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Abstract: Deep neural networks (DNNs) are prominent in predictive analytics for accurately forecast-
ing target variables. However, inherent uncertainties necessitate constructing prediction intervals for
reliability. The existing literature often lacks practical methodologies for creating predictive intervals,
especially for time series with trends and seasonal patterns. This paper explicitly details a practical
approach integrating dual-output Monte Carlo Dropout (MCDO) with DNN5s to approximate pre-
dictive means and variances within a Bayesian framework, enabling forecast interval construction.
The dual-output architecture employs a custom loss function, combining mean squared error with
Softplus-derived predictive variance, ensuring non-negative variance values. Hyperparameter opti-
mization is performed through a grid search exploring activation functions, dropout rates, epochs,
and batch sizes. Empirical distributions of predictive means and variances from the MCDO demon-
strate the results of the dual-output MCDO DNNSs. The proposed method achieves a significant
improvement in forecast accuracy, with an RMSE reduction of about 10% compared to the seasonal
autoregressive integrated moving average model. Additionally, the method provides more reliable
forecast intervals, as evidenced by a higher coverage proportion and narrower interval widths. A
case study on Thailand’s durian export data showcases the method’s utility and applicability to other
datasets with trends and/or seasonal components.

Keywords: dual-output neural network; Monte Carlo Dropout; forecast interval; time-series forecasting;
regularization

1. Introduction

In the field of predictive analytics, there is a growing need for models that can accu-
rately forecast outcomes while also providing measures of the associated uncertainties. This
requirement is particularly critical in time-series forecasting, where decisions often need to
be made under uncertain circumstances. Accurate time-series forecasts are essential across
various domains, including finance, healthcare, and supply chain management, as they
facilitate strategic planning and enhance decision-making processes. However, traditional
forecasting methods such as the autoregressive integrated moving average (ARIMA) and
seasonal autoregressive integrated moving average (SARIMA), while effective in handling
linear patterns and seasonal effects, often fall short in capturing the complex non-linear
relationships present in real-world data. Moreover, these methods typically do not provide
inherent measures of uncertainty, which are crucial for risk management and informed
decision-making.

To address these limitations, dropout techniques have been introduced in neural net-
works as a practical method to approximate Bayesian inference. Gal and Ghahramani [1]
proposed using dropouts in neural networks to measure model uncertainty, offering a
theoretical framework for this approach. Building on this, Kendall and Gal [2] expanded
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the use of Monte Carlo Dropout (MCDO) to differentiate between aleatoric and epistemic
uncertainties in deep learning models. Srivastava et al. [3] demonstrated the effectiveness
of dropout as a regularization technique in improving neural network performance across
tasks such as vision, speech recognition, and document classification. Zhang et al. [4]
utilized Bayesian networks for predicting short-term traffic flow, highlighting the impor-
tance of uncertainty estimation in practical applications. Pearce et al. [5] merged Bayesian
neural networks (BNNs) with deep ensemble methods, showcasing enhanced uncertainty
estimation for predictions, particularly in time-series forecasting. Fortunato et al. [6] further
demonstrated that a minor modification of the truncated backpropagation through time can
significantly enhance regularization and uncertainty estimates with minimal computational
cost and an 80% reduction in the number of parameters.

Blundell et al. [7] introduced a variational inference approach to quantify uncertainty
in neural network weights, indirectly supporting the methodology behind using dropout
for uncertainty estimation in time-series forecasting. This approach aligns with the dual-
output MCDO methodology proposed in our study, where we aim to improve interval
forecasting for time-series data.

Recent studies have further explored and improved uncertainty estimation in neural
networks. Srisuradetchai et al. [8] introduced the artificial neural network with best subset
selection (ANNBS) to improve prediction accuracy by selecting an optimum subset of
variables using a Monte Carlo algorithm, significantly enhancing predictive performance
by reducing root mean square errors (RMSEs) for both the training and test data. Fan
et al. [9] presented a deep learning framework with temporal mechanisms to capture
latent patterns important for precise future predictions, generating forecasts for various
timeframes and quantiles simultaneously. Lemay et al. [10] evaluated the consistency of
artificial intelligence models in clinical processes, highlighting how MCDO predictions
improve model repeatability and classification accuracy. Alahmari et al. [11] examined the
reliability of deep learning models for segmentation and classification tasks using U-Net
and LeNet-5 frameworks, emphasizing the robustness of MCDO in these applications.

Hinton et al. [12] suggested a dropout technique to reduce overfitting in large feed-
forward neural networks trained on small datasets, improving generalization by preventing
feature detectors from co-adapting. Camarasa et al. [13] demonstrated the effectiveness
of MCDO for quantifying uncertainty in multi-class segmentation tasks, enhancing the
reliability of uncertainty maps in predicting misclassifications. Leibig et al. [14] showed
that dropout-based Bayesian uncertainty measures effectively capture decision-making
uncertainty in disease detection with deep neural networks, surpassing traditional methods.

Garcia Gonzalez et al. [15] examined the role of time-series data augmentation and
dropout in enhancing deep learning models for fall detection, while Maleki Sadr et al. [16]
developed an anomaly detection method for satellite telemetry using an MCDO-based
approximation of BNNs. Atencia et al. [17] combined echo state networks (ESNs) with
MCDO to quantify uncertainty in time-series prediction without increasing computational
expenses. Sheng et al. [18] created a bootstrapping reservoir computing network ensemble
(BRCNE) to generate accurate prediction intervals in noisy non-linear time-series forecast-
ing. Khosravi et al. [19] proposed creating prediction intervals for travel time forecasts using
delta and Bayesian methods, evaluating the accuracy and reliability of these predictions.

Despite advances, practical methods for constructing prediction intervals for time-
series data with trends and seasonal patterns are still lacking. Point predictions often
overlook uncertainty, necessitating new models that incorporate comprehensive uncertainty
estimation. This study introduces a prediction interval generation method combining
dual-output MCDO with deep neural networks (DNNs). Using a Bayesian framework,
it efficiently estimates predictive means and variances. This approach is validated with
Thailand’s durian export data, which has significant seasonal variations and trends.

The proposed methodology addresses a critical gap in forecasting techniques as
follows:
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e  Comprehensive uncertainty estimation: provides both aleatoric and epistemic uncer-
tainties, offering a complete uncertainty profile;

e Improved forecast accuracy: achieves a lower RMSE compared to traditional models
like SARIMA,;

e  Practical application: demonstrated effectiveness on real-world data with significant
seasonal variations and trends;

e  Enhanced model regularization: utilizes dropout techniques to prevent overfitting,
ensuring robust performance;

e  Flexible architecture: capable of handling complex, non-linear relationships in time-
series data.

This paper is structured as follows: Section 2 reviews relevant theories, Section 3
describes the dataset, Section 4 details the methodology, Section 5 presents results, and
Section 6 concludes with implications and future research directions.

2. Related Theories
2.1. Aleatoric and Epistemic Uncertainties
2.1.1. Aleatoric Uncertainty

Aleatoric uncertainty is captured directly through the predictive variance in a dual-
output configuration. It is also known as data uncertainty and cannot be reduced even
if more data are collected. In the context of neural networks, aleatoric uncertainty is
captured directly by the network through the predictive variance output by one of the
network heads.

Let y; be the actual target value, §J; be the predicted mean output by the first head
of the network, and 0?2 be the predicted variance output by the second head of the net-
work, representing the aleatoric uncertainty. The network is trained to minimize a loss
function that incorporates both the prediction error and the uncertainty estimation. The
mean squared error (MSE) modified to include the aleatoric uncertainty can be expressed
as follows: N )

Lotar = 11]121 ((]/120';2%) + %log ‘712>/ 1)

where the first term (y; — yAi)z/ (207) weights the squared prediction error by the inverse of
the predicted variance, emphasizing predictions with lower uncertainty; the second term
log 07 /2 acts as a regularizer to prevent the network from predicting infinite variance for
reducing the prediction error term [20].

2.1.2. Epistemic Uncertainty

This type of uncertainty arises from the model itself due to limited data or knowledge
about the model parameters. It is also known as model uncertainty and can be reduced
by gathering more data. Epistemic uncertainty is estimated through the variance in pre-
dictions across multiple stochastic forward passes with dropout enabled, simulating a
Bayesian posterior distribution. Let T be the number of stochastic forward passes, 7; ; be
the prediction for the i-th instance in the ¢-th forward pass. The epistemic uncertainty can
be quantified as the variance of the following predictions:

14,
uEpistemic = TZ(yi,t - yi)zl @)
t=1

T
wherey; = }_ §;;/T is the mean prediction across all stochastic forward passes for the i-th
t=1
instance. Combining both uncertainties, the total predictive uncertainty can be seen as the

sum of aleatoric and epistemic uncertainties [21].
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2.2. Deep Neural Networks

A deep neural network (DNN) is a type of machine learning model that belongs
to a broader category of structures designed to represent sophisticated functions. These
models are composed of multiple layers of units, or neurons, where each layer performs
a transformation of its inputs, typically followed by a non-linear activation function. In
mathematical terms, a DNN can be defined as a composition of functions, each representing
a layer in the network.

For a DNN with L layers, the function f representing the network is composed of L
functions f, f2, ..., f1, each corresponding to a layer. The output of each layer function is
the input to the next layer. This can be expressed as follows:

f60) = fL(fr-1(... f2(f1(x01);02)...;011);0L), 3)

where x is the input vector, ® denotes the set of all parameters in the network, and 6;
represents the parameters for the /-th layer. Each layer function f; is typically a linear
transformation followed by a non-linear activation:

fi(x81) = g1(Wix+by), (4)

where W) is a weight matrix, b; is a bias vector, and g; is the activation function for the I-th
layer [22,23].

2.3. Activation Functions

A common choice for the activation function includes non-linear functions like the
Rectified Linear Unit (ReLU), Sigmoid, or hyperbolic tangent (Tanh). The choice of acti-
vation function and the architecture of the network determine the function class that the
DNN can approximate.

Figure 1 illustrates Sigmoid, Tanh, and ReLU. Each function maps the input signal
to an output signal and serves as a gate, determining whether and how signals should
progress through the network. Details on each activation function are as follows [24]:

e  The Sigmoid function is defined as o(x) = 1/(1 + exp(—x)), and it outputs values
between 0 and 1. It is a smooth, S-shaped curve that has been widely used historically,
especially for binary classification problems;

e  The Tanh function or hyperbolic tangent function, tanh(x), rescales the sigmoid to
output values between —1 and 1. It is zero-centered, making it preferred in certain
scenarios as it can help with improving the convergence during the training phase;

e  The ReLU function, defined as ReLu(x) = max(0,x), activates a neuron only if the input
is above zero, providing a piecewise linear output that is computationally efficient
and enables the model to leverage sparsity for better performance and faster training.

41 — sigmoid /"
3] == Tanh ’/'
—-+ RelU y;
%
- 2. *
a 7
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’
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Figure 1. Activation functions.
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In the dual-output architecture of the neural network, the Softplus activation function
is employed for the variance output layer. This choice is strategic; Softplus, defined
mathematically as f(x) = log(1 + exp(x)), is smooth and differentiable, making it well-suited
for predicting positive continuous variables, such as variance, which must be non-negative.
Its application ensures that the network predicts a variance that is not only always positive
but also has a gradient that allows for effective backpropagation and learning of uncertainty
in the data [25].

2.4. Regularization

One widely recognized technique for regularization is known as dropout, a process
where connections within the network are probabilistically excluded in each iteration of
training [3]. This method is visually represented in Figure 2, where a standard neural
network, (a) before and (b) after the application of dropout, is depicted.

SePes @
N

(b) Dropout neural network.

Figure 2. Neural network (a) before and (b) after applying dropout. Arrows represent connections;

missing arrows in (b) indicate dropout.

In this process, if wj is the weight of the connection from node i in layer / to node
jinlayer I + 1, during training, wj; is adjusted to wye;;, with ¢ being a binary indicator
determined by a Bernoulli distribution with probability 1 — p. Here, p represents the
probability of a connection being retained, and accordingly, 1 — p is the probability of it
being “dropped”. Should ¢;; be zero, the outgoing weights from node i are effectively set to
zero, simulating the node’s temporary removal from the network.

During the training phase, gradients corresponding to the “dropped” weights are
not updated, as if those neurons are non-existent. As a result of resampling &ij in each
iteration, the network experiences various configurations of thinned networks, enhancing
generalization and robustness.

2.5. Dropout as Bayesian Approximation

In Bayesian probability theory, a probabilistic model defines a distribution over possi-
ble values of the model parameters, given the data. MCDO serves as a variational Bayesian
approximation where dropout is employed to approximate the posterior distribution of a
BNN efficiently [26].
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Given a neural network with parameters 6, the goal is to compute the posterior p(6 | D)
where D represents the data. In MCDO, we use dropout to approximate this posterior
as follows:

1. A variational distribution g(f) is defined, parameterized by ¢. In the MCDO context,
this equates to integrating dropout within the network;

2. During each forward pass, weights 6; are sampled from q(6) by applying dropout,
which effectively samples a thinned network;

3. The output is computed using these sampled weights, which can be denoted as
Yt = f(x;0¢), where f is the neural network with dropout applied and x is the input.

2.6. Loss Function Incorporating MCDO

The training objective is to minimize the Kullback-Leibler (KL) divergence between the
variational distribution g(f) and the true posterior p(0 | D), which can be transformed into
the following optimization problem known as the Evidence Lower Bound (ELBO) [27,28]:

Lergo(¢; D) = Eg 9 [log p(D16)] — KL[g4(0)|p(6) ]. ()

For MCDO, the ELBO simplifies because the KL divergence term can be omitted under
certain conditions, and the expectation is approximated by averaging over T stochastic
forward passes [1,29]:

T
Lucpo(¢3D) ~ 7). log p(D]6y). ©
t=1

2.7. Predictive Distribution for Interval Forecasting

For interval forecasting, we are interested in the predictive distribution P(y* | x*,D)
for a new input x*. Using MCDO, we can approximate this predictive distribution by
averaging over the stochastic forward passes:

T

Y P If(x";6r)). )

t=1

P(y*|x", D) ~

Sl =

The variance of this predictive distribution across the T passes gives us the epistemic
uncertainty, which, when combined with the aleatoric uncertainty directly estimated by the
network’s output, provides a full predictive distribution for interval forecasting [30-32].

3. Dataset of a Case Study

The dataset underpins Thailand’s booming durian industry, which is supported by a
favorable agricultural climate and strategic governmental policies, particularly highlighting
the significant market demand from China [33,34]. With record sales in 2021 and substantial
year-on-year growth in 2023, the data, sourced from the Office of Agricultural Economics
of Thailand [35], encapsulate monthly export values from January 2015 to November 2023.

The industry’s exponential growth is driven by favorable agricultural conditions and
robust demand, especially from China [36,37]. The dataset, devoid of missing entries,
encompasses monthly export values in Thai Baht (THB), showcasing a record-setting
performance in May 2021. An analysis of 107 months of data reveals significant seasonal
variability, with peak fluctuations in April and May. This variability underscores the
forecasting challenges posed by the dynamic durian export market

4. Proposed Methodology

The proposed methodology integrates several stages, illustrated in Figure 3. The
process begins with data extraction, followed by feature engineering to generate relevant
features, including time index creation, quadratic trend estimation, and lag features. Sub-
sequent data processing involves data cleaning; splitting into training, validation, and
testing sets; and feature scaling. The methodology continues with determining the neural
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network topology and setting the hyperparameter grid. A custom loss function is defined to
combine the mean squared error with variance regularization. Model training is performed,
followed by tuning the model using the validation set. The model is then evaluated using
the test data. Finally, the methodology concludes with a comparative analysis against
benchmark models to assess performance improvements.

—[ Data extraction

k4

Feature engineering

Define custom loss
function

Y L 4

Data processing Train the model

Y Y

Determine MNeural

Tune the model

Metwork Topology
L i L 4
Setthe Evaluate the model
hyperparameter grid using test data

Comparative analysis ]47

Figure 3. Framework of the methodology for interval forecasting.

4.1. Feature Engineering

1.

Time index creation: To capture the temporal trend, a time index was created along
with its polynomial terms, such as the square or cube, to model more complex trends.
These indices help in identifying underlying patterns over time.
Quadratic trend estimation: A quadratic regression was fitted to the original data to
model the underlying trend and subsequently remove it (detrend), thereby enhancing
stationarity. The rationale for choosing a quadratic model is based on the observation
that the time-series data for Thailand’s durian export exhibited a quadratic trend. This
trend estimation helps in removing long-term trends, making the time series more
stationary and easier to model with neural networks. The trend equation is given as
the following:

Trend () = 21.246 + 0.88t2, (8)

where the corresponding trend line is depicted in Figure 4. While a quadratic model
was suitable for this specific dataset, the proposed method is not limited to quadratic
trends. Other trend models, such as linear, exponential, or higher-order polynomial
regressions can be used if they better fit the data.

Lag feature generation: Lag features up to 12 months prior were created to incorporate
historical data points as predictors. If the data exhibit different seasonal patterns or
other temporal dependencies, the lag feature span can be modified accordingly. The
proposed method is robust and can adapt to different lag feature configurations to
capture relevant patterns in the data.

Detrending: To normalize the time-series data y;, where the model is y; = T; x S; X
Ci x I; (Trend T, Seasonality S, Cyclical C, and Irregular I), the detrending process
involves dividing the original data by the estimated trend:

Yi detrended = yi/Trend(t)' (9)
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This normalization results in y/T = S x C x I, removing the long-term trend and
making the data more stationary. The detrended data are presented in Figure 5.

Durian Exports with Trend Line

50,000
— Actual Data

== Trend (Quadratic Regression)
40,000

30,000

20,000

Value (Million THB)

10,000

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Date

Figure 4. Durian export data with a quadratic trend line.

—— Detrended Data

Detrended Value (Million THB)
N

| J
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Date

Figure 5. Detrended durian export.

4.2. Data Processing

1.  Data cleaning: rows with missing values, resulting from lagged feature generation,
were removed to maintain consistency;

2. Data splitting: the dataset was split into training and test sets, ensuring a temporal
split that mimics real-world forecasting scenarios;

3. Feature scaling: the features were standardized using StandardScaler() in Python
(version 3.11.5) with scikit-learn (version 1.3.0) to normalize the data, improving the
neural network’s convergence.

4.3. Neural Network Topology

Figure 6 shows one example architecture of the dual-output MCDO neural networks
used in this study. It includes an input layer that accepts a feature vector of dimension 12
(corresponding to 12 lagged variables), three dense layers with ReLU activation (120, 60, and
30 neurons), each followed by dropout layers (with rates of 0.4, 0.3, and 0.2, respectively),
and branches into two output layers: one for the mean prediction and one for the variance
prediction with Softplus activation. This structure can be adjusted to fit different datasets
and requirements.
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Dense 1
Input > (12(?”;;_[_]) > Dropout (0.4)
|
Dense 3 Dense 2
< D t(0.3) 1«
(30, ReLU) ORI ) (60, ReLU)

h 4

Dropout (0.2)
|

| |

Dense (Mean Dense (Variance
Qutput,

Output) Softplus)

Figure 6. Example of the neural network architecture of a dual-output MCDO with dropout.

The first dense layer has 120 neurons with ReLU activation, producing a 120-dimensional

(1)

vector h; "’ for each instance, calculated as follows:

hY = o(WOTx; + b)) (10)
where W € R12x120 and b1 € R120 are the weights and biases of the dense layer,
respectively, and o denotes the chosen activation function. The subsequent dropout layer is
included to mitigate overfitting by randomly setting 40% (dropout rate of 0.4) of the input
units to zero at each update during the training time.

4.4. Hyperparameter Grid

1. A minimal multi-layer perceptron (MLP) with a single hidden layer of several neu-
rons (e.g., 10-20) was initially used to establish a baseline. Based on the baseline
performance, the network depth was gradually increased by adding more layers and
neurons to capture complex patterns. For instance, starting with a two-layer model
(60-30 neurons) and then increasing the network depth by adding more neurons
(e.g., 120 neurons for three layers, 180 for four, etc.), while carefully monitoring for
overfitting. This step-by-step increase ensures that the added complexity is justified
by improved performance;

2. Different activation functions such as ReLU, Sigmoid, and Tanh were evaluated for
their unique characteristics in modeling;

3.  Dropout, as a method to combat overfitting, involves deactivating a random subset
of neurons during each training cycle. Dropout rates were varied across different
layers to explore their combined effects. For instance, with a configuration of [0.4, 0.3,
0.2], the first hidden layer uses a dropout rate of 0.4, the second hidden layer uses
0.3, and the third hidden layer uses 0.2. This gradation from 0.2 up to 0.7 allows for
a progression from minimal to more intensive regularization, adapting the model’s
complexity and preventing it from memorizing the training data too closely. In some
experiments, up to five dropout rates were applied at different points in the network
to explore their combined effects on regularization;

4.  Training sessions for the models were conducted over 25, 50, or 100 epochs, where
each epoch represents a full pass of the training data through the learning algorithm.
Adjusting the epoch count allows the model to refine its grasp on the dataset, though
too many epochs can lead to overfitting, where the model too closely adapts to
the training data. Conversely, too few epochs may not provide enough learning
opportunity, potentially causing underfitting;

5. Batch sizes were varied across 16, 32, 64, or 128 to adjust the quantity of data samples
processed simultaneously by the network. Opting for smaller batch sizes tends to
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enhance the stability of the model’s convergence but may prolong the duration of
training. Conversely, larger batches expedite the training phase but could compro-
mise convergence stability and the model’s ability to generalize effectively across
unseen data.

4.5. Custom Loss Function

Given the predictions ypreq, Which consist of the mean predictions (y;) and variance
predictions (v;), the custom loss function for a single instance is a combination of the
mean squared error (MSE) for the mean predictions and a regularization term for the

variance predictions. Let yirue be the vector of true values and ypreq= [1i, vl} be the vector
of predictions for the i-th instance. The MSE for the mean predictions is defined as follows:

10
MSE(ytrue/ ,uz = EZ Yirue,i — ,uz (11)
i=1

where ¢ ; refers to the true value for the i-th instance, and y; refers to the predicted mean
for the i-th instance. The Softplus function is applied to the variance predictions to ensure
they are positive:

= log(1 +exp(v;)) (12)

The variance regularization term is the mean of the transformed variance predictions:

Variance Loss (v]") =

%Z v (13)

i=1

The custom loss for the batch is the sum of the MSE and the variance regularization
term:
L(Yirue, Ypred) = (1 — A)-MSE (Yirue, i) + A-Variance Loss(v;") (14)

where A is a weighting term to balance the two components of the loss function. This
balance ensures that the predicted variance reflects the true uncertainty in the predictions
by preventing v, from collapsing to zero, thus maintaining meaningful variance estimates.
The dimensions of Virue and Ypreq are not directly comparable, as ypreq contains more
information (both mean and variance) than yrye.

4.6. Training Process

1. Model compilation and training: Each model configuration from the hyperparameter
grid was compiled and trained on the scaled and split training data. The dataset was
divided into training (80%) and testing (20%) subsets to ensure proper training and
evaluation. Within the training set, a further split was made to create a validation
set (20% of the training set), resulting in 64% of the data used for training, 16% for
validation, and 20% for testing;

2. Validation set evaluation: The validation set (16% of the total data) was used to
evaluate the performance of each model configuration. The root mean squared error
(RMSE) on the validation set was used as the primary metric to compare different
hyperparameter settings. The model configuration with the lowest validation RMSE
was selected as the optimal model;

3. MCDO for uncertainty estimation: post-training, MCDO was employed to generate
predictive distributions by performing multiple forward passes with dropout enabled,
aggregating the results to estimate the mean and variance of predictions.

4.7. Tuning of Models
4.7.1. Proposed Method

The proposed method was tuned using a thorough hyperparameter grid search to
identify the best combination of hyperparameters. The model configuration with the lowest
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validation RMSE was selected as the optimal model. The final evaluation metrics, including
RMSE, were computed based on this optimized model.

4.7.2. Benchmark Method

The SARIMA model was also tuned to achieve the best performance. The parameters
for the SARIMA model were selected using a grid search process similar to the proposed
method. The best-performing SARIMA model, based on validation performance, was used
for the final comparison.

4.8. Applying Dual-Output MCDO for Interval Forecasting

A dual-output neural network architecture combined with the MCDO methodology
is used to forecast durian export values and provide reliable uncertainty estimation. The
network employs lagged variables covering a period of 1 to 12 months to account for
temporal relationships and seasonal patterns in the data. The results are as follows:

1.  Mean output: This layer predicts the expected mean value of durian exports for a
future time point. The prediction is formulated as Jumean = f(X; OMean), Where x
represents the input features, including lagged variables, and Opgean embodies the
network’s learned parameters. Dropout introduces a Bayesian approximation;

2. Variance output: This layer estimates the predictive variance, which quantifies the
aleatoric uncertainty inherent in the data. The estimated variance is Jyar = f(X; Ovar)-

The variance is directly used to create intervals around the predicted mean, using the
standard formula for a 95% confidence interval [38]:

yAMean +1.96 \; Var(]?Var) (15)

Because the MCDO approach can quantify uncertainty by performing multiple stochas-
tic forward passes with dropout, simulating a Bayesian posterior distribution of weights,
the predictive distributions for both the means and variances will be graphically presented
in the Section 5.

4.9. Evaluation

A comparative analysis will be conducted on the forecast intervals compared to the
seasonal autoregressive integrated moving average (SARIMA) model benchmarks. This
comparison will use metrics like the mean interval width, coverage proportion, and the
incidence rate of non-positive lower limits. When assessing point forecasts, the evalua-
tion will include the root mean squared error (RMSE) and the determination coefficient,
represented as R2. The detailed descriptions of these measures are as follows:

e  Coverage proportion (%Coverage): This measure indicates the proportion of times the
actual values fall within the predicted intervals [39]. It is defined by the following;:

1M
% Coverage :MZizl I(y; € [LB;, UB;]) x 100 (16)

e Incidence of non-positive lower limits (%NegLB): This metric calculates how frequently
the predicted intervals have a lower limit that is non-positive, which is crucial for
datasets where such values are infeasible. It is defined by the following:

1 M
% Coverage :MZizl I(LB; < 0) x 100 (17)

e  Average width of forecast interval (WidthAvg): Represents the mean distance between
the upper and lower bounds of forecast intervals [40]. It is defined as follows:

1
% WidthAvg :sz‘i L(UB; — LB;) x 100 (18)
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e  Root mean squared error (RMSE): This is a measure of the average discrepancy be-
tween the predicted and actual values. It is defined by the following:

1
RMSE —\/ 3 Lo (i = 90)° (19)

e  Coefficient of determination (R?): Indicates the fraction of the variance in the observed
values that is predictable from the independent variables. It is defined by the following;:

M A

e  The seasonal autoregressive integrated moving average (SARIMA) model is an exten-
sion of the ARIMA model that specifically addresses and models seasonal components
of a time series [41,42]. Choosing SARIMA as a benchmark for comparison with
proposed forecast intervals for durian export is strategic due to its comprehensive
ability to model both seasonal and non-seasonal patterns in time-series data. Elements
of SARIMA include non-seasonal (p, d, q) and seasonal (P, D, Q, S) terms, where p
and P represent the order of the autoregressive terms, d and D signify the degree of
differencing, g and Q denote the order of the moving average terms, and S corresponds
to the length of the seasonal cycle. The SARIMA model is defined by the following;:

(- ) (1= o) 1 - D' - 1)y = (1+ L 60 (1- 12 01%)e @)

The autoregressive terms ¢ and P account for the non-seasonal and seasonal dynamics,
respectively. Conversely, the moving average terms 6 and © address the non-seasonal and
seasonal parts. The lag operator L systematically shifts time-series data [43—45].

5. Results

The Section 5 is organized into four distinct subsections: the optimization of the
dual-output MCDO neural network and the influence of hyperparameters; the predictive
distributions of point forecasts; the distributions of forecasted variances; and the com-
parative analysis of forecast intervals derived from both the proposed method and the
SARIMA model.

5.1. Optimal Model and Effects of the Parameters

The optimal model, which achieves the lowest custom loss function as defined in
(14), consists of three hidden layers—[p = 30, p = 60, p = 120]—uses the Tanh activation
function, and has dropout rates of [p = 0.4, p = 0.3, p = 0.2]. It was trained for 25 epochs
with a batch size of 16, resulting in an RMSE of 11,689.41. Under investigation, seven of the
ten optimal models have a number of hidden layers not greater than three. This suggests
that the deeper dual-output MCDO neural networks experience the overfitting issue. The
RMSE of the best 40 models and corresponding hyperparameters are presented in Figure 7.

The top 10 optimal MCDO NNss typically feature smaller batch sizes, with the majority
employing a batch size of only 16—contrast this with the default value of 32 in the Keras
module. The number of epochs commonly ranges from 25 to 50, indicating that a larger
count of epochs, such as 100, might not be necessary. It is important to note that the Keras
module does not have a default value for epochs; this parameter must be explicitly specified
by the user.
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Figure 7. Top 40 dual-output MCDO neural networks with the lowest RMSE values.
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Figure 8 shows that models with three layers have the lowest average RMSE, indi-
cating the best predictive performance among the models evaluated. As the number of
layers increases or decreases from three, the average RMSE tends to increase, suggesting a
decrease in predictive accuracy. Models with four layers exhibit the highest average RMSE,
which indicates that additional complexity in this context does not correlate with better
performance. Conversely, models with two, five, and six layers show progressively higher
RMSEs than the three-layer models, indicating that a medium level of complexity provides
a more optimal balance between underfitting and overfitting for the given dataset.

13500

13450

13400

13350

Average RMSE

13300

13250
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Number of Layers

5

Figure 8. The number of layers against the average RMSE for models with that specific layer

configuration.
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Figure 9 presents comparisons of the average RMSE of neural network models utilizing
different activation functions: ReLU, Sigmoid, and Tanh. Each bar corresponds to the
average RMSE for models employing one of these activation functions. The ReLU has the
highest average RMSE among the three. The Sigmoid’s bar is noticeably lower, suggesting
better average performance than ReLU. However, it is the Tanh activation function that
exhibits the lowest average RMSE of the three, indicating that models using Tanh achieved
the best average predictive accuracy in this evaluation.

13500
13450
13400

13350

Average RMSE

13300

13250
relu sigmoid tanh

Activation Function

Figure 9. The average RMSE for models using different activation functions (ReLU, Sigmoid, Tanh).

From Figure 10, it is observed that the models with Tanh activation tend to have
lower RMSEs across various dropout rates, especially in configurations with three layers,
indicating better performance. Models with ReLU activation show a wider spread in RMSE
values across dropout rates, suggesting that the performance of ReLU models may be more
sensitive to the chosen dropout rate. The Sigmoid activation appears to perform generally
in between the ReLU and Tanh models in terms of RMSEs.

Figure 11 presents a scatter plot illustrating the RMSEs across three distinct epoch
values (25, 50, 100) for NNs employing different activation functions. At 25 and 100 epochs,
the spread of RMSE values is relatively similar for models using ReLU and Tanh activation
functions, with a few models using the Tanh function achieving slightly lower RMSE values.
For models trained with 50 epochs, the Tanh activation function seems to result in a slightly
lower RMSE when compared to ReLU and Sigmoid, suggesting that Tanh might be more
effective, or the models may have converged better at this training length. The variability
in RMSE seems to be less for the ReLU activation function, which might indicate a more
stable performance or better optimization at this number of epochs compared to the others.
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num_layers
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¢ + %O
O GAs WN
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Figure 10. Scatter plot between the average dropout rate (with added jitter) and the RMSEs of all
candidate NNs.
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Figure 11. Scatter plot between the numbers of epochs (with added jitter) and the RMSEs of all
candidate NNs.

5.2. Distributions of Forecasting Means

The predictive mean distributions from the optimal dual-output MCDO neural net-
work, as depicted in Figure 12, showcase symmetrical shapes centered around their respec-
tive means, indicating a dependable central tendency that is vital for interval forecasting;
however, the shapes are not the same. Notably, the distribution for month 1 in the test data
(December 2022) is characterized by a narrow, pronounced peak, denoting highly precise
predictions, while months 5 and 6 in the test data (April-May 2023) display a broader
distribution, suggesting increased predictive uncertainty. month 9 (August 2023) exhibits
a slight right skew, which points to the potential presence of outliers. Considering the
extensive number of iterations (20,000) and the largely symmetrical shapes of the distribu-
tions, the application of normal approximations for the construction of forecast intervals is
statistically substantiated.

5.3. Distributions of Forecasting Variances

The predictive variance histograms from the optimal dual-output MCDO neural net-
work, as shown in Figure 13, for test months 1 to 12, exhibit a declining trend with variances
primarily concentrated toward the lower end. These positively skewed distributions in-
dicate a lower likelihood of very large variances compared to smaller ones. The more
concentrated and skewed toward zero these distributions are, the narrower the forecast
intervals will be, suggesting higher forecast precision. However, the presence of longer
tails, particularly in months 9 to 12 (August-November 2023), points to potential outliers
and predicts with less certainty, resulting in wider intervals.

5.4. Forecast Intervals of Durian Export

The comparison of the two forecasting methods, spanning from December 2022 to
November 2023, is presented in Figure 14. For point forecasts, both models exhibited
similar accuracy metrics. The dual-output MCDO NN reported an RMSE of 11,689.40, an
MAE of 7974.43, and an R? coefficient of 0.2297. In contrast, the SARIMA model displayed a
comparable RMSE of 11,694.33, a slightly lower MAE of 7772.35, and an R? value of 0.2290.

When evaluating the quality of forecast intervals—which is crucial since negative
export values are not feasible—the MCDO NN demonstrated superior performance. It
achieved a higher coverage proportion of 75%, as opposed to the SARIMA model’s 66.67%.
Moreover, the MCDO NN's intervals were on average narrower, with an average width of
13,373.84, suggesting more precise predictions compared to the SARIMA model’s broader
intervals, which averaged 14,514.05. The MCDO NN also exhibited a lower incidence of
non-positive lower limits at 41.67% compared to 66.67% for the SARIMA model.
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Figure 14. Forecast intervals obtained from the optimal dual-output MCDO neural network and
SARIMA model.

It is noticeable that in test months 5 and 6 (April-May 2023), the point forecasts are
not near the true values. This can be explained by Figure 12, where the corresponding
predictive mean distributions have heavy tails and more variation than in other test months,
indicating high uncertainty for these point forecasts. However, Figure 13 shows that the
distribution of forecasted variances for April 2023 (month 5) has a short tail with its mode
very near to zero, suggesting that the resulting interval width is expected to be narrower
compared to other months.

In contrast, Figure 12 illustrates that in certain months with shorter tails in the dis-
tributions, we can anticipate a certain level of accuracy in point forecasting. For instance,
in month 1 (December 2022), the distribution appears symmetric and not widely spread.
However, the corresponding forecasting variance for month 1, as shown in Figure 13, does
not have a mode close to zero, indicating that the interval width might not be as narrow
as expected.

6. Conclusions and Discussion

This paper presents an explicit methodology based on a dual-output MCDO neural
network for constructing forecast intervals in time-series data, using Thailand’s durian
export data as an illustrative example. The methodology effectively captures trends
and seasonal patterns while providing comprehensive uncertainty estimates through a
Bayesian framework.

The dual-output MCDO model improves forecast accuracy, achieving a lower RMSE
compared to traditional models like SARIMA. It handles complex, non-linear relationships
and prevents overfitting through dropout techniques. An optimal configuration with three
hidden layers, Tanh activation, 25 epochs, and dropout rates around 0.30 was identified
through a grid search. The model’s flexibility allows adaptation for different datasets,
demonstrating its utility in generating reliable forecast intervals.

However, validating this study on a single dataset may limit the generalizability of
the results, particularly concerning the impact of hyperparameters. Additionally, the com-
putational resources required could be substantial, which might constrain its application in
some settings.

Future research can apply this methodology to other types of time-series data, refine
the hyperparameter optimization process, and integrate additional external variables
for enhanced performance. Potential developments include handling multivariate time
series, incorporating real-time data updates, and improving computational efficiency to
support larger datasets and more complex models. Exploring ensemble methods combining
multiple MCDO models could further enhance robustness and accuracy.
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