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Abstract: Transportation significantly influences greenhouse gas emissions—particularly carbon
dioxide (CO2)—thereby affecting climate, health, and various socioeconomic aspects. Therefore,
in developing and implementing targeted and effective policies to mitigate the environmental im-
pacts of transportation-related carbon dioxide emissions, governments and decision-makers have
focused on identifying methods for the accurate and reliable forecasting of carbon emissions in the
transportation sector. This study evaluates these policies’ impacts on CO2 emissions using three
forecasting models: ANN, SVR, and ARIMAX. Data spanning the years 1993–2022, including those
on population, GDP, and vehicle kilometers, were analyzed. The results indicate the superior perfor-
mance of the ANN model, which yielded the lowest mean absolute percentage error (MAPE = 6.395).
Moreover, the results highlight the limitations of the ARIMAX model; particularly its susceptibility
to disruptions, such as the COVID-19 pandemic, due to its reliance on historical data. Leveraging
the ANN model, a scenario analysis of trends under the “30@30” policy revealed a reduction in
CO2 emissions from fuel combustion in the transportation sector to 14,996.888 kTons in 2030. These
findings provide valuable insights for policymakers in the fields of strategic planning and sustainable
transportation development.

Keywords: carbon emission; forecasting; transportation; machine learning; ARIMAX; artificial neural
network; support vector regression; scenario analysis; Thailand

1. Introduction

Greenhouse gases (GHGs) are a group of gases that trap heat in the Earth’s atmosphere,
leading to the so-called greenhouse effect and contributing to global warming and climate
change. Carbon dioxide (CO2) produced as a result of human activities is the primary cause
of global warming among these gases. The past decade (2011–2020) has been the hottest
in recorded history [1]. Furthermore, CO2 levels in the past decade have also increased at
historically high rates—rising more than 2 ppm per year—indicating a continuous increase
in CO2 [2]. The increasing amounts of carbon emissions have various environmental
impacts, including heatwaves, droughts, floods, storms, and more frequent and severe
weather events [3]. These events significantly affect ecosystems, human health, agriculture,
and the global economy; leading to concerns about mitigating global climate change and
ensuring environmental sustainability [4]. At the same time, countries around the world
are striving to reduce GHG emissions and promote sustainable development. The Paris
Agreement, which is subsumed under the United Nations Framework Convention on
Climate Change, is a significant international accord that reflects global efforts to address
climate change. The main goals of the Paris Agreement are: (1) to limit global warming to
below 2 degrees Celsius above pre-industrial levels and (2) to pursue continued efforts to
limit the temperature increase to 1.5 degrees Celsius.

As one of the parties to the agreement, Thailand is also engaged in these global efforts.
From 2011 to 2021, the average temperature in the country increased by 0.09 degrees Celsius
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per year. In 2018, the majority of GHG emissions in the energy sector resulted from fuel
combustion [5]. As shown in Figure 1, the Thai transportation sector plays a significant
role in producing carbon emissions, contributing to 29.50% of GHG emissions; making it
second only to the energy industry, which contributes 39.63% [6]. Therefore, given this
background, governments and decision-makers must find accurate and reliable methods
of forecasting carbon emissions in the transportation sector; such methods are essential in
developing and implementing targeted and effective policies to mitigate the environmental
impacts of transportation-related CO2 emissions [7].
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Various techniques have been employed in the past decade to forecast carbon emis-
sions, ranging from traditional statistical methods to machine learning (ML) algorithms.
Previous research has compared CO2-emission-forecasting models in various contexts.
For instance, Ağbulut [8] compared deep learning (DL), support vector machine (SVM),
and artificial neural network (ANN) models for forecasting CO2 emissions in Turkey. To
forecast energy demand in the Turkish transportation sector, Sahraei et al. [9] used the
multivariate adaptive regression splines (MARS) technique. Tawiah et al. [10] compared
autoregressive integrated moving average (ARIMA), nonlinear autoregressive (NAR), ex-
ponential smoothing (ETS), naïve approach, and ANN models to forecast CO2 emissions in
Pakistan. Meanwhile, Ning et al. [11] forecasted CO2 emissions and analyzed future CO2
emission trends in China using ARIMA. Xu et al. [12] used nonlinear autoregressive ex-
ogenous (NARX) to examine the increasing trend of CO2 emissions in China and analyzed
the forecast results using scenario analysis. Liu et al. [13] forecasted energy use in China
by comparing multiple linear regression (MLR), a gated recurrent unit artificial neural
network (GRU ANN), and support vector regression (SVR). Sun and Liu [14] developed
three models—namely, an ANN, an SVM, and the Grey model (GM)—for forecasting
CO2 emissions in China. Thabani and Bonga [15] attempted to model and forecast CO2
emissions in India using ARIMA. Meanwhile, Fatima et al. [16] studied the relationships of
CO2 gas data in nine Asian countries—namely, Japan, Bangladesh, China, Pakistan, India,
Sri Lanka, Iran, Singapore, and Nepal—by comparing the simple exponential smoothing
(SES) and ARIMA models; with each country having different suitable models.

Amidst the current landscape of CO2 forecasting in Thailand, several studies have con-
tributed valuable insights using different modeling techniques. For example, Ratanavaraha
and Jomnonkwao [17] forecasted the CO2 amount released from transportation energy con-
sumption in Thailand by conducting a comprehensive comparison of modeling techniques,
including log-linear regression, path analysis, ARIMA, and curve estimation models; con-
sidering related factors, such as GDP, population, and the number of registered vehicles.
They concluded that the ARIMA model outperformed the others in terms of predictive
accuracy. Similarly, Sutthichaimethee and Ariyasajjakorn [18] attempted to forecast CO2
emissions from industrial energy use in Thailand using the autoregressive integrated
moving average with exogenous variables (ARIMAX) model, incorporating GDP and
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population data into their analysis. In 2022, Salangam [19] proposed an effective and
suitable method for forecasting CO2 levels in Thailand by comparing regression analysis
and an ANN; this incorporated variables such as GDP, population, energy consumption,
and the number of registered vehicles. Their results indicated that the ANN predictions of
CO2 levels were six times more efficient and accurate than those derived from regression
analysis methods. By demonstrating improved efficiency and accuracy over traditional
regression techniques, such a finding suggests that ANNs hold promise as a superior tool
for CO2 forecasting in the context of Thailand. To systematically present relevant research
results and provide a comprehensive perspective on analytical methods, we categorized
studies by author, methods used, input and output variables, and the region each study
pertains to; as shown in Table 1.

CO2 forecasting faces several limitations, including the complexity of the drivers
of emissions (e.g., economic activity, technology, and policies) and the uncertainty and
variability of emissions and external shocks, such as natural disasters, the COVID-19
pandemic, and geopolitical events, among others. Furthermore, limited data availability
can lead to violations of the statistical assumptions required for some forecasting methods.
The most common methods for forecasting carbon emissions are ANN, ARIMA, and SVR,
which have different strengths and weaknesses when dealing with forecasting problems.
ANNs, in particular, are highly flexible and can adapt to various types of data patterns,
including those involving nonlinear relationships [20] or violations of traditional statistical
assumptions, such as normality (to some extent) [21]. SVR is also adept at capturing
nonlinear relationships [22] and is less affected by outliers than traditional regression
methods. ARIMAX—or ARIMA with exogenous variables—allows it to account for external
factors or intervention events that may influence time series data, thereby improving
forecasting accuracy [23–25]. However, compared with simpler models such as ARIMAX,
ANN and SVR models can be very complex and challenging to interpret. To date, no studies
have compared the performance of these three methods in forecasting transportation-
related CO2 emissions in Thailand. Therefore, the current study aims to fill this gap by
providing a comprehensive comparison of ANN, ARIMAX, and SVR models in this context.

First, we review the theoretical foundations of each technique. Then, we assess the
performance of these models on past carbon emission datasets using various evaluation
metrics; including root mean square error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE). Finally, we provide insights into the appropriateness of
using these models for forecasting carbon emissions and suggest future research directions
to enhance their predictive capabilities.

Table 1. Summary of studies on emission forecasting found in the literature review.

Authors Method Region Input Variable Output
Variable

Performance
Evaluation

Salangam [19] Regression, ANN * Thai
GDP, population, energy
consumption, number of

registered vehicles
CO2 MAD, R-squared

Ağbulut [8] DL, SVM *, ANN Turkey GDP, population, vehicle-km CO2
R-squared, RMSE,

MAPE, MBE, MABE

Ning, Pei, and Li [11] ARIMA China Previous CO2 data CO2 R-squared, AIC, SC

Fatima, Saad, Zia,
Hussain, Fraz,
Mehwish, and

Khan [16]
SES, ARIMA

Japan, Iran,
Bangladesh, China,
Pakistan, India, Sri
Lanka, Singapore,

Nepal

Previous CO2 data CO2 FMAE

Xu, Schwarz, and
Yang [12] NARX China

Industrialization rate,
urbanization rate, GDP,

proportions of industry and
service sectors, proportions of

tertiary sector, population, energy
consumption

CO2 MAE
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Table 1. Cont.

Authors Method Region Input Variable Output
Variable

Performance
Evaluation

Ratanavaraha and
Jomnonkwao [17]

log-linear regression,
path analysis,

ARIMA *, curve
estimation

Thailand

GDP, population, number of
small-sized registered vehicles,

number of medium-sized
registered vehicles, number of
large-sized registered vehicles

CO2
R-squared, MSE,

MAPE

Sahraei, Duman,
Çodur, and
Eyduran [9]

MARS Turkey
GDP, oil price, population,

ton-km, vehicle-km,
passenger-km

Transport
energy

demand

GR-squared,
R-squared, adjust
R-squared, RMSE,

AIC

Tawiah, Daniyal, and
Qureshi [10]

ARIMA, ETS, Naïve
Approach, MLP,

NAR *
Pakistan Previous CO2 data CO2 RMSE, MAE

Sutthichaimethee and
Ariyasajjakorn [18] ARIMAX Thai Population, GDP CO2 R-squared

Liu, Fu, Bielefield,
and Liu [13]

MLR, SVR, GRU
ANN * China

GDP, population, population,
import trade volume, export trade

volume
CO2 MAPE, RMSE

Thabani and
Bonga [15] ARIMA India Previous CO2 data CO2

AIC, MAE, RMSE,
MAPE

Sun and Liu [14] LSSVM *, GM, ANN,
Logistic Model China

Factors related to major industries
and household consumption such
as GDP, passenger traffic, urban
population, and total retail sales

of consumer products

CO2
MAPE, RMSE,

MaxAPE, MdAPE

Ghalandari et al. [26] GMDH, ANN * UK, Germany, Italy,
France

GDP, oil consumption, coal,
natural gas, nuclear energy,

renewable energy consumption
CO2 R-squared, MSE

Faruque et al. [27] LSTM, CNN,
CNN-LSTM, DNN * Bangladesh GDP, electrical energy

consumption CO2 MAPE, RMSE, MAE,

Shabri [28] GM, ANN, GMDH,
Lasso-GMDH * Malaysia

Population, GDP, energy
consumption, number of

registered motor vehicles, amount
invested

CO2 MAPE

Rahman and
Hasan [29] ARIMA Bangladesh Previous CO2 data CO2

RMSE, MAE, MPE,
MAPE, MASE, AIC,

BIC

Kour [30] ARIMA South Africa Previous CO2 data CO2 RMSE

Kamoljitprapa and
Sookkhee [31] ARIMA Thailand Previous CO2 data CO2

R-squared, adjusted
R-squared, AIC

Zhu et al. [32] SVR China

Population, GDP, urbanization
rate, energy consumption
structure, energy intensity,

industrial structure

CO2 MSE

Li et al. [33] GM, DGM, RDGM
ARIMA * China Previous CO2 data, GDP CO2 MAPE

Yang et al. [34] SVR China
GDP, coal, coke, gasoline, diesel
oil, crude oil, kerosene, fuel oil,
and natural gas consumption

CO2 MAPE

* Indicates the best-performing model among those compared in a study.

2. Materials and Methods
2.1. Data Collection

The data acquired for this study were compiled annually, covering a 30-year period
from 1993 to 2022. The dataset comprised CO2 emissions data from the transportation
sector, population, GDP, VK Passenger, VK Freight, and VK Motorcycle. These data were
collected from secondary sources provided by various institutions. Detailed sources and
information regarding the data are presented in Table 2. These secondary data sources
ensured that the information they provided is comprehensive and reliable for analysis.
Each agency provides specific datasets relevant to their domain, contributing to a robust
and detailed dataset.
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Table 2. Variable, data source, and description.

Variable Source Description

CO2 (kTons) EPPO CO2 emissions from the transportation sector

Population (103 Peoples) World Bank
Total population is based on the de facto definition of

population, which counts all residents regardless of legal status
or citizenship. The values shown are midyear estimates.

GDP
(109 Baht) Bank of Thailand Gross domestic product—chain volume measures.

VK Passenger
(106 vehicle-kilometers)

Bureau of Highway Safety,
Department of Highways,

Thailand

Travel volume in the study area classified by type of vehicle.
VK Passenger consists of five vehicle types; namely, passenger
cars carrying fewer than seven persons, passenger cars carrying

more than seven persons, light buses, medium buses, and
heavy buses.

VK Freight
(106 vehicle-kilometers)

Travel volume in the study area classified by type of vehicle.
VK Freight consists of five vehicle types, including light trucks,

medium trucks, heavy trucks, full trailers, and semi-trailers.

VK Motorcycle
(106 vehicle-kilometers) Travel volume in the study area classified by motorcycle.

The data cleaning and preprocessing phase is crucial for ensuring the accuracy and
reliability of an analysis. In this study, initially, missing values were addressed through
imputation methods, where incomplete records were either filled with appropriate esti-
mates or removed if they were deemed insufficiently representative. The data were then
standardized to ensure comparability across different variables. Standardization involved
scaling the data such that each variable had a mean of zero and a standard deviation of one.
This process helps in normalizing the range of the variables, particularly when they are
measured on different scales. Following standardization, outliers were managed using the
Z-score method. For each variable, the Z-score is given by the following [35,36]:

Z =
(X − µ)

σ
, (1)

where X is the data point, µ is the mean, and σ is the standard deviation. Data points with
Z-scores exceeding the threshold of 3 or −3 were considered outliers [35,37]. These outliers
were removed from the dataset or transformed.

Table 3 shows a strong correlation between input and output variables such as popula-
tion, GDP, annual vehicle kilometers (VK), and historical CO2 emissions [38]. Therefore,
these inputs were utilized in training models to predict CO2 emissions related to trans-
portation [8].

Table 3. Correlation matrices of the variables.

Variable Population GDP VK Passenger VK Freight VK Motorcycle CO2

Population 1 0.949 0.947 0.914 0.828 0.824

GDP 0.949 1 0.950 0.944 0.870 0.839

VK Passenger 0.947 0.950 1 0.982 0.936 0.837

VK Freight 0.914 0.944 0.982 1 0.953 0.914

VK Motorcycle 0.828 0.870 0.936 0.953 1 0.797

CO2 0.824 0.839 0.837 0.914 0.797 1



Forecasting 2024, 6 467

2.2. Data Analysis

ANNs are adept at capturing complex, nonlinear relationships; making them suitable
models for predicting CO2 levels in various settings [8,19,26]. SVR, which is known for its
efficiency in high-dimensional spaces, can handle nonlinear data effectively and is another
widely used ML method for CO2 level prediction [14,32,34]. ARIMA, a popular statistical
approach for forecasting CO2—as depicted in Table 1—is specifically designed for time
series data; analyzing and making predictions based on historical trends. However, we
believe that incorporating appropriate exogenous variables into this model can further
improve accuracy. Therefore, we employed ARIMAX. Overall, these methods provide a
comprehensive toolkit for predicting CO2 levels; each offering unique strengths with which
to address the complexities of data analysis.

2.2.1. Artificial Neural Network

Artificial Neural Networks (ANNs) are a type of machine learning method inspired by
the structure and functioning of the human brain. They consist of numerous interconnected
processing units called neurons, which collaborate to process information and recognize
patterns. The learning process of an ANN involves adjusting weights through a method
known as backpropagation. Initially, input data are fed into the network and pass through
multiple layers, where each layer applies weights and activation functions to transform
the data, ultimately producing the final output. The network’s output is then compared to
the actual target values using a loss function, which quantifies the difference between the
predicted and actual values. Common loss functions include the mean squared error (MSE)
for regression tasks and cross-entropy loss for classification tasks. The error from the loss
function is propagated back through the network, and the weights are adjusted to minimize
this error by using optimization algorithms such as Gradient Descent. This cycle of forward
propagation, loss calculation, and backward propagation continues iteratively until the
error is minimized to an acceptable level, allowing the ANN to learn the underlying
patterns in the data under analysis.

ANN are highly adaptable to various data patterns, including nonlinear relation-
ships [20], and can handle complex data structures that traditional statistical methods may
struggle with; for example, the violation of the assumption of normality [21]. However, they
also come with inherent complexity and often lack interpretability [39], making it difficult
to understand how specific predictions are made. Moreover, ANN typically require large
quantities of data and substantial computational power for training. The architecture of an
artificial Multi-Layer Perceptron (MLP) neural network is shown in Figure 2. Meanwhile,
the mathematical formula for obtaining the forecasting output for the jth sample can be
calculated using the following equation [40]:

yj =
n

∑
i=1

ωki,j f (hk) + β j (2)

where ωki,j denotes the weights from the kth hidden node to an output node in the ith

iteration, β j indicates the bias of the jth output node sample, f (hk) is the outcome of hidden
node hk after the activation function has been applied, and yj refers to the output of the jth

sample.
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Figure 2. Architecture of an artificial neural network (ANN).

2.2.2. Support Vector Regression

Support vector regression (SVR) is a machine learning method in which techniques
from a support vector machine (SVM) are used to predict continuous outcomes. Initially
developed for classification tasks, SVMs have been adapted to handle regression prob-
lems [41]. SVR is based on the concepts of margin and support vectors. In SVR, the margin
refers to the epsilon-insensitive tube around the regression function, within which predic-
tion errors are not penalized. Support vectors are data points that lie on the boundary of
this margin or outside it, playing a crucial role in defining the regression function. The
decision function of SVR is primarily determined by these support vectors, making SVR
generally robust to outliers, depending on the choice of the epsilon parameter [42]. The
kernel function is used to map input data to higher-dimensional spaces, enabling SVR to
handle nonlinear relationships [43]. Figure 3 displays a flowchart of an SVR approach. An
SVR model with a linear kernel is represented as follows [13,44,45]:

ŷSVR = ∑m
i=1 (αi − α∗i )K(xi, xj) + b, (3)

where ŷsvr, (αi − α∗i ), and b represent the output, the difference between the Lagrange
multipliers, and the bias, respectively. The kernel function for a linear SVR is denoted by
K(xi, xj), for which the following holds [45]:

K(xi, xj) = xi · xj (4)
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2.2.3. Bayesian Optimization

In this study, we employed Bayesian optimization as a strategic method for fine-tuning
the hyperparameters of the ML model [46,47]. Bayesian optimization is an effective method
for optimizing the hyperparameters of complex models such as ANN and SVR. It efficiently
searches the hyperparameter space by building a probabilistic model (surrogate model)
of the objective function using past evaluations, making the process more efficient than
a grid search or random search [48]. Studies have shown that Bayesian optimization
is particularly suitable for hyperparameter tuning—enabling the optimization of black-
box functions without requiring analytical expressions or gradients—making it ideal for
scenarios where evaluations are expensive and noisy [49,50].

The process of optimizing hyperparameters using Bayesian optimization involves
a series of meticulously planned steps, as illustrated in Figure 4. Initially, the hyperpa-
rameter space is defined by identifying the hyperparameters that require optimization,
and setting their possible ranges or values. These parameters can include the number of
layers, the number of neurons per layer, activation functions, learning rate, batch size, and
regularization strength.

Afterward, Bayesian optimization is initialized by selecting an initial set of hyper-
parameters. These can be chosen randomly or based on prior knowledge. The model’s
performance with these initial settings in place is then evaluated using metrics such as
mean squared error (MSE) or root mean squared error (RMSE). Subsequently, a surrogate
model—typically a Gaussian process—is constructed to approximate the objective function
and predict the performance of various hyperparameter settings.

The next step involves proposing a new set of hyperparameters using an acquisi-
tion function. This function strikes a balance between exploring new configurations and
exploiting known promising ones. The model is then trained using these proposed hyper-
parameters, and performance metrics are calculated to assess its effectiveness. The results
from these evaluations are integrated into the surrogate model, refining its accuracy and
predictive capability.

The next step in the optimization process consists of checking convergence criteria,
which may include reaching a maximum number of iterations, achieving convergence in
the objective function, or obtaining satisfactory performance improvement. If the stopping
criteria are not met, the process returns to proposing the next set of hyperparameters. Once
the stopping criteria are satisfied, the optimal set of hyperparameters is identified, and the
model is finalized with these optimal parameters for deployment or further testing.
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2.2.4. Autoregressive Integrated Moving Average with Exogenous Variables

ARIMA is a statistical model that is used to analyze time series data to forecast
future values based on past values [51]. This model decomposes data into three processes:
autoregressive (AR), which forecasts a variable based on its past values; integrated (I),
which serves to stabilize data or make them stationary; and moving average (MA), which
forecasts a variable considering errors at previous points [52]. The components of the
model consist of three parameters, represented by integers in the form (p, d, q); where
p indicates the Lag order or autoregressive of order p, d indicates the number of times
the data are differenced or integrated to make them stationary, and q indicates the Lag
order or MA of order q. Time series data can often be influenced by special events such as
legislative activities, policy changes, environmental regulations, and other similar events.
These are referred to as intervention events. By incorporating appropriate exogenous
variables that capture the effects of intervention events, an ARIMAX model can significantly
improve forecasting performance [23–25]. This approach is particularly useful in contexts
wherein external factors are known to influence the time series data. Meanwhile, the
mathematical expression for ARIMAX is depicted as Equation (5), which is derived from
merging the mathematical expressions of four components: AR, represented by Equation (6);
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I, represented by Equation (7); MA, illustrated by Equation (8); and Exogenous Variables
(X), illustrated by Equation (9) [24,51,53,54].

∆dYt =
p

∑
i=1

ϕi∆dYt−i +
q

∑
j=1

θjεt−j + βkXtk+εt, (5)

Yt = ϕ1Yt−1 + ϕ2Yt−2 + . . . + ϕpYt−p + εt, (6)

∆dYt = (1 − B)dYt, (7)

Yt = θ1εt−1 + θ2εt−2 + . . . + θqεt−q + εt, (8)

Yt = β1Xt1 + β2Xt2 + . . . + βkXtk (9)

Here, Yt is the value of the series at the tth time, ϕ denotes the coefficients of the AR part,
∆d denotes differencing d times, B is the backshift operator, θ is the coefficient of the MA part,
βk is the coefficients of the exogenous variables Xtk, and ε is the white noise error term.

The ARIMAX framework is shown in Figure 5. After loading and preprocessing the
data, the next step consists of checking for multicollinearity among exogenous variables
using VIF. If high multicollinearity is found, variables are removed or combined. The sta-
tionarity of the endogenous variable (Y) is then checked; if it is non-stationary, differencing
is applied. Once stationarity is achieved, ACF and PACF plots of the differenced series
are used to determine the AR (p) and MA (q) orders. The ARIMAX model is fitted with
these orders and the refined exogenous variables. The model is evaluated for residuals and
forecast accuracy. If the model is deemed satisfactory, it is used; otherwise, the specification
is reevaluated. This process ends once a satisfactory model is obtained.
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2.2.5. Scenario Analysis

Scenario analysis is a tool used to analyze and assess the impacts that may arise from
different events or situations in the future. In particular, this tool is used to assist in decision-
making and strategic planning in uncertain or risky conditions. It includes the best case
(optimistic scenario), which explores the impacts in a case wherein everything proceeds as
well as possible; the worst case (pessimistic scenario), which explores the impacts in a case
wherein the worst situation occurs; and the base-case scenario, which explores the impacts
in a case where conditions are normal or as expected. The likelihood and possible impacts
of these scenarios should be considered alongside strategic planning [55].

2.3. Evaluation Metrics and Statistical Tests

In this study, we utilized three significant statistical measures—RMSE, MAE, and
MAPE—to evaluate the efficacy of our model’s forecasting abilities. Each of these metrics
offers unique insights into our model’s accuracy and precision. Lower values across these
measures indicate better model performance.

RMSE is metric that not only measures the difference between the predicted values and
the actual values in a dataset but also evaluates the average magnitude of the prediction
errors made by the model. It can be expressed as shown in Equation (7). MAE is a commonly
used metric in regard to ML statistics for evaluating the performance of predictive models.
MAE measures the average magnitude of errors between the predicted and actual values, as
shown in Equation (8). MAPE is a metric that assesses the accuracy of a model’s predictions
by measuring the average percentage difference between the predicted and actual values
in a dataset, as shown in Equation (9).

RMSE =

√√√√√ n
∑

i=1
(yi − ŷi)

2

n
(10)

MAPE =

(
1
n

n

∑
i=1

|yi − ŷi|
|yi|

)
× 100 (11)

MAE =

(
1
n

)
×

n

∑
i=1

|yi − ŷi| (12)

In Equations (10)–(12), n is the total number of observations or data points, yi repre-
sents the actual value of the ith observation, and ŷi represents the predicted value of the ith

observation. In addition, in previous studies [8,56–58], the evaluation of the MAPE metric
has been categorized into four levels, as shown in Table 4.

Table 4. Guidelines for interpreting the ability of MAPE to forecast accuracy.

MAPE Range Forecasting Accuracy

≤10% High prediction accuracy

>10% and ≤20% Good prediction accuracy

>20% and ≤50% Reasonable prediction accuracy

>50% Inaccurate prediction accuracy

In addition to these metrics, the Harvey, Leybourne, and Newbold (HLN) test was
employed to statistically compare the predictive accuracy of the models [59]. The HLN
test, an extension of the Diebold-Mariano (DM) test, is particularly useful for small sample
sizes, providing a more robust test statistic [60,61]. The null hypothesis (H0) of the HLN
test posits that there is no difference in the predictive accuracy between two models
(E(di) = 0), where di represents the difference in forecast errors between the models.
The alternative hypothesis (H1) suggests that there is a significant difference in predictive
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accuracy (E(di) ̸= 0). Several studies have successfully applied the HLN test to evaluate
forecasting models. For instance, Mizen and Tsoukas [61], Jiao et al. [62], and Song et al. [63]
have applied the HLN test to evaluate forecasting models, highlighting the HLN test’s
applicability and effectiveness in various forecasting contexts.

3. Results
3.1. Data Descriptive

The dataset for forecasting CO2 emissions in Thailand covers the period from 1993 to
2022. In particular, the current study used data from 1993 to 2013 to train the models, while
data from 2014 to 2022 were used to test the models’ performance. The ANN and SVM
models used population, GDP, VK Passenger, VK Freight, and VK Motorcycle as input
variables, while the ARIMAX model used the previous values of CO2 emissions as input
variables. Figure 6a presents a significant rise in CO2 emissions from the transportation
sector, which peaked around 2022. The data indicate increased vehicular activity and
possibly lax emission standards, although there seems to have been a decreasing trend in
recent years. Thailand’s demographic dynamics, shown in Figure 6b, illustrate a continuous
upward trend, also indicating a stable economic and social environment. Despite such data,
the decelerating growth rate in recent years signifies a structural shift toward an aging
society. GDP, as depicted in Figure 6c, highlights Thailand’s economic ascendancy, particu-
larly after 2000; with a discernible decrease during the global financial crisis of 2008–2009.
Comparable trends can be seen in Figure 6d–f, which illustrate vehicle-kilometers for
passenger vehicles, freight, and motorcycles. Furthermore, a notable surge was observed
post-2010, which may have been due to economic expansion or increased urbanization.
However, the evident decline post-2019 is attributable to travel restrictions stemming from
pandemic prevention measures relating to COVID-19.
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During the data preprocessing phase, a thorough search for missing data was con-
ducted across all variables, and it was determined that no missing data points were present.
Subsequently, outlier detection was performed utilizing the Z-score method. For each
variable, Z-scores were calculated; any data points exceeding the threshold of ±3 were
considered potential outliers. The analysis revealed that no outliers were detected within
the dataset. These results indicate that the dataset is complete and devoid of extreme values,
thereby making it suitable for subsequent analysis.

3.2. ANN Results

The selection of hyperparameters for the ANN model was driven by an optimization
process using Bayesian optimization, which is designed to minimize the Mean Squared
Error (MSE). The optimal model configuration included a single hidden layer with seven
neurons. This size was chosen to balance complexity and generalizability, avoiding both
underfitting and overfitting. The ReLU activation function was used for its efficiency and
ability to introduce non-linearity, enhancing the model’s ability to learn complex patterns.
A regularization coefficient of 826.227 was determined to be optimal, providing a penalty
that helps prevent overfitting.

In this study, the structure of the ANN model underwent Bayesian optimization,
using predefined hyperparameter search ranges, as outlined in Table 5. The optimization
process yielded a minimum MSE value of 12.320 × 107, accompanied by an RMSE of 3715.4.
The optimized ANN architecture comprised a single, fully connected layer with a hidden
layer size of seven neurons; employing the ReLU activation function and a regularization
coefficient of 826.227. This configuration resulted in an enhanced predictive performance
on the test set, with performance metrics such as MAPE, RMSE, and MAE yielding values
of 6.395, 5054.005, and 4259.170, respectively.

Table 5. Parameter ranges for ANN optimization.

Hyperparameter Search Range

Number of fully connected layers 1–3

First layer size 1–300

Second layer size 1–300

Third layer size 1–300

Activation function ReLu, Tanh, Sigmoid, None

Regularization strength 4.7619 × 10−7–4761.9048
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When performing hyperparameter tuning using Bayesian optimization, the algorithm
selected the set of hyperparameter values that minimized the upper confidence interval of
the MSE objective model, rather than the set that minimized the MSE. The optimization
process depicted in Figure 7 highlighted the convergence toward the minimum observed
and predicted MSE values across 30 iterations, with the 20th iteration representing the
minimum-error hyperparameter; while the 16th iteration represents the best-point hyper-
parameter.
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3.3. SVR Results

The hyperparameters for the SVR model were meticulously chosen to optimize model
performance while balancing complexity and error tolerance. Specifically, a linear kernel,
a box constraint (C) of 0.001, and an epsilon value of 1859.835 were chosen. A linear
kernel simplifies a model and reduces computational complexity, making it ideal for
assessing linear relationships between input features and the target variable. The small box
constraint value of 0.001 imposes strong regularization, preventing overfitting by allowing
some errors in the training data; thus maintaining a balance between bias and variance.
The large epsilon value of 1859.835 enhances the model’s robustness with respect to outliers
and noise by ignoring minor deviations from true values.

Bayesian optimization played a crucial role in this hyperparameter selection pro-
cess, providing guidance through predefined search ranges to achieve optimal values,
as detailed in Table 6. This iterative refinement process effectively balanced the model’s
complexity and the error of the training data while maintaining tolerance margins around
the predicted values. Notably, Figure 8 depicts the 22nd iteration, corresponding to both
the minimum-error hyperparameter and the best-point hyperparameter, representing the
optimal configuration with the lowest observed error.

Table 6. Parameter ranges for SVR optimization.

Hyperparameter Search Range

Box constraint (C) 0.001–1000

epsilon 7.3489–734,887.3239

Kernel function Gaussian, linear, quadratic, cubic

A rigorous evaluation via three-fold cross-validation resulted in a minimum MSE value
of 8.216 × 106 and an impressive RMSE of 2866.3. Further assessment on an independent
dataset revealed compelling performance metrics, including MAPE, RMSE, and MAE
values of 7.628%, 6193.925, and 4865.085, respectively.
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3.4. ARIMAX Results

All the exogenous variables in the training set have VIF values over 10, indicating a
high degree of multicollinearity. To address this issue, stepwise regression was employed
for variable selection and to reduce multicollinearity. The VK—Freight variable was selected
as the exogenous variable. Then, the Augmented Dickey–Fuller (ADF) test for stationarity
was conducted on the data, as presented in Table 7, showing that the data were found to be
stationary at the first difference.

Table 7. Augmented Dickey–Fuller test.

ADF Test No Difference First Difference

Null rejected False True

p-Value 0.9220 0.0031

Test statistic 1.0927 −3.2928

Critical value −1.9524 −1.9531

Significance level 0.05 0.05
Null hypothesis: The time series contains a unit root, which means that the data are nonstationary.

During the identification stage, a researcher visually examines the autocorrelation
function (ACF) and partial autocorrelation function (PACF) plots of the differenced series in
Figure 9. The PACF plot shows a significant spike at lag 1, which drops sharply afterward,
indicating an autoregressive (AR) component at lag 1. The ACF plot also displays significant
spikes at lag 1 that confirm the presence of an autoregressive component. Based on
these observations, the suggested model was ARIMAX (1, 1, 1)—incorporating an AR (1)
component and an MA (1) component—with a differencing of order 1 since the data
are stationary at the first difference. The model also includes the exogenous variable “VK
Freight”, which was selected after addressing multicollinearity through stepwise regression.
Furthermore, in Figure 10, the autocorrelation function (ACF) plot demonstrates that
most autocorrelations lie within the confidence bounds. This suggests that the residuals
are essentially random and do not exhibit significant autocorrelation. It also implies
that the model has effectively captured the time series data’s autocorrelation structure.
Concurrently, the Quantile–Quantile (Q–Q) plot’s alignment with a straight line indicates
that the residuals are normally distributed, thus affirming the assumption of normality,
which is crucial for the validity of statistical inferences. Together, these diagnostic checks
suggest that the model is reliable. Furthermore, the performance of the ARIMAX model
was evaluated using several statistical measures; resulting in MAPE, RMSE, and MAE
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values of 9.286, 7916.483, and 6775.431, respectively. These figures serve as a testament to
the model’s predictive accuracy and effectiveness when applied to our specific dataset.
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3.5. HLN Test Results

The HLN test results in Table 8 provide evidence to reject the null hypothesis (H0) of
no difference in predictive accuracy between the compared models in all cases. For the
comparison between ANN and SVR, the null hypothesis is rejected at the 5% significance
level (HLN Statistic = 4.182 **), indicating a significant difference in predictive accuracy.
Similarly, for the comparison between ANN and ARIMAX, the null hypothesis is rejected at
the 1% significance level (HLN Statistic = 12.221 ***); this further demonstrates a significant
difference. Additionally, the comparison between SVR and ARIMAX also leads to the
rejection of the null hypothesis at the 5% significance level (HLN Statistic = 3.692 **). These
results collectively indicate that the predictive accuracies of ANN, SVR, and ARIMAX
models are significantly different from each other.

Table 8. HLN Test Results Comparing Predictive Accuracy of ANN, SVM, and ARIMAX Models.

Model ANN SVR ARIMAX

ANN — 4.182 ** 12.221 ***

SVR 4.182 ** — 3.692 **

ARIMAX 12.221 *** 3.692 ** —
**, and *** denote significance at the 5%, and 1% levels, respectively.
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4. Discussion
4.1. Model Performance

The performance of the ARIMAX model, although not subpar, may have been signif-
icantly influenced by its limitations—such as assuming stationarity and being sensitive
to multicollinearity among predictors—and might not capture all the complexities of the
analyzed data, such as external factors or sudden changes due to variants or policy changes.
Given that this model’s forecasting was solely reliant on historical CO2 emission and VK—
freight data, with the test set corresponding to the year 2019, the ensuing global COVID-19
pandemic may have influenced the outcome. In particular, Thailand’s governmental lock-
down measures led to a dramatic reduction in road traffic. This was primarily due to a shift
in commuting behaviors for work, school, and other routine activities, as a growing number
of individuals transitioned to remote work or online study. Furthermore, the transport and
logistics sectors experienced considerable disruptions due to border closures and labor
shortages. Collectively, these unforeseen circumstances constitute a significant event that
has had a profound impact on CO2 emissions within the transport sector.

Conversely, the ANN and SVR models exhibited superior and comparable results; as
presented in Table 9 and Figure 11, respectively. The inherent adaptability of these models,
as evidenced by their ability to consider a multitude of input variables, allowed them to
better account for the widespread effects of the global COVID-19 pandemic. The ANN
model, with its strength in capturing nonlinear relationships and its ability to learn from
and generalize based on the input data, could model complex patterns and anomalies
introduced by the pandemic. However, ANN models can sometimes act as black boxes,
making it quite challenging to interpret the relationships between, and importance of,
different input variables, and they may require larger datasets and more computational
resources for training.

Table 9. Results regarding the performance evaluation metric.

Model
Evaluation Metric

MAPE (%) RSME (103 Tons) MAE (103 Tons)

ANN 6.395 5054.005 4259.170

SVR 7.628 6193.925 4865.085

ARIMAX 9.286% 7916.483 6775.431
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In comparison, SVR—with its foundation in statistical learning theory—provides
a robust and accurate predictive model, especially in scenarios with smaller datasets
and high-dimensional space. SVR models are also capable of managing non-linearities
by employing different kernel functions. However, the selection of appropriate kernel
functions and the tuning of parameters such as the box constraint and kernel coefficients
can be computationally intensive and may require domain expertise to avoid overfitting or
underfitting issues.
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Therefore, the resilience demonstrated by the ANN and SVR models under these
challenging conditions underscores their potential suitability for accurately predicting CO2
emissions in the face of future unforeseeable events; albeit with considerations for their
respective strengths and limitations in terms of model interpretability, parameter tuning,
and computational requirements.

The HLN test results confirm significant differences in predictive accuracy among the
compared models. Specifically, the null hypothesis of no difference in predictive accuracy is
rejected for the comparisons between ANN and SVR (HLN Statistic = 4.182, **), ANN and
ARIMAX (HLN Statistic = 12.221, ***); and SVR and ARIMAX (HLN Statistic = 3.692, **).
This indicates that the predictive accuracies of ANN, SVR, and ARIMAX models are signifi-
cantly different from each other. In terms of model evaluation, each algorithm demonstrated
high accuracy in forecasting, as indicated by the metric MAPE in Tables 4 and 9. For an
overview, refer to Figure 11, which presents a radar graph that displays the results for
each statistical metric. In this graph, the statistical metrics are scaled from 0 to 10, with
RMSE and MAE specifically measured in units of million tons. The ANN model showed
the lowest errors across all the metrics; with an MAE of 4.259, an RMSE of 5.054, and an
MAPE of 6.395. This indicates superior performance in capturing the complex impacts of
COVID-19 on CO2 emissions. The SVR model, while slightly less accurate—with an MAE
of 4.865, an RMSE of 6.194, and an MAPE of 7.628—still performed significantly better
than the ARIMAX model. The ARIMAX model had the highest errors—with an MAE of
6.775, an RMSE of 7.916, and an MAPE of 9.286—reflecting its limitations in adapting to
the sudden changes induced by the pandemic. The forecasting performance on the test set
for each model is illustrated in Figure 12.
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4.2. Forecasting and Scenarios

Thailand’s “30@30” policy aspires to ensure that electric vehicles (EVs) constitute
at least 30% of the nation’s total vehicle production by 2030. This policy prioritizes the
promotion of EV usage across various transportation modes, including passenger vehicles,
freight transport, and motorcycles. This initiative aims to transition energy consumption in
the transportation sector to green energy sources, thereby enhancing energy efficiency and
reducing greenhouse gas (GHG) emissions. Researchers have hypothesized that, pursuant
to this policy, 30% of vehicle-kilometers will correspond to electric vehicles by 2030. The
scenario analysis conducted based on this policy compares the expected impact of the
“30@30” policy against a benchmark scenario without the policy influence. The aim is to
evaluate the potential reduction in CO2 emissions if the policy is implemented successfully.
To evaluate the potential impact of the “30@30” policy, a comparison of two scenarios was
conducted, specifically for the year 2030.
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1. The Benchmark Scenario: This scenario assumes the continuation of current vehicle
usage patterns and reliance on traditional energy sources.

2. The Policy Scenario: This scenario incorporates the effects of the “30@30” policy,
hypothesizing that 30% of vehicle-kilometers will shift to electric vehicles by 2030.
The independent variables VK—passenger, VK—freight, and VK—motorcycle are
adjusted to reflect this shift, while GDP and population remain the same as they are
in the benchmark scenario.

In prior research, datasets spanning 24 years were employed to predict outcomes over
a 15-year span [17]; 15-years-ahead forecasts, as in this study, aligned with the LT-LEDS and
Thailand’s National Strategy for the years 2023 to 2037 [5]. A 15-year forecast (from 2023
to 2037) was made to assess the long-term trends in CO2 emissions under the benchmark
scenario.

An ANN model was employed to forecast CO2 emissions, using independent vari-
ables predicted from available data via the ARIMA model. The dataset was partitioned,
with 70% designated to be used for model training, while the remaining 30% was utilized
for performance evaluation using MAPE. The utilized models are shown in Table 10. For
the population variable the model was specified as the ARIMA (0,2,1); this achieved a
MAPE of 0.376%, indicating very precise predictions. The models for GDP, VK—Passenger,
VK—Freight, and VK—Motorcycle were specified as ARIMA (0,1,0), indicating that these
series follow a random walk [64,65]. A random walk is a stochastic process formed by
the cumulative summation of independent, identically distributed random variables [66].
In these models, future values of the series cannot be predicted from past values, except
through differencing; with each value resulting from the previous value plus a random
shock. These series do not exhibit significant lagged relationships or moving average
processes beyond what is captured through differencing, emphasizing their random walk
characteristics. The results in Table 10 demonstrate acceptable MAPE values for all mod-
els, as previously mentioned. These results indicate the suitability of these models for
forecasting independent variables in future CO2 predictions.

Table 10. Assessment of the accuracy of the ARIMA models in forecasting independent variables.

Variable ARIMA Model (p,d,q) MAPE (%)

Population (0,2,1) 0.376

GDP (0,1,0) 3.165

VK—passenger (0,1,0) 6.024

VK—freight (0,1,0) 5.692

VK—motorcycle (0,1,0) 3.210

Table 11 illustrates an increasing trend in CO2 emissions, reflecting the continuation
of current vehicle usage patterns and reliance on traditional energy sources. The results
of the 15-year forecast indicate that, without intervention, CO2 emissions will continue
to rise, reaching 82,880.635 kTons by 2037. By 2030, the Benchmark Scenario predicts
that emissions will reach 78,514.470 kTons. In contrast, the Policy Scenario, influenced by
the “30@30” policy, forecasts a reduction in emissions to 63,517.583 kTons. The scenario
analysis comparing these two scenarios reveals a substantial decrease in CO2 emissions
from fuel combustion in the transportation sector. This reduction underscores this policy’s
effectiveness in mitigating emissions through enhancing energy efficiency and the increased
utilization of renewable energy sources. Importantly, the anticipated transition to electric
vehicles substantially contributes to the reduction in emissions from fuel combustion,
highlighting this policy’s potential in fostering environmental sustainability.
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Table 11. Future forecast of transportation-based CO2 emissions in Thailand.

Year Prediction (103 Tons)

2027 76,339.847

2032 79,864.493

2037 82,880.635

5. Conclusions

This study, in which we utilized ML data from 1993 to 2022 and employed models
such as SVR and an ANN, demonstrated superior forecasting performance when com-
pared to the traditional ARIMAX model. These ML models incorporate additional inputs,
thereby exhibiting a reduced impact from the COVID-19 pandemic compared with that
for ARIMAX, which relied on historical CO2 emission and VK—freight data. Neverthe-
less, all three models displayed high predictive accuracy, as evidenced by the MAPE
being less than or equal to 10% [8,56,57]. Upon consideration of performance metrics
such as RMSE, MAE, and MAPE, the ANN model emerged as the most fitting choice
for forecasting CO2 emissions in Thailand. However, while this study primarily delved
into Thailand’s transportation-related carbon emissions, its methodologies and findings
can be adapted for application to other countries facing similar challenges pertaining to
transportation-related CO2 emissions. By examining factors such as population growth,
GDP, and vehicle-kilometers traveled, this study sheds light on the underlying dynam-
ics shaping emissions trends. Other countries can replicate this approach by conducting
similar analyses that are tailored to their specific contexts. Furthermore, while the specific
results may vary depending on factors such as data availability and quality, the overarching
methodology can be adapted and applied by other countries seeking to improve their
own emission forecasting capabilities. The scenario analysis demonstrated that Thailand’s
“30@30” policy has the potential to make a significant impact on reduction of CO2 emis-
sions from fuel combustion in the transportation sector by encouraging the widespread
adoption of electric vehicles and improving energy efficiency. By comparing the Policy
Scenario with the Benchmark Scenario, the analysis predicted a substantial decrease in
CO2 emissions, underscoring this policy’s effectiveness. This policy not only promotes
environmental sustainability by reducing greenhouse gas emissions but also stimulates
economic growth and technological advancements, underscoring the crucial role of policy
measures in advancing both environmental and economic sustainability.

6. Limitations and Future Research

Our study is not without its limitations. In particular, the relatively small dataset,
combined with the significant impact of the COVID-19 pandemic, introduced a degree
of uncertainty into our results. Thus, future research should focus on the potential im-
pact of electric vehicles on CO2 emissions, thereby contributing to a more comprehensive
understanding of the role of sustainable technologies in reducing Thailand’s overall car-
bon footprint.

Author Contributions: Conceptualization, T.J. and S.J.; formal analysis, T.J.; funding acquisition,
S.J.; methodology, T.J. and S.J.; project administration, S.J.; software, T.J.; supervision, V.R. and S.J.;
validation, V.R. and S.J.; visualization, T.J.; writing—original draft, T.J.; writing—review and editing,
V.R. and S.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Suranaree University of Technology (grant number:
IRD7-704-65-12-23).

Data Availability Statement: All data used in this study are publicly available and mentioned in the
paper.

Acknowledgments: We are grateful to all the sources that supplied the data used in this study.



Forecasting 2024, 6 482

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. EPA. Overview of Greenhouse Gases. Available online: https://www.epa.gov/ghgemissions/overview-greenhouse-gases

(accessed on 21 December 2023).
2. NOAA. Increase in Atmospheric Methane Set Another Record during 2021. Available online: https://www.noaa.gov/news-

release/increase-in-atmospheric-methane-set-another-record-during-2021 (accessed on 21 December 2023).
3. Bolan, S.; Padhye, L.P.; Jasemizad, T.; Govarthanan, M.; Karmegam, N.; Wijesekara, H.; Amarasiri, D.; Hou, D.; Zhou, P.; Biswal,

B.K.; et al. Impacts of climate change on the fate of contaminants through extreme weather events. Sci. Total Environ. 2024, 909,
168388. [CrossRef] [PubMed]

4. IPCC. Global Warming of 1.5 ◦C: Summary for Policymakers. Available online: https://www.ipcc.ch/sr15/chapter/spm/
(accessed on 21 December 2023).

5. ONEP. Thailand’s Nationally Determined Contribution Roadmap on Mitigation 2021–2030; Office of Natural Resources and Environ-
mental Policy and Planning: Bangkok, Thailand, 2020.

6. ONEP. Thailand’s Fourth Biennial Update Report (BUR4); Office of Natural Resources and Environmental Policy and Planning:
Bangkok, Thailand, 2022.

7. Rogelj, J.; Den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris
Agreement climate proposals need a boost to keep warming well below 2 C. Nature 2016, 534, 631–639. [CrossRef] [PubMed]
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