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Abstract: With growing concerns over climate change, accurately predicting temperature trends is
crucial for informed decision-making and policy development. In this study, we perform a com-
prehensive comparative analysis of four advanced time series forecasting models—Autoregressive
Integrated Moving Average (ARIMA), Exponential Smoothing (ETS), Multilayer Perceptron (MLP),
and Gaussian Processes (GP)—to assess changes in minimum and maximum temperatures across
four key regions in the United States. Our analysis includes hyperparameter optimization for each
model to ensure peak performance. The results indicate that the MLP model outperforms the other
models in terms of accuracy for temperature forecasting. Utilizing this best-performing model, we
conduct temperature projections to evaluate the hypothesis that the rates of change in temperatures
are greater than zero. Our findings confirm a positive rate of change in both maximum and minimum
temperatures, suggesting a consistent upward trend over time. This research underscores the critical
importance of refining time series forecasting models to address the challenges posed by climate
change and supporting the development of effective strategies to mitigate the impacts of rising
temperatures. The insights gained from this work emphasize the need for continuous advancement in
predictive modeling techniques to better understand and respond to the dynamics of climate change.

Keywords: time series forecasting; temperature trends; ARIMA; exponential smoothing; Multilayer
Perceptron; Gaussian Processes

1. Introduction

For many decades, climate scientists have expressed growing concern over the impacts
of climate change, particularly rising temperatures. The 2015 Paris Agreement, established
at the United Nations Framework Convention on Climate Change (UNFCCC) conference,
seeks to limit the global average temperature increase to below 2 ◦C above pre-industrial
levels (1850–1900), with efforts to further restrict it to 1.5 ◦C [1]. Numerous studies have
examined potential scenarios where the 1.5 ◦C or 2 ◦C thresholds are surpassed, assessing
their wide-ranging impacts on sectors including the economy, water resources, and public
health [2–5]. Rising temperatures pose significant risks to biodiversity, ecosystems, and
human populations, with the degree of risk depending on various factors, such as extreme
heat events, as highlighted by the Summary for Policymakers by the Intergovernmental
Panel on Climate Change (IPCC) [6]. Given these critical concerns, it is crucial to continually
advance our understanding and forecasting of temperature trends to inform effective
climate action and policy decisions.

Despite the increase in global mean temperature, the magnitude of temperature
changes varies across regions [7]. For example, research has shown that temperature and
temperature extremes in China have risen more sharply than the global average [8]. Many
studies have investigated these changes using various methods, including linear regression,
statistical models, and the Coupled Model Intercomparison Project (CMIP), examining
both national trends and regional variations within the United States. Researchers at the
U.S. Global Change Research Program used linear regression to report a 0.7 ◦C increase
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in annual average temperatures across the U.S. from 1986 to 2016 compared to 1901 to
1960 [9]. In a different study but a closer look, Chattopadhyay and Edwards applied
nonparametric statistical tests to a time series of annual precipitation and air temperature in
Kentucky (1950 to 2010), highlighting that only 3 out of 42 stations in Kentucky exhibited
positive trends in temperature [10]. These findings emphasize the importance of region-
specific weather studies in better understanding localized impacts and developing effective
adaptation strategies.

While studies have highlighted regional variations in temperature trends, the assess-
ment of changes in maximum and minimum temperatures remains ambiguous, with no ev-
idence that trends in extremes and averages share the same patterns [11]. Lee, Li, and Lund
developed statistical models incorporating extreme values and changepoint features to
estimate trends, concluding that while minimum temperatures have increased significantly,
maximum temperatures have risen more slowly on a monthly basis. Another study ex-
amining monthly maximum and minimum temperatures at over 10,000 stations in the
U.S. found similar results, indicating that temperatures in the U.S. are not becoming more
extreme [12]. The National Centers for Environmental Information (NCEI) developed the
Climate at a Glance tool, offering near real-time analysis of monthly and annual global-scale
temperatures using data from the National Oceanic and Atmospheric Administration’s
(NOAA) Global Surface Temperature Analysis [13]. Figure 1 presents the average monthly
maximum and minimum temperatures in the United States from 1950 to 2022. While
this tool does not include trend displays within the plots, a slight increase in temperature
extremes over time is still evident. Given the need to evaluate regional trends within the
U.S., this study proposes analyzing daily minimum and maximum temperatures in highly
populated cities across the country.

Figure 1. Line graphs of contiguous U.S. monthly maximum (top) and minimum (bottom) Tempera-
tures from 1950 to 2022 [13].

Besides analyzing historic weather observations, scientists employ diverse machine
learning and traditional approaches to forecast weather patterns. Numerous statistical
techniques for time series temperature forecasting have been proposed in the literature. For
instance, a research study developed a statistical forecasting technique using an Autore-
gressive Integrated Moving Average (ARIMA) model to predict future daily temperatures
and precipitation in Chicago and Phoenix [14]. Another study examined the effective-
ness of three exponential smoothing models in handling temperature data from three
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cities in Texas, concluding that the Double Exponential Smoothing technique (DEST) is
the most suitable [15]. Despite these advancements in forecasting techniques, there are
limited comparative studies that evaluate time series forecasting models using identical
weather datasets. For example, a study performed a comparative analysis of various
weather forecasting models, including multiple linear regression, ARIMA, and artificial
neural networks (ANN), across different studies. However, these studies did not utilize
the same atmospheric science dataset, which limited direct comparisons of the models’
performance [16].

Beyond the field of atmospheric sciences, several comparative studies have examined
classical methods versus machine learning approaches for time series forecasting using
the same dataset across different domains, such as econometrics. For instance, Faraway
and Chatfield applied airline data to various neural network models, comparing them
with forecasts from Box–Jenkins and Holt-Winters models, highlighting the potential for
improved neural network performance with careful input selection [17]. Ahmed et al.
conducted a comparative analysis of various machine learning models for time series
forecasting using the M3 competition dataset [18]. They concluded that Multilayer Percep-
tron (MLP) and Gaussian Processes (GP) regression had the best model performance in
this context. Examining diverse time series forecasting models is crucial for understand-
ing and improving these models, thereby advancing predictive accuracy and enhancing
decision-making processes.

As noted, there is a significant absence of comparative analyses on time series forecast-
ing models utilizing temperature data. To address this gap, this study aims to provide a
comprehensive review of the performance of several time series forecasting models using
identical weather data. As highlighted by Ahmed et al., MLP and GP exhibit superior
performance among machine learning models [18]. Additionally, ARIMA has been exten-
sively applied in forecasting various climate time series, including air temperature, drought
severity, and wind speed [14,19,20]. Exponential smoothing, a classical model in time series
forecasting, remains relevant and is used to predict rainfall, greenhouse gas emissions, and
other atmospheric variables [21,22]. Given the enduring relevance of classical models in
time series analysis and forecasting, this study will assess the effectiveness of four widely
used time series forecasting models:

1. Autoregressive Integrated Moving Average
2. Exponential Smoothing
3. Multilayer Perceptron
4. Gaussian Processes

Due to computational and data storage limitations, this study examines historical
trends in maximum and minimum temperatures over a 20-year period (2003–2022) using
the four previously mentioned time series forecasting models. This research uses the
best-performing forecasting model to project temperatures for the subsequent eight years
(2023–2030). In response to concerns about the impact of rising temperatures, the study tests
the hypothesis that the rate of temperature change exceeds zero (β1 > 0). It is important
to note that this hypothesis is tested using data from a 28-year period, which includes the
eight forecasted years.

The research will utilize Python [23] and Julia [24] to highlight the role of statistical
computing in understanding climate change. First, an overview of the essential characteris-
tics of the proposed statistical methods will be outlined. Next, these models will be applied
to climate time series data, and the predictive performance of the proposed models will be
summarized. Finally, the optimal statistical model will forecast temperatures for the next
seven years, up to 2030.

2. Materials and Methods
2.1. Data and Study Areas

The temperature data used in this study were sourced from the NCEI Climate Data
Online (CDO), a repository managed by the NOAA [25]. CDO serves as an archive of global



Forecasting 2024, 6 818

historical weather and climate data, providing comprehensive summaries of historical
daily land surface observations from locations worldwide, spanning from 1 January 1950
to 31 December 2022.

The main focus of this study is forecasting temperatures in highly populated cities
with diverse geographical features. The dataset includes two key time series measurements:
maximum and minimum daily temperatures, initially recorded in Fahrenheit but converted
to Celsius to maintain SI units. Given the dataset’s extensive size, which encompasses
nearly 75 years of historical data, and limitations in computation and data storage, a mini-
batch approach was employed to concentrate on the most recent twenty years of data,
specifically from 1 January 2003 to 31 December 2022.

During data preprocessing, missing values were replaced with median temperature
values from the time series, as the data exhibited a heavily skewed distribution. The
dataset was split into a training set and a testing set in an 80% to 20% ratio to facilitate
comparative analysis of the time series forecasting models. This split resulted in the training
set comprising approximately 16 years of observations, while the testing set encompassed
the most recent four years, from 2019 to 2022. Temperature data will be forecasted for
the next eight years, from 1 January 2023 to 31 December 2030, using the best-performing
forecasting method identified.

To select highly populated cities, it is essential to consider the diversity of geographical
features, such as coastal or mountainous regions. The Census Bureau subdivides the United
States into four census regions—West, South, Midwest, and Northeast—each with two or
more census divisions (Figure 2) [26].

Figure 2. Map of the census regions and divisions of the United States [26].

To effectively represent the regions, at least one site was selected from each region.
This study includes data from five airport locations across the United States. The chosen
airport sites, which represent various regions, were as follows:

• Houston
• Chicago
• Boston
• San Francisco
• Miami

The Köppen-Geiger Climate Classification system categorizes regions into classes and
subclasses based on climate variations, such as precipitation and air temperatures [27].
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According to the current map, Houston is classified as Cfa, indicating a humid subtropical
climate characterized by hot, long summers with evenly distributed precipitation through-
out the year. Chicago is classified as Dfa, representing a hot-summer humid continental
climate with hot and humid summers and severe winters. While Boston shares the same
classification as Chicago, its coastal location makes it susceptible to hurricane seasons. San
Francisco is classified as Csb, a dry-summer subtropical climate, also known as a Mediter-
ranean climate, featuring dry, hot summers and mild winters. Miami is classified as Am, a
tropical monsoon climate, experiencing short, dry winters and hot, humid summers. These
classification symbols and their descriptions are detailed in several research papers [27–29].

2.2. Time Series Forecasting Models

In this research, Julia is the primary programming language used to build time series
forecasting models for application to temperature datasets. However, Julia lacks the
necessary packages for constructing MLP models. Therefore, Python, specifically the
PyTorch package [30], is utilized to develop the MLP framework and apply the temperature
datasets to the model. For the other three time series forecasting models, several Julia packages
are employed, including Forecast, StateSpaceModels, and GaussianProcesses [31–33].

The computing device used for this research is designed to ensure efficient processing
and data handling. The JupyterLab environment operates on a Tanzu Kubernetes cluster,
deployed on a physical Dell cluster. This setup includes 128 CPU cores, 2 TB of memory,
and 224 TB of NVMe disk storage, providing the necessary resources for computational
tasks. Each CPU core supports 64 threads, with a base clock speed of 2.8 GHz and the
ability to boost up to 3.7 GHz, ensuring robust performance during data processing and
model training.

2.2.1. Autoregressive Integrated Moving Average

The Autoregressive Integrated Moving Average (ARIMA) model, popularized by Box
and Jenkins [34], is a combination of three components: the autoregressive (AR) model, the
integrated (I) method, and the moving average (MA) model. For a stationary time series,
the Autoregressive Moving Average (ARMA) model can be expressed as:

Xt = µ + ϕ1Xt−1 + ϕ2Xt−2 + . . . + ϕpXt−p + ϵt + θ1ϵt−1 + θ2ϵt−2 + . . . + θqϵt−q. (1)

In this equation, Xt represents the value of the time series at time t, determined by
its past values Xt−1, Xt−2, . . . , Xt−p, with ϕ1, ϕ2, . . . , ϕp as autoregressive coefficients. It
also incorporates past prediction errors ϵt−1, ϵt−2, . . . , ϵt−q, with θ1, θ2, . . . , θq as moving
average coefficients [35]. The constant term µ accounts for a non-zero mean in the time
series, while ϵt represents the error term at time t. The integrated method addresses non-
stationarity in the time series through differencing. The ARIMA model is typically denoted
as ARIMA (p, d, q), where p is the order of the AR model, d is the degree of differencing,
and q is the order of the MA model.

As previously mentioned, the ARIMA model is a form of the Box–Jenkins model, a
mathematical model that uses regression analysis to fit and forecast time series data. The
Box–Jenkins method involves an iterative three-step process for developing a forecasting
model for the time series:

1. Identification stage: Ensuring that the time series is stationary. The Augmented
Dickey–Fuller (ADF) test determines whether the time series is stationary. The auto-
correlation function (ACF) and the partial autocorrelation function (PACF) are used to
identify the appropriate AR, MA, or ARMA models. The ACF assesses the correlation
across all lags or intervals between observations, while the PACF focuses on the direct
correlation at specific lags, accounting for the influence of intermediate lags.

2. Estimation Stage: Estimating the model parameters using goodness-of-fit tests to
determine p, d, and q. The Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC) are commonly used for model selection:
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AIC = 2k − 2 ln(L) and BIC = k ln(n)− 2 ln(L). (2)

The AIC measures the information value of the model using maximum likelihood
estimates, denoted as L, and the number of parameters in the model, denoted as k.
The BIC is similar to the AIC but includes a larger penalty term for the number of
observations, denoted as n.

3. Forecasting Stage: Using the fitted model to forecast future values of time series.

2.2.2. Exponential Smoothing

Exponential smoothing (ETS) is a classical time series forecasting method that estimates
future values based on weighted averages of past observations, with the assumption that
more recent observations carry greater significance than older ones. Initially proposed
by Brown in 1956 [36], ETS has since expanded and refined into various exponential
smoothing models. For instance, Holt and Winters extended Brown’s simple exponential
smoothing to create the Triple Exponential Smoothing (TES) model, also known as the
Holt–Winters method [37]. The TES incorporates additional components to account for
trend and seasonality. The forecasting equation for TES can be expressed as:

Ft+n = Lt + nTt + St−p+n, n = 1, 2, 3, . . . (3)

where Lt represents the level component, nTt denotes the trend component, St−p+n rep-
resents the seasonal component, and n represents the number of future periods ahead of
the current time period t. Given the presence of seasonal patterns observed in maximum
and minimum temperatures, this study employs the TES model as the primary exponential
smoothing technique.

2.2.3. Multilayer Perceptron

The Multilayer Perceptron (MLP) is a widely used type of feedforward neural network
in machine learning applications. It consists of an input layer, one or more hidden layers
with densely connected neurons utilizing nonlinear activation functions, and an output
layer. The training algorithm for an MLP typically involves backpropagation, which adjusts
the network’s weights to minimize the difference between predicted and actual outputs of
training data [38].

In this study, the design of the MLP model is a simple, straightforward structure
consisting of three essential layers: an input layer, a single hidden layer, and an output
layer. The design of this model prioritizes simplicity to address computation and data
storage limitations. The MLP architecture begins with an input layer that captures a
specific number of lagged observations of the temperature variable, which determines
the number of neurons in the input layer. Determining the number of input neurons is
based on the frequency of shifts and trends observed in the temperature dataset, with
further details provided in the Results section (Section 3.1.3). Following the input layer,
the hidden layer consists of four neurons. Given the constraints of the study’s limited
computational resources, the number of neurons was selected to balance model simplicity
and computational efficiency. A smaller number of neurons helps reduce overfitting and
computational demands while allowing the model enough flexibility to capture meaningful
patterns in the temperature data. The MLP model concludes with a single output neuron
in the output layer, which generates forecasting future temperature values.

The model uses the Rectified Linear Unit (ReLU) activation function, which sets
any negative values to 0. ReLU is chosen for its computational efficiency and ability to
introduce a simple nonlinear transformation. Additionally, several research studies on
forecasting air temperatures using deep learning neural networks have employed the ReLU
activation function due to its effectiveness in capturing complex patterns while maintaining
simplicity in computation [39]. To mitigate overfitting in the MLP model, a regularization
technique known as dropout is implemented. Dropout randomly ignores selected neurons
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during training, which reduces the model’s reliance on specific neuron weights. A common
dropout rate of p = 0.2 is used in each hidden layer, as applied in this study.

An optimizer is crucial for enhancing the MLP model’s performance by optimizing
hyperparameters to minimize losses. Adaptive Moment Estimation, or Adam for short,
is one of the most commonly stochastic optimization algorithms for neural networks.
Adam maintains exponentially decaying averages of past squared gradients based on the
first and second moments of the loss function gradients [40]. This study employs Adam
with a learning rate of 0.001, a common default for many optimization algorithms. The
learning rate determines the step size for updating the model’s weights based on the
computed gradients.

The MLP model includes a loss function to estimate the model’s losses, allowing the
updating of parameters to minimize the losses. Given that the MLP model predicts real
values, it addresses a regression predictive modeling problem. Consequently, the default
loss function employed in this study is the Mean Squared Error (MSE).

2.2.4. Gaussian Processes

Gaussian Processes (GP) are highly effective tools for time series analysis, offering a
flexible and nonparametric method to model complex and nonlinear relationships in data.
A GP is essentially a collection of random variables where any finite subset has a joint
Gaussian distribution [41]. In the context of time series analysis, a GP can be interpreted as
a probability distribution over the set of all possible time series functions, with the mean
and covariance functions defining the properties of the GP.

Assuming that the underlying function generating the time series values at time t is
denoted by ft, GP regression models the function ft as a Gaussian process with a mean
function µt and covariance function Σt. In this study, the mean function is set to zero, which
is a standard choice in time series forecasting due to the uncertainty about the magnitude
and direction of the trend [42]. Suppose the time series Xt is given with the observed values
up to time t, i.e., Dt = X1, X2, . . . , Xt. The conditional distribution of Xt+1 given Dt is then:

p(Xt+1 | Dt) = N (0, Σt+1). (4)

The posterior covariance is computed as:

Σt+1 = k(Xt+1, Xt+1)− k⊤t+1,t(Kt + σ2 I)−1kt+1,t. (5)

Here, kt+1 = [k(X1, Xt+1), k(X2, Xt+1), . . . , k(Xt, Xt+1)]
⊤, Kt is the t × t matrix with

entries Ki,j = k(Xi, Xj), σ2 is the noise variance, and I is the identity matrix. The ker-
nel functions k(Xi, Xj) specify the correlation between the predicted and observed time
series values.

GPs often employ a kernel composition approach, combining multiple kernels through
addition or multiplication to shape the resulting distribution. In this study, the GP kernel
composition is formulated as:

k(Xi, Xj) = kNoise(Xi, Xj) + kPeriodic(Xi, Xj) + kRBF(Xi, Xj) (6)

Here, the noise kernel, kNoise(Xi, Xj), captures the noise aspects of the time series, the
periodic kernel, kPeriodic(Xi, Xj), models seasonal patterns, and the RBF (Radial Basis Func-
tion) kernel, kRBF(Xi, Xj), accounts for nonlinear trends [43]. This proposed composition
allows the GP to flexibly model various components of the time series, integrating noise
characteristics, periodic effects, and nonlinear trends into its predictive model.

2.2.5. Model Selection Criterion

This study evaluates model performance using testing datasets to identify the optimal
time series forecasting model. Root Mean Squared Error (RMSE) and Mean Absolute Error
(MAE) are key metrics for forecast accuracy, which provide more meaningful and accurate
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evaluations when forecasts are on the same scale [44]. Given that forecast temperatures are
consistently measured, the performance of the four different time series forecasting models
is assessed using RMSE (Equation (7)) and MAE (Equation (8)).

RMSE =

√
∑N

i=1(Xt,i − X̂t+1,i)2

N
(7)

MAE =
1
N

N

∑
i=1

|Xt,i − X̂t+1,i| (8)

In these equations, Xt,i represents the actual observed values, X̂t+1,i represents the
predicted values at time t + 1, and N represents the number of observations in the testing
dataset. These statistical measures provide a quantitative assessment of the accuracy and
performance of the forecasting models by quantifying the differences between the predicted
and actual values.

3. Results

Four different time series forecasting models were applied to forecast the maximum
and minimum temperatures of five highly populated cities in the United States, using a
training set from 2003 to 2018 and a testing set from 2019 to 2022. This section is divided
into three main parts: the first examines the optimal hyperparameters for each model
through various tests and optimizations; the second provides a comparative analysis of the
forecasting performance of the four models, evaluating each technique’s effectiveness in
temperature forecasting; and the third projects temperatures from 2023 to 2030, offering
insights into future trends based on the chosen models.

3.1. Hyperparameters Optimization
3.1.1. Autoregressive Integrated Moving Average

Prior to developing the ARIMA model, it is critical to ensure that the temperature
variables are stationary to avoid misleading results, a common challenge in time series
analysis. The ADF test, as shown in Table 1, is used to check for stationarity. The p-values
for the temperature time series across all five cities are well below the standard significance
level of 0.05. Therefore, we reject the null hypothesis, indicating that the time series are
stationary. This implies that there is no need to add a differencing order to the time
series data.

Table 1. Results of the Augmented Dickey–Fuller (ADF) test for stationarity on minimum and
maximum temperatures, based on raining datasets of five cities.

Variables Measures Houston Chicago Boston San Francisco Miami

TMAX
ADF Values −9.16 −7.74 −8.28 −13.76 −10.53

p-values <1 × 10−14 <1 × 10−10 <1 × 10−12 <1 × 10−24 <1 × 10−18

TMIN
ADF Values −9.08 −7.50 −6.58 −10.41 −11.80

p-values <1 × 10−14 <1 × 10−10 <1 × 10−8 <1 × 10−17 <1 × 10−21

The ACF and PACF are critical statistical measures for analyzing time series data and
identifying the appropriate ARIMA model type. Figure 3 illustrates the ACF and PACF
plots for Houston’s maximum and minimum temperatures, with a maximum of 25 lags. The
plots include black straight and dashed lines representing the thresholds for the 99% and
95% confidence intervals, respectively. ACF or PACF values falling outside these intervals
suggest statistical significance and correlation. The PACF plots use a step-wise approach
with two estimation methods: the blue bars represent the ’step’ method, which estimates AR
parameters for an expanding model, while the red bars represent the ‘real’ method, which
provides the true PACF by removing the linear effects of previous lags [31]. The ACF plots
indicate a slow decline with increasing lags, whereas the PACF plots show a few significant
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lags. Therefore, the patterns indicate that Houston’s temperatures are well-suited for a
pure AR model. The ACF and PACF plots for the other four cities exhibit similar behaviors,
leading this study to focus solely on the pure AR model, as presented in Appendix A.1.

Figure 3. Autocorrelation Function (ACF) (top) and Partial Autocorrelation Function (PACF) (bottom)
for Houston’s maximum (right) and minimum (left) temperatures, based on the training dataset.

In this study, a simple optimization method was employed to determine the optimal
lag length for the AR model of the time series observations, evaluated using the AIC and
BIC (Equation (2)). According to Table 2, it is evident that the optimal lag order of the pure
AR model ranges from lag 80 to 110 based on the AIC score for all five cities, except for
San Francisco’s maximum temperatures, which have an optimal lag order of 19. Although
it may seem unusual for San Francisco to have a lower lag order than other cities, this is
likely due to the unique characteristics of the maximum temperature data for San Francisco
compared to other cities.

Table 2. Model order selection for Autoregressive Integrated Moving Average (ARIMA) models of
maximum and minimum temperatures across five cities.

Variables City AIC Score BIC Score Model

TMAX

Houston 3.38 20,558.26 ARIMA (88,0,0)
Chicago 4.04 24,473.82 ARIMA (109,0,0)
Boston 4.06 24,590.41 ARIMA (108,0,0)

San Francisco 3.08 18,412.60 ARIMA (19,0,0)
Miami 2.30 14,700.06 ARIMA (100,0,0)

TMIN

Houston 3.28 20,070.57 ARIMA (101,0,0)
Chicago 3.66 22,267.02 ARIMA (106,0,0)
Boston 3.23 19,856.57 ARIMA (108,0,0)

San Francisco 1.95 12,845.68 ARIMA (97,0,0)
Miami 2.55 16,098.39 ARIMA (106,0,0)
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3.1.2. Exponential Smoothing

As stated in Section 2.2.2, the TES model requires trend and seasonal components
to perform forecasting. This study used the seasonal-trend decomposition procedure
based on loess (STL) to identify the trend and seasonality [45]. Figure 4 shows the time
series decomposition, where the STL method divides the time series observations into
data (top), trend (first middle), seasonal (second middle), and remainder (bottom). The
decomposition reveals that the time series has seasonal components with a periodicity
occurring every year from 2003 to 2018. However, no trend is present in either the maximum
or minimum temperatures. The observed seasonal and trend components in Houston’s
daily temperatures are similar to those in the other four cities, as detailed in Appendix A.2.

Figure 4. Plots of time series decomposition for Houston’s maximum (right) and minimum (left) tem-
peratures, based on the training dataset.

This study utilizes the StateSpaceModels package in Julia to fit the ETS model with tem-
perature data. This model includes boolean parameters for trend consideration, damped
trends, and an integer parameter for the number of periods as seasonal components [32].
Given the seasonal components revealed by the time series decomposition and the 16-year
training set (2003 to 2018), the ETS model, specifically the Holt–Winters method, is em-
ployed with a periodicity of 16 seasons without considering a trend.

3.1.3. Multilayer Perceptrons

Prior to training the MLP model, the training set is split into sequences of three
observations, which serve as input neurons for the model. As shown in the data section
of Figure 4, temperatures can fluctuate rapidly over a few days rather than showing a
consistent trend. By splitting the training set into sequences of three observations, the
model can better capture short-term variations or shifts in temperatures occurring over
short intervals, thus improving its predictive accuracy.

The MLP model is trained using a batch size, which specifies the number of samples
processed before updating the model’s internal parameters. In this study, both the train-
ing and testing datasets are divided into batches of 12 samples for iterative parameter
updates. Given that the MLP model employs the Adam optimizer, the batch size is a
crucial hyperparameter for training models with gradient-based optimizers. A smaller
batch size is preferable when computational memory is limited, as it can also help prevent
overfitting. During training, the algorithm iterates over the entire dataset multiple times, a
process known as epochs. To ensure effective minimization of the loss function, the model
undergoes 2000 epochs of training to optimize its parameters.
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3.1.4. Gaussian Processes

In the previous section, we established the kernel composition (Equation (6)) for the
GP model. Optimal hyperparameter values for each kernel were determined through
iterative trials, aiming to minimize the RMSE, as detailed in Table 3. During these trials,
adjustments were made to avoid issues such as infinite sine values in the periodic kernel.
The selected optimal hyperparameters, listed in the first row of Table 3, are as follows: a
noise kernel with a standard deviation of 1.0; a periodic kernel with a length scale of 0.0, a
standard deviation of 1.0, and a periodicity of 1.0; and an RBF kernel with a length scale of
4.0 and a standard deviation of 0.0.

Table 3. Trials and errors with values for kernel composition in Gaussian Processes (GP), based on
Houston’s maximum temperatures.

Kernel Composition RMSE Values

N(1) + P(0,1,1) + RBF(4,0) 12.51
N(1) + P(0,1,1) 12.81

P(0,1,1) + RBF(4,0) 12.81
N(1) + P(0,1,2) + RBF(4,0) Failed due to infinite sin values
N(1) + P(0,1,0) + RBF(4,0) Failed due to infinite sin values
N(1) + P(0,1,1) + RBF(2,0) 12.80
N(1) + P(0,1,1) + RBF(5,0) 12.83
N(1) + P(0,1,1) + RBF(4,4) 76
N(1) + P(0,1,0) + RBF(4,4) 76
N(1) + P(0,1,1) + RBF(3,0) 12.86
N(1) + P(1,1,1) + RBF(4,0) Failed due to infinite sin values

3.2. Comparative Forecasting Performance

The forecasting results of the four models, along with the testing set of observed
values from the NCEI’s CDO, are presented in Figure 5 for maximum temperatures and
Figure 6 for minimum temperatures. The x-axis of the figures represents the dates from
1 January 2019 to 31 December 2022, corresponding to the size of the testing set. Note that
the maximum and minimum temperatures are measured in Celsius. The figures highlight
that the predicted values of the MLP model closely align with the actual observations, in
contrast to the predictions from the other three models.

Tables 4 and 5 display the model performance metrics for the four models. Based
on RMSE and MAE, it is evident that the MLP model consistently demonstrates superior
forecasting accuracy for both maximum and minimum temperatures across the five cities.
The overall ranking of the four models based on RMSE and MAE is as follows: MLP,
ARIMA, ETS, and GP. However, when specifically assessing the performance in Houston
and Boston’s maximum temperatures, the GP model outperforms the ETS model.

Table 4. Performance metrics for forecasting maximum temperatures across five cities.

Model Measures Houston Chicago Boston San Francisco Miami

ARIMA
RMSE 11.24 16.75 13.74 8.62 5.45
MAE 8.90 14.10 11.33 6.69 4.29

ETS
RMSE 28.14 30.28 25.54 14.62 7.11
MAE 25.63 25.09 20.87 12.07 5.92

MLP
RMSE 6.09 8.24 8.25 4.99 3.54
MAE 4.42 6.33 6.53 3.81 2.29

GP
RMSE 12.51 - 17.94 - -
MAE 10.36 - 15.24 - -
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(a) (b)

(c) (d)

(e)

Figure 5. Forecasting results for maximum temperatures (in Celsius) across five cities: (a) Houston,
(b) Chicago, (c) Boston, (d) San Francisco, and (e) Miami. Each subfigure displays the observed values
from the testing set along with predictions from four time series forecasting models: MLP, ARIMA,
ETS, and GP.

Table 5. Performance metrics for forecasting minimum temperatures across five cities.

Model Measures Houston Chicago Boston San Francisco Miami

ARIMA
RMSE 11.60 16.75 11.59 5.50 6.82
MAE 9.65 12.90 9.43 4.53 5.48

ETS
RMSE 21.50 23.67 22.52 9.41 7.32
MAE 18.65 19.29 18.48 8.00 5.56

MLP
RMSE 5.70 6.56 5.42 2.81 4.00
MAE 4.00 5.01 4.07 2.13 2.80

GP
RMSE - - - - -
MAE - - - - -
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(a) (b)

(c) (d)

(e)

Figure 6. Forecasting results for minimum temperatures (in Celsius) across five cities: (a) Houston,
(b) Chicago, (c) Boston, (d) San Francisco, and (e) Miami. Each subfigure displays the observed values
from the testing set along with predictions from four time series forecasting models: MLP, ARIMA,
ETS, and GP.

3.3. Temperature Projections

The analysis of the figures and the evaluation of model performance indicate that the
MLP model outperforms the other three forecasting models. Figures 7 and 8 display the
projections of maximum and minimum temperatures for all five cities using the MLP model.
These figures cover the period from 1 January 2003 to 31 December 2030, incorporating
observed data from 2003 to 2022 and forecasting temperatures for the subsequent 8 years. As
with previous figures, the maximum and minimum temperatures are measured in Celsius.

Each graph in Figures 7 and 8 includes a regression equation displayed in the bottom
left corner of each subfigure. The regression equations show that the coefficient β is
consistently greater than 0, indicating a positive rate of change in temperatures. Notably,
the maximum temperature time series for Chicago and Boston has the highest β value,
while Chicago exhibits the highest β value for the minimum temperature time series.
Additionally, the amplitude of periodic variation in maximum and minimum temperatures
is significantly reduced compared to the actual observed values.
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(a) (b)

(c) (d)

(e)

Figure 7. Projected maximum temperatures (in Celsius) for five cities: (a) Houston, (b) Chicago,
(c) Boston, (d) San Francisco, and (e) Miami, using the MLP model. Each subfigure displays observed
and forecasted temperatures.

(a) (b)
Figure 8. Cont.
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(c) (d)

(e)

Figure 8. Projected minimum temperatures (in Celsius) for five cities: (a) Houston, (b) Chicago,
(c) Boston, (d) San Francisco, and (e) Miami, using the MLP model. Each subfigure displays observed
and forecasted temperatures.

4. Discussion and Conclusions

The time series forecasting models used in this study are based on foundational con-
cepts in machine learning and statistical techniques. While these methods have been refined
and evolved over time, the core principles and algorithms remain rooted in traditional
advancements. Despite rapid advancements in time series forecasting, understanding the
application and suitability of each method to specific datasets and their characteristics
remains crucial.

In this paper, we explored the feasibility of four time series forecasting models—ARIMA,
ETS, MLP, and GP—for temperatures in five highly populated U.S. cities. Each city’s
temperature range is influenced by geographic features such as its coastal or mountainous
location. We observed significant seasonal components but no trends in temperature across
all cities. Unlike the other three time series forecasting models, the parameter values of
ARIMA varied in each city, reflecting the diverse temperature ranges, while the other three
models were adjusted based on temperature characteristics.

The MLP model demonstrated the highest accuracy for predicting maximum and
minimum temperatures across all cities, based on RMSE and MAE. The ARIMA model
performed second best, followed by ETS and GP. However, as presented in the results,
the MLP model struggled with capturing extreme temperatures and the magnitude of
temperature amplitude. For instance, the MLP model had difficulty capturing extreme low
temperatures in Miami, as shown in Figures 5 and 6.

While the MLP model demonstrated the best performance, the other three models
exhibited poor forecasting results. The pure AR model performed well initially, but the
amplitude of the predicted values declined in later stages. This reduction in amplitude
could be due to several factors, such as AR coefficients approaching zero, overfitting, or
inherent noise in the data. The ETS model, on the other hand, appeared nearly constant
with a very small amplitude when zoomed in, which might be due to the chosen number
of periods. Although the time series decomposition suggested 16 periods, the dataset
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consisted of daily observations, so a seasonal period of 365 might be more suitable for
capturing annual patterns. Due to the computation and data storage limitations, running
the ETS model with 365 periods was not feasible.

Upon review of these tables and figures, it is clear that the fixed kernel composition
of the GP model failed to produce valid predictions for the maximum and minimum
temperatures, except for the maximum temperature of Houston and Boston. This is
due to instability and ill-conditioning in GP models, which can lead to infinite values
in the sine function of the periodic kernel and result in errors during matrix inversions,
rendering the fixed kernel composition ineffective for these cities [46]. As mentioned, if
we consider the maximum temperatures of only two cities (Houston and Boston), the GP
model outperformed the ETS model. Based on the figures and tables, we can conclude that
MLP and ARIMA models effectively captured the periodic characteristics of temperature
variables, unlike the ETS and GP models.

While this paper suggests that the MLP model is the most effective for time series
forecasting of temperatures, it is important to acknowledge certain limitations in the
model development. This study is limited by its focus on a single structure, optimization
method, and activation function for the MLP model. Alternative approaches, such as the
Levenberg–Marquardt (LM) algorithm, are utilized by some researchers for error-correction
learning in time series analysis involving periodic components [47,48]. Additionally, the
study is constrained by the use of a single fixed kernel composition for the GP model.
There are over 50 potential kernel combinations for forecasting time series; however, the
Julia programming language currently lacks an optimization method to determine the best
kernel composition or to identify optimal hyperparameters based on the dataset.

Limited access to systems with higher computational power is a significant limitation
of this study. Time series forecasting models, particularly ETS, MLP, and GP, have optimal
hyperparameters that may require advanced computing resources, such as supercomputers,
for more efficient forecasting. Additionally, increasing the dataset size might enhance
model performance, but the constraints on computational storage made this unfeasible.
Consequently, this research focused on a 20-year segment of the dataset due to available
computational resources. Access to high-performance computing systems could potentially
yield better results.

Finally, the ARIMA, ETS, and GP models were implemented using Julia, whereas the
MLP model was developed with Python. Julia, being a relatively newer programming
language compared to Python, is still evolving, with continuous innovation and the de-
velopment of new models and packages for time series forecasting. In contrast, Python
is a well-established language with a wide array of packages. These differences in the
maturity and ecosystems of the two languages may have influenced the performance and
optimization capabilities of the models.

It is important to note that time series forecasting models primarily rely on historical
data and do not account for the underlying physical processes, such as thermodynamics
or fluid dynamics, that influence weather patterns. Additionally, these models assume
constant impacts of climate change, which limits their ability to predict future conditions
that might diverge significantly from past trends, such as potential reductions in green-
house gas emissions. Therefore, it is crucial to acknowledge the uncertainties inherent in
time series forecasting and the influence of uncontrolled variables when projecting future
weather patterns.

Moreover, time series analysis includes a wide range of methodologies that extend
beyond the scope of this study, and statistical models continue to advance. Future research
could include exploring additional machine learning methods for climate time series
forecasting, such as Long Short-Term Memory (LSTM) networks, Support Vector Machines
(SVM), and Convolutional Neural Networks (CNN) [49–51]. Expanding datasets and
incorporating various forecasting models could uncover optimal methods for different
scenarios, suggesting that no single model is universally applicable.
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According to the temperature projections, the performance of the MLP model supports
the hypothesis that temperatures exhibit a positive rate of change with β > 0. Although
the rate of change may be small, it shows a consistent upward trend over time. This study
analyzes a 28-year period, which is considerably shorter than the IPCC’s 150-year period
analysis from the pre-industrial era to the present. Consequently, the rate of increase in
maximum and minimum temperatures might differ if a longer time frame, including the
pre-industrial era, were considered.

However, the rate of change in maximum and minimum temperatures varies across
the five cities. For example, the rate of change in minimum temperature is 0.00009 in San
Francisco, while in Chicago, it is 0.00021. Additionally, the rate of change differs between
the maximum and minimum temperatures across the five cities. In San Francisco, for
instance, the minimum temperature shows a much lower rate of change compared to the
maximum temperature. Although the rate of change is small, these differences suggest that
policy targets may not be universally applicable across all regions, as the indicators and
relationships between global temperature changes and their regional impacts differ [52].

While this paper focuses on a subset of time series forecasting techniques, many other
methods effective for different weather patterns were not included. It is crucial to con-
tinue innovating and improving these models to address climate challenges and support
decision-making processes regarding climate policies. Future research plans include ex-
panding comparative studies by incorporating additional time series forecasting models
and improving hyperparameter optimization. By broadening the scope of comparative
studies, we better understand the range of available forecasting models and identify those
best suited for specific weather patterns and characteristics, considering factors such as
geographic features and population.
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Appendix A

Appendix A.1. ACF and PACF Plots for Maximum and Minimum Temperatures of the Four
Remaining Cities

Figures A1–A4 illustrates the ACF and PACF plots for maximum and minimum
temperatures in Chicago, Boston, San Francisco, and Miami, in that order. These plots
are configured with a maximum lag order of 25, and the black straight and dashed line
represent the thresholds for the 99% and 95% confidence interval, respectively. The PACF
plots employ a step-wise approach using two estimation methods. The blue bars depict
the ’step’ method, which estimates AR parameters for an expanding model. In contrast,
the red bars represent the ’real’ method, which provides the true PACF by accounting for
the linear effects of previous lags [31]. Similar to the ACF and PACF plots for Houston’s
temperatures (Figure 3), the ACF plots exhibit a slow decline, while the PACF plots exhibit
a few significant lags at early stages. Consequently, the temperature datasets for all four
cities are also well-suited for a pure AR model.

Figure A1. Autocorrelation Function (ACF) (top) and Partial Autocorrelation Function (PACF) (bottom)
for Chicago’s maximum (right) and minimum (left) temperatures, based on the training dataset.

Figure A2. Cont.
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Figure A2. Autocorrelation Function (ACF) (top) and Partial Autocorrelation Function (PACF) (bottom)
for Boston’s maximum (right) and minimum (left) temperatures, based on the training dataset.

Figure A3. Autocorrelation Function (ACF) (top) and Partial Autocorrelation Function (PACF)
(bottom) for San Francisco’s maximum (right) and minimum (left) temperatures, based on the
training dataset.

Figure A4. Cont.
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Figure A4. Autocorrelation Function (ACF) (top) and Partial Autocorrelation Function (PACF) (bottom)
for Miami’s maximum (right) and minimum (left) temperatures, based on the training dataset.

Appendix A.2. Time Series Decomposition Plots for Maximum and Minimum Temperatures of the
Four Remaining Cities

Figures A5–A8 show the time series decomposition of maximum and minimum tempera-
tures for Chicago, Boston, San Francisco, and Miami, in that order. Each plot divides the time
series observations into data (top), trend (first middle), seasonal (second middle), and remainder
(bottom). Similar to the time series decomposition plot for Houston (Figure 4), all plots clearly
indicate the presence of seasonal components and the absence of a trend component.

Figure A5. Plots of time series decomposition for Chicago’s maximum (right) and minimum (left)
temperatures, based on the training dataset.
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Figure A6. Plots of time series decomposition for Boston’s maximum (right) and minimum (left)
temperatures, based on the training dataset.

Figure A7. Plots of time series decomposition for San Francisco’s maximum (right) and minimum
(left) temperatures, based on the training dataset.
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Figure A8. Plots of time series decomposition for Miami’s maximum (right) and minimum (left)
temperatures, based on the training dataset.
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