reducing the diam-
eter of hail is appropriate, as these devices are primarily deployed to mitigate hail damage
to crops, buildings, and other infrastructure. However, it is also important to consider
how the operation of hail cannons might indirectly affect the amount of precipitation
in a given area. While the primary purpose of hail cannons is to reduce hailstone size,
their operation may indirectly affect precipitation patterns through localized atmospheric
disturbances. However, the overall impact of hail cannons on precipitation amounts is
likely to be minimal, compared to the broader atmospheric processes that govern weather
and climate patterns. In the pursuit of understanding the effectiveness of hail cannon
devices in influencing heavy rainfall events, this study has explored the intricate interplay
between computing technology, spatial analysis, meteorological phenomena, and farmers’
perceptions. Utilizing advanced spatial analysis techniques and leveraging two precipita-
tion databases, our research sheds light on certain aspects of this multifaceted issue. While
hail cannons may have some localized effects on precipitation patterns, their impact on the
overall amount of precipitation in a region is likely to be minimal. Precipitation events are
driven by a complex interplay of atmospheric factors such as moisture availability, temper-
ature gradients, and atmospheric dynamics on regional or larger scales. The operation of
hail cannons is unlikely to significantly alter these large-scale atmospheric processes.

Our findings indicate that the spatial distribution of heavy rainfall events at the hail
cannons’ location and within their area of influence were not related at all. However, it is
crucial to acknowledge the limitations and complexities that persist in fully elucidating the
role of hail cannons in weather modification.

Despite advancements in meteorological research, the effectiveness of hail cannons
in altering precipitation patterns remains a contentious and scientifically intricate subject.
Farmers’ perceptions of these devices, often influenced by regional climate challenges and
economic considerations, may not align with the nuanced realities revealed by our analysis.

It is paramount to recognize the need for continued research, encompassing a broader
spectrum of variables, and possibly engaging with stakeholders, to comprehensively grasp
the implications of hail cannon use. Bridging the gap between scientific understanding
and farmers’ perspectives requires a holistic approach that considers meteorological, socio-
economic, and environmental factors.

In conclusion, our findings suggest that hail cannons’ impact on precipitation remains
uncertain, necessitating further research. By acknowledging this study’s limitations and un-
certainties, we underscore the importance of evidence-based decision-making in evaluating
hail cannon efficacy and environmental impacts.
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