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Abstract: Power consumption in the home has grown in recent years as a consequence of the
use of varied residential applications. On the other hand, many families are beginning to use
renewable energy, such as energy production, energy storage devices, and electric vehicles. As a
result, estimating household power demand is necessary for energy consumption monitoring and
planning. Power consumption forecasting is a challenging time series prediction topic. Furthermore,
conventional forecasting approaches make it difficult to anticipate electric power consumption
since it comprises irregular trend components, such as regular seasonal fluctuations. To address
this issue, algorithms combining stationary wavelet transform (SWT) with deep learning models
have been proposed. The denoised series is fitted with various benchmark models, including Long
Short-Term Memory (LSTM), Gated Recurrent Units (GRUs), Bidirectional Gated Recurrent Units
(Bi-GRUs), Bidirectional Long Short-Term Memory (Bi-LSTM), and Bidirectional Gated Recurrent
Units Long Short-Term Memory (Bi-GRU LSTM) models. The performance of the SWT approach
is evaluated using power consumption data at three different time intervals (1 min, 15 min, and
1 h). The performance of these models is evaluated using metrics such as Root Mean Square Error
(RMSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute Error (MAE). The SWT/GRU
model, utilizing the bior2.4 filter at level 1, has emerged as a highly reliable option for precise power
consumption forecasting across various time intervals. It is observed that the bior2.4/GRU model
has enhanced accuracy by over 60% compared to the deep learning model alone across all accuracy
measures. The findings clearly highlight the success of the SWT denoising technique with the bior2.4
filter in improving the power consumption prediction accuracy.

Keywords: stationary wavelet bior2.4; deep learning; GRU; power consumption; prediction

1. Introduction

Global electric energy consumption has been on the rise due to economic progress and
population growth [1]. The 2019 World Energy Outlook, published by the International
Energy Agency, predicts a 2.1% annual increase in worldwide electricity demand until 2040,
which is twice the rate of energy production under current policies. This is expected to lead
to a rise in total final energy consumption from 19% in 2018 to 24% in 2040 [2]. The housing
sector accounts for 27% of the global electricity demand and has a significant impact on
overall electricity usage [3]. Anticipating energy consumption is crucial for ensuring a
reliable power supply, especially since electricity is used concurrently during power plant
production. As a result, numerous predictive models have emerged over the past few
decades to forecast building energy consumption [4,5]. In the following discussion, we will
explore some of the recently published works in this field.
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Forecasting energy consumption is a complex task in time series analysis. Data gathered
by smart sensors frequently include redundancy, missing values, outliers, and uncertainties [6],
which complicates the prediction of electrical energy usage with conventional methods due to
the unpredictable nature of energy consumption trends, including regular seasonal pat-
terns [4,7]. To maximize buildings’ energy efficiency, appropriate operational approaches
need to be incorporated into energy control schemes [8]. As a result, a variety of forecasting
techniques, including conventional and artificial intelligence (AI) models, have been pro-
posed to address energy consumption prediction. In their review of 116 published studies,
Wei et al. [9] identified 128 models for forecasting energy consumption, with 62.48% of them
being AI based. Energy consumption forecasting systems can be categorized into statistical
models, machine learning models, and hybrid models. Energy consumption forecasting
systems can be categorized into statistical models, machine learning models, and hybrid
models. Statistical techniques exhibit weaknesses in long-term forecasting and in capturing
the non-linear behavior of energy consumption data. In addition, computational methods
have shown limited effectiveness in predicting energy demand due to their non-stationary
nature and significant trends. Current machine learning approaches are often impacted by
overfitting, as dynamic correlations between variables and evolving data characteristics
pose challenges. This makes it difficult to ensure long-term reliability when overfitting
occurs. Despite their advanced mechanisms for handling long-term dependencies and
capturing temporal patterns, Recurrent Neural Networks (RNNs) can still be affected by
overfitting. To address these issues and improve prediction accuracy, hybrid models have
been proposed. Combining wavelet filtering with deep learning is being investigated to
ensure both high-quality input data and optimized data-driven model architectures.

This research not only explores the performance of wavelet-based denoising in
improving deep learning model accuracy but also emphasizes the importance of selecting
the most suitable mother wavelet for a given dataset. This work makes two notable con-
tributions: First, it employs the biorthogonal wavelet (bior2.4) for its key features, such
as perfect reconstruction and symmetry, which make it highly suitable for decomposing
electrical data time series. By harnessing these properties, the stationary wavelet transform
(SWT) is used to analyze and predict energy consumption patterns. SWT allows for the
extraction of valuable insights from different frequency components of the time series data,
offering a deeper understanding of both short-term fluctuations and long-term trends in
energy usage. Second, Gated Recurrent Units (GRUs), an advanced type of recurrent neural
network (RNN), are used to build predictive models. GRU excels at managing sequential
data and capturing time-dependent patterns, making it well suited for energy consumption
forecasting. Its robustness and efficiency contribute to highly accurate predictions. By
combining wavelet-transformed bior2.4 data with GRU-based modeling, significant im-
provements in forecast accuracy are achieved. The models’ performance is evaluated using
real-world data from a benchmark electricity load forecasting dataset, confirming their
reliability. The rest of this paper is organized as follows: Section 2 provides an in-depth
review of the existing literature. Section 3 explains the algorithms used in the proposed
forecasting model. Section 4 details the experimental analysis and results. Finally, Section 5
discusses the outcomes from the real-world dataset, conclusions, and references.

2. Related Works

In this section, we present a state-of-the-art review of the main statistical, machine
learning, and hybrid techniques used for predicting electricity power consumption in
recent years. In the past, statistical techniques were predominantly employed for the pur-
pose of forecasting energy demand. For instance, in reference [10], Bootstrap aggregating
was applied to the autoregressive integrated moving average (ARIMA) and exponential
smoothing techniques to predict energy demand across different countries. Addition-
ally, in reference [5], the seasonal autoregressive integrated moving average (SARIMA)
model was compared with the neuro-fuzzy model for forecasting electric load. The study
in [11] encompassed the application of linear regression (using both single and multiple
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predictors) as well as quadratic regression models to analyze the hourly and daily energy
consumption of a specific household. Moreover, reference [12] introduced the combination
of multiple regression and a genetic engineering technique to estimate the daily energy
usage of an administration building. However, both approaches were hindered by signif-
icant limitations, including the absence of occupancy data and the fact that none of the
models were validated for estimating energy usage in similar buildings. In addition, the
use of computational methods has demonstrated limited effectiveness in predicting energy
demand. Consequently, various prediction models have been experimented with, employ-
ing machine learning techniques to enhance forecasting accuracy [13–15]. For example,
Liu et al. [16] created a support vector machine (SVM) model for forecasting and analyzing
energy consumption in public buildings. Leveraging the robust non-linear capabilities of
support vector regression, Chen et al. [17] proposed a model for predicting electrical load
based on ambient temperature. In addition, energy consumption was predicted by ana-
lyzing the collective behavior of population dynamics in [18]. A learning algorithm based
on artificial neural networks and cuckoo search was proposed to forecast the electricity
consumption for the Organization of the Petroleum Exporting Countries (OPEC) [19]. In the
work of Pinto et al. [20], an ensemble learning model was proposed, combining three ma-
chine learning algorithms random forests, gradient-boosted regression trees, and Adaboost
to forecast energy consumption. However, existing machine learning methods are heavily
affected by overfitting. The evolving nature of data and the dynamic relationships between
variables present challenges, making it difficult to guarantee long-term reliability when
overfitting occurs. Several deep sequential learning neural networks have been developed
to predict electricity consumption. One study utilized a recurrent neural network model to
forecast medium- to long-term electricity usage patterns in both commercial and residential
buildings, offering one-hour resolution predictions [21]. Another approach introduced
a pooling-based recurrent neural network (RNN) to mitigate overfitting by increasing
data diversity and volume [22]. An RNN architecture utilizing Long Short-Term Memory
(LSTM) cells was also implemented to predict the energy load in [23]. In [24], a model
utilizing LSTM networks was put forward for routine energy consumption forecasting.
Additionally, [25] proposed an enhanced optimization technique involving a bagged echo
state network (ESN) refined by a differential evolution algorithm to estimate energy usage.
The effectiveness of deep extreme learning machines for predicting energy consumption in
residential buildings was evaluated, showing better performance than other artificial neural
networks and neuro-fuzzy systems [26]. In order to improve the predictability despite lim-
ited knowledge and historical evidence in energy consumption, Gao et al. [27] introduced
the use of two deep learning models: a sequence-to-sequence model and a two-dimensional
attention-based convolutional neural network. These deep learning models can uncover
crucial and hidden features required for accurate predictions, even from non-stationary
data with dynamic characteristics and varying biomarkers. However, conventional deep
learning models often struggle with capturing the spatiotemporal attributes pertinent to
energy usage [4]. Additionally, reference [28] highlights that deep learning approaches
are not consistently reliable or precise for forecasting power consumption. Several factors,
including the market cycle and regional economic policies, significantly influence energy
usage. As a result, it is highly challenging for a single intelligent algorithm to be sufficient [29].
Therefore, integrating effective preprocessing techniques and feature learning models for
predicting power consumption holds great potential for enhancing prediction performance.
For example, in [5], stacked autoencoders and extreme learning machines were employed
to efficiently extract energy consumption-related features, leading to more robust pre-
diction performance. Additionally, a hybrid approach was utilized in [30], combining
AdaBoost ensemble technology with a neural network, support vector regression machine,
genetic programming, and radial basis function network to improve energy consumption
forecasting. Furthermore, a hybrid SARIMA–metaheuristic firefly algorithm–least squares
support vector regression model was employed for energy consumption forecasting in [8].
Hu et al. [31] combined the echo state network, bagging, and differential evolution algo-
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rithm to forecast energy consumption. Additionally, a hybrid approach incorporating the
Logarithmic Mean Divisia Index, empirical mode decomposition, least-square support
vector machine, and particle swarm optimization was employed for energy consumption
forecasting [32]. Lastly, Kaytez [33] proposed the use of the least-square SVM and an
autoregressive integrated moving average for energy consumption forecasting. In [34], a
combination of three sophisticated reinforcement learning models—namely, asynchronous
advantage Actor–Critic, deep deterministic policy gradient, and recurrent deterministic
policy gradient—was introduced to address the complex and non-linear nature of energy
consumption forecasting. In [35], an ensemble model was proposed to divide energy
consumption data into stable and stochastic components. Furthermore, a hybrid model
incorporating ARIMA, artificial neural networks, and a combination of particle swarm
optimization with support vector regression was developed and utilized for load and en-
ergy forecasting [36]. This study [37] aimed to create an innovative electricity consumption
forecasting model called the Symbiotic Bidirectional Gated Recurrent Unit, which com-
bines the Gated Recurrent Unit, bidirectional approach, and Symbiotic Organisms search
algorithms. Furthermore, a comprehensive ensemble empirical mode decomposition with
adaptive noise and machine learning model, specifically extreme gradient boosting, was
recommended for predicting building energy consumption [38]. Another hybrid model
was introduced, combining CNN with multilayer bi-directional LSTM [39]. This paper [40]
introduced a hybrid forecasting approach that leverages the empirical wavelet transform
(EWT) and the Autoformer time series prediction model to address the challenges of non-
stationary and non-linear electric load data. Ref. [41] recommended integrating stationary
wavelet transform (SWT) with ensemble LSTM for forecasting energy consumption. Addi-
tionally, Singla et al. [42] developed an ensemble model to predict solar Global Horizontal
Irradiance (GHI) 24 h in advance for Ahmedabad, Gujarat, India, by combining wavelet
analysis with Bi-LSTM networks. They also evaluated the forecasting accuracy against
models using unidirectional LSTM, unidirectional GRU, Bi-LSTM, and wavelet-enhanced
Bi-LSTM. Moreover, Lin et al. [43] applied wavelet transform to decompose crude oil
price data, which were then input into a Bi-LSTM–Attention–CNN model for forecasting
future prices. Also, the results of [44] highlight the benefits of combining wavelet features
with convolutional neural networks, enhancing forecasting accuracy and automating the
feature extraction process. Ref. [45] presented a hybrid approach that integrates stationary
wavelet transform with deep transformers to forecast household energy consumption. In
addition, paper [46] presented an innovative ensemble forecasting model utilizing wavelet
transform for short-term load forecasting (STLF), based on the load profile decomposition
approach. The findings indicate that the proposed method outperforms both traditional
and state-of-the-art techniques in terms of prediction accuracy [47]. They introduce a
comparison between the wavelet-based denoising models and their traditional counter-
parts. The state of the art highlights the variability of techniques used for developing
accurate load forecasting models and the potential benefits of hybrid methods, particularly
by combining wavelet filtering with deep learning. This approach will be the focus of the
following sections.

3. Learning Model Algorithms
3.1. Long Short-Term Memory

Long Short-Term Memory (LSTM) is one of the most popular recurrent neural network
architectures due to the ability to extract features in automatic ways and model dependen-
cies of time series applications. The problem of the ANN vanishing gradient does not exist
for the structure of LSTM cells. For this reason, the choice of using LSTM algorithms is
established for power consumption prediction as time series modeling. Several variants
of LSTM architecture are presented in the literature. In our investigation, we will use the
basic architecture made by Graves and Schmidhuber: framewise phoneme classification
with bidirectional LSTM. The main idea of using the LSTM architecture is to include a
memory cell in the standard structure of the RNN architecture. The principal role of this
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memory cell is to help the LSTM module to store information over several time stamps for
use when needed. LSTM contains many gates to control the choice of information in the
data sequence that can be entered, stored, and left in the neural network model. A typical
structure of an LSTM cell has three gates named the forget gate, input gate, and output
gate. The architecture of the LSTM module contains X(t) as the input at time step t and
Y(t) as the output. H(t) represents the state of the memory cell. Each gate is represented
as a neuron with the sigmoid σ activation function. The input of the LSTM module X(t)
and the previous state of memory cell H(t) is used to generate a set of values from 0 to 1,
representing the information passed. Each neuron contains weight matrices w.

Firstly, we produce a candidate state G(t) in order to check if the memory cell will be
updated using tanh as the activation function:

G(t) = tanh(wgxX(t) + wghH(t− 1) + bg) (1)

where wgh denotes the weights between the input X and the candidate state G, wgh is the
weights between the candidate state G and the previous state H, and bg is the bias.

The first gate is named the forget gate F(t), which determines the amount of the
memory cell state we keep between timesteps, and is represented by

F(t) = σ(w f xX(t) + wc H(t− 1) + b f ) (2)

where w f x and w f g are the connections between the gate neuron F as well as the inputs X
and H, respectively. As previously stated, b f denotes the bias. It is supplied by the input
gate. The amount of the candidate state gt is added to the memory cell and is given by

I(t) = σ(wixX(t) + wih H(t− 1) + bi) (3)

where wix and wih are weight matrices for such input X and prior state H, respectively, and
b f is the bias. The new values are then written to the memory cell,

H(t) = I(t)⊙ G(t) + F(t)⊙ H(t− 1) (4)

where ⊙ represents a Hadamard or elementwise product. The output gate is computed in
the same way as the other gates:

O(t) = σ(woxX(t) + wohH(t− 1) + bo) (5)

where wox and woh are weight matrices for both the input X and prior state H, respectively,
and bo is the bias. The contents of the memory cell are transmitted through the gate and a
tanh function to confine the values to the same range as an ordinary tanh hidden unit to
create the output Y(t):

Y(t) = O(t)⊙ Tanh(H(t)) (6)

3.2. Bidirectional Gated Recurrent Units

The Gated Recurrent Unit (GRU) is a simpler version of the LSTM memory module
that performs similarly while being faster to compute. The three gates of the LSTM are
replaced with two: the update gate and the reset gate. Like LSTMs, these gates are activated
by sigmoid functions, causing their values to fall within the interval. Intuitively, the reset
gate specifies how much of the previous state we are interested in retaining. Similarly, an
update gate could allow us to determine which aspect of the new state is merely a copy of
the old. With the momentary time step input and the hidden state of the preceding step, the
GRU design displays the inputs for every one of the resetting and updating gates in a GRU.
The outputs of the two gates are provided by two entirely coupled layers with sigmoid
activation functions. For an instance of time step t, assume the input is a minibatch X(t)
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and the hidden value of the preceding step is H(t). After that, the corresponding reset and
update gates are computed as follows:

R(t) = σ(wrxX(t) + wxr H(t− 1) + br) (7)

Z(t) = σ(wxzX(t) + whz H(t− 1) + bz) (8)

where wrx, wxr and wxz, whz denote the weight parameters, and br,bz denote the bias
parameters. Then, at time step t, we integrate the reset gate R(t), which results in the
following candidate hidden stat H(t):

Ĥ(t) = Tanh(wxhX(t) + whh(R(t)⊙ H(t− 1)) + bh) (9)

where wxh and whh are the weight parameters, bh is the bias, and ⊙ is the Hadamard
product operator.

The final result is a candidate since we are still required to include the action of the
upgrade gate. The influence of past states can now be reduced by elementwise multiplying
R(t) and H(t 1). If the variables in the reset gate R(t) are close to 1, we restore a vanilla RNN.
The suggested hidden state is the result of an MLP with X(t) as the input value for each
of the reset gate entries approaching 0. As a result, any previous hidden state is reset to
defaults. Finally, we must consider the influence of the update gate Z(t). This influences
the degree to which the recently discovered hidden state H(t) reflects the prior state
H(t − 1) in comparison to the newest potential state h(t). As a result, the update gate
Z(t) may be used by simply taking into account the initial characteristic convex mixes of
H(t − 1) and h(t). As therefore, the eventual version function of the GRU is:

H(t) = (Z(t)⊙ H(t− 1)) + (1− Z(t))⊙ Ĥ(t) (10)

When the update gate is close to 1, we just preserve the previous state. In this
instance, the information is ignored, skipping a time step in the dependency chain. When
is close to 0, the current residual state reaches the candidate hidden state. Fortunately,
any unidirectional GRU may be easily transformed to a bidirectional GRU using a simple
process. Basically, two unidirectional GRU levels are built, coupled together in opposite
directions and functioning on identical input. For the first GRU layer, the initial value
entered is X(1), and the final input is X(T), but for the other GRU layer, the beginning input
is X(T) and the final input is X(1).To generate the final result of this bidirectional GRU level,
we just combine the relevant outcomes of the two previous unidirectional RNN levels.
Formally, we employ a tiny batch input and allow the hidden layer’s activation function
to be applied at every time step. The forward and backward hidden state upgrades are
as follows: −→

H (t) = ∅(wxhX(t) + whh
−→
H (t− 1) + bh) (11)

←−
H (t) = ∅(wxhX(t) + whh

←−
H (t− 1) + bh) (12)

where the weights wxh and whh, and the bh biases are all the model parameters.
We just mix the appropriate outputs of the two preceding unidirectional RNN layers

to obtain the final outcome of this bidirectional GRU layer. Formally, we use a little batch
input and enable the activation function of the hidden layer to be executed at every step in
the process. The following are the forward and reverse hidden state upgrades:

H(t) =
−→
H (t)⊕←−H (t) (13)

O(t) = whq H(t) + bq (14)

The output layer’s parameters for the model are the weight matrix whq and the bias
bq. While the two pathways feature different numbers of hidden units, this architecture
choice is rarely used in practice.
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3.3. Stationary Wavelet

The wavelet transform addresses the limitations of the windowed Fourier transform
by adjusting the filter’s range based on frequency, allowing for suitable time resolution for
high-frequency components and necessary frequency resolution for low-frequency elements
of the signal. Unlike the Fourier transform, which captures global frequency information
across the entire signal, the wavelet transform offers a more versatile approach suitable
for signals with brief periods of specific oscillations. This method involves decomposing a
function into a series of wavelets. The concept of wavelets dates back to 1940 when Norman
Ricker introduced the term and developed mathematical equations to describe vibrations
traveling through the Earth’s crust. Subsequently, Morlet and Grossman introduced the
continuous wavelet transform in 1984. In the continuous wavelet transform, the wavelet
function is both time-shifted and scaled to perform the transformations for the continuous
wavelet transformation. The continuous wavelet transform produces a substantial amount
of redundant information due to the close relationship between the coefficient values at
each scale. In 1988, Ingrid Daubechies introduced the concept of discrete wavelets, aiming
to reduce redundancy and enable data compression. Daubechies developed a complete set
of waveform functions, commencing with the Haar waveform. The wavelet transformation
function exhibits characteristics such as limited energy, fluctuation, continuous wavelet
eligibility, compact support, disappearing moments, and orthogonal alignment. As the
wavelet transform is characterized by a series of parameters within a confined region and
is globally zero, it possesses compact support. The undecimated discrete wavelet trans-
formation, known as the stationary wavelet transform, presents an alternative approach
to discrete wavelet functions. Essentially, the stationary wavelet transform is the discrete
wavelet transform without the data reduction step. In the discrete wavelet transform, the
total number of coefficients for each level is half that of the previous level, whereas for
the stationary wavelet transform, the total number of coefficients remains constant for
each level. This is achieved by applying a further sampling function to the waveform and
scaling filter parameters, causing the coefficients of the scaling and wavelet filters to vary
at each level, as opposed to applying the decomposition method to the wavelet values after
each level.

The wavelet transform and scaling variables for each level are upsampled using the
previous level, and similar to the discrete wavelet transform, the stationary wavelet trans-
form also has a reverse transform. However, the reverse of the stationary wavelet transform
differs from that of the discrete wavelet transform due to the absence of the increased
sampling operator. Additionally, the inverse stationary wavelet transform modifies the
coefficients of the filter rather than the data, involving the downsampling of the filters. The
retention of redundant information in the stationary wavelet transform contributes to its
translation invariance, making it advantageous for filtering purposes. Furthermore, as the
decimation process is not utilized, the stationary wavelet transform possesses the same
processing complexity as the fast Fourier transform, although the memory complexity must
be considered.

4. Methodology and Results

This research establishes a framework for predicting power usage to yield reliable
findings. The methodology of this work is presented in Figure 1. This flowchart illustrates
the sequence of steps in the proposed algorithm, spanning from data input to model
evaluation. Each step is vital for ensuring that the data are correctly processed, the model
is accurately trained, and the performance is comprehensively evaluated.

The algorithm begins with the input data stage, where the dataset is collected and
loaded. This initial step is crucial to ensure that the data are ready for subsequent process-
ing. Following this, the stationary wavelet transform normalized stage involves applying
a stationary wavelet transform (SWT) to the data, followed by normalization. This trans-
formation is essential for converting the data into a form that can be effectively utilized in
further processing and modeling.
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Next, in the preprocessing data stage, the data undergo various cleaning and prepara-
tion procedures. This includes handling missing values, removing noise, and splitting the
data into training and testing sets. Additionally, feature engineering may be conducted to
enhance the dataset’s utility for the model. This preprocessing step ensures the data are in
optimal condition for model training.

The fourth step, training data with the GRU–bior2.4 algorithm, involves initializing
the GRU–bior2.4 model and training it using the preprocessed training data. This stage is
critical, as it constitutes the core machine learning process where the model learns from the
data. The final stage, evaluation model with metric data, focuses on assessing the trained
model’s performance using the testing data. Evaluation metrics such as RMSE, MAE, and
MAPE are calculated to gauge the model’s performances.

The process concludes with the end stage, marking the completion of the algorithm’s
execution. This structured sequence ensures a systematic approach to data handling, model
training, and performance evaluation, ultimately leading to a robust and reliable deep
learning learning model.

Input Data

Stationary
wavelet ‘bior2.4’

Data Processsing

Deep-Learning
Algorithm

‘Bi-GRU LSTM’

Prediction Power
Consumption

Figure 1. Flowchart of the proposed algorithm.

The IHEPC dataset, which is accessible in the UCI repository [48], is used for evaluating
the validation of model performance. IHEPC is a free residential dataset obtainable from
the machine learning database at UCI that includes electrical consumption data from 2006
to 2010. It has 2,075,259 values, with a total of 25,979 outstanding values. Values that are
missing represent 1.25% of the total data and are dealt with at the phase of preprocessing.
This dataset contains power usage information at a one-minute sampling rate for over
four years. For our evaluation, we separated the data into a set for training and a set for
testing. During training, the predictive model is tuned using a training set, and the forecast
component predicts values for output from information that are not observed in the testing
set. Figure 2 presents the original load profile.

Reliable power consumption forecasts improve energy utilization costs, help organiza-
tions make better energy planning choices, and save a significant amount of money and
energy. However, forecasting power usage accurately is difficult since it involves dataset
dynamics and random fluctuations. In this strategy, 80% of the collected information is
utilized for training, while the remaining 20% is used for testing. In a machine learning
context, the key objective for our models is to identify the function that relates inputs to
outputs using examples from designated training information consisting of known input
and output pairs. In order to be processed by our algorithms for forecasting the use of
electricity, information should be transformed into an appropriately supervised machine
learning issue [38]. As a result, the time series is transformed into pairs of inputs and
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outputs using the window sliding approach, with 15 past time steps utilized as features to
forecast the next step in the time series. The input data are preprocessed in the first stage
to eliminate anomalies, missing, and duplicate values. For normalizing the input dataset
to a given range, we employ typical scalar approaches. After that, the transformed input
data are passed to the training process step. The models LSTM, GRU, Bi-GRU, Bi-LSTM,
and Bi-GRU LSTM are then evaluated. Finally, we assess our models using metrics such as
RMSE, MAE and MAPE. In simple terms, these measures compute the difference between
the expected and real values.

Figure 2. Load profile of 1 min time stamp over IHEPC dataset.

RMSE =

√
(

∑N
n=1(yi − ŷi)2

N
) (15)

MAE =
∑N−1

i=0 |yi − ŷi|
N

(16)

MAPE =
100%

N

N−1

∑
i=0

yi − ŷi
yi

(17)

where yi, ŷi, and N represent the real value of data, the predicted value of data, and the
number of samples of data, respectively.

The Mean Absolute Error (MAE) is a metric that measures the average magnitude of
errors in a set of predictions, without considering whether the errors are positive or negative.
It is calculated as the mean of the absolute differences between predicted and actual values.
In contrast, RMSE assesses the relative difference between predicted and actual values.
Meanwhile, MAPE calculates the average absolute percentage error between the forecasted
and true values. It offers a clear indication of prediction accuracy in percentage terms,
with a lower MAPE signifying better model performance. We also perform experiments
on multiple deep learning models for comparison, including LSTM, GRU, Bi-GRU, Bi-
LSTM, and Bi-GRU LSTM. The forecasting models are trained for up to 15 epochs using
the previously mentioned methodologies. The model is developed using an HP Omen PC
equipped with a Core i5 CPU and 16 GB of RAM. The code is written in Python3 Keras,
with TensorFlow as the backend and the optimization algorithm Adam.

Table 1 summarizes the results of several deep learning algorithms. LSTM obtained
0.21, 0.07, and 8.55 RMSE, MAE, and MPAE, GRU obtained 0.20, 0.07, and 9.60 RMSE,
MAE, and MPAE, Bi-GRU obtained 0.21, 0.08, and 9.94 RMSE, MAE, and MPAE, Bi-LSTM
obtained 0.21, 0.08, and 9.15 RMSE, MAE, and MPAE, and Bi-GRU LSTM obtained 0.21,
0.08, and 8.98 RMSE, MAE, and MPAE. Figure 3 illustrates the prediction performance
of the GRU model with 1-minute time stamps over the IHEPC dataset and a zoomed-in
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view of the GRU model’s prediction performance for 1 randomly selected day from the
same dataset. Although the predictions in certain areas of Figure 3b appear acceptable, the
model’s accuracy could be improved by referring to the MAPE values in the last column of
Table 1.

Table 1. Performance of deep learning models 1 min time stamp.

Deep Learning RMSE (KWh) MAE (KWh) MAPE (%)

LSTM 0.21 0.07 8.55
GRU 0.20 0.07 9.60

Bi-GRU 0.21 0.08 9.94
Bi-LSTM 0.21 0.08 9.15

Bi-GRU LSTM 0.21 0.08 8.98

Figure 3. (a) Prediction performance of the GRU model 1 min time stamp over IHEPC dataset.
(b) Zoomed-in part 1 day of prediction performance of GRU model 1 min time stamp over
IHEPC dataset.

SWT decomposes a signal into high- and low-frequency aspects identified as detail and
approximation parameters by feeding it across high-pass and low-pass filters, respectively.
The fundamental benefit of SWT is that it overcomes the translation invariance of DWT
by eliminating downsamplers and upsamplers. As a result, the SWT variables have the
same sampling count as the initial signal. Before proceeding with standard SWT analysis,
the following variables must be determined: the mother wavelet and the number of
decomposition stages. The mother wavelet is often chosen based on correlations between
the mother wavelet and the requested signal. The modified signal has the same shape as
the original load profile but with certain modifications. By removing extraneous noise,
SWT allows the model to concentrate on the key patterns and relationships within the data.
Consequently, we apply a wavelet transform to denoise the original series before modeling.
Specifically, the bior2.4 wavelet filter is utilized for stationary wavelet transformation,
decomposing each series prior to feeding it into the LSTM, GRU, Bi-LSTM, Bi-GRU, and
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Bi-GRU LSTM models. Figure 4 shows the difference between the original and transformed
load profiles and provides a zoomed-in view of this difference for 1 day.

Figure 4. (a) Difference between original and transformed load profile. (b) Zoomed-in part 1 day of
the difference between the original and transformed load profile.

In the next step, we need to choose the best mother wavelet. So, we introduce a
comparative study between different mother wavelets used in the literature. The most
popular wavelet are bior2.4, rbio2.4, coif2, db2, and sym2. The competition data exhibit
a wide variation in the range of values across different features, which impacts both the
accuracy and stability of our forecasting model. To address this, all feature ranges are
normalized by rescaling them to a consistent scale. This normalization is performed in
Python (version 3.8, developed by the Python Software Foundation, Wilmington, DE, USA)
using the MinMaxScaler method from the sklearn package.

Tables 2–6 summarize the findings of several mother wavelets bior2.4, rbio2.4, coif2,
db2, and sym2 with different deep learning algorithms LSTM, GRU, Bi-LSTM, Bi-GRU, and
Bi-GRU LSTM. The results found show that bior2.4 is the most relevant mother wavelet
compared to the mother wavelets used for all deep learning models. For bior2.4 with
deep learning models, we see significant improvement in energy consumption prediction
accuracy. bior2.4/LSTM obtained 0.07, 0.03, and 8.83 RMSE, MAE, and MPAE. These results
show improvements in RMSE and MAE by 66.66% and 28% respectively. bior2.4/GRU
obtained 0.06, 0.04, and 5.65. These results demonstrate improvements in RMSE, MAE, and
MPAE by 70%, 42.85%, and 47.67%, respectively. bior2.4/Bi-LSTM achieved RMSE, MAE,
and MPAE scores of 0.07, 0.04, and 7.93 respectively. These results represent improvements
of 66.66%, 42.85%, and 7.25% in RMSE, MAE, and MPAE. bior2.4/Bi-GRU achieved scores
of 0.07, 0.03, and 5.18, respectively, demonstrating improvements of 66.66%, 62.5%, and
46.04% in RMSE, MAE, and MPAE. Bi-GRU LSTM obtained 0.07, 0.03, and 5.09 RMSE,
MAE, and MPAE. These results represent improvements of 66.66%, 42.85%, and 43.31% in
RMSE, MAE, and MPAE. Based on these results, we can conclude that the bior2.4/GRU
model provides the most accurate predictions. So we accurately predict the challenging
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numbers associated with significant variance in power consumption, resulting in precise
and reliable power usage forecasts as shown in Figure 5 which illustrates the prediction
performance of the proposed model with 1-minute time stamps over the IHEPC dataset
and a zoomed-in view of the proposed model’s prediction performance for 1 randomly
selected day from the same dataset.

Table 2. Accuracy measures of different mother wavelet on SWT using Bi-GRU LSTM 1 min time
stamp over IHEPC dataset.

Wavelet + Deep
Learning RMSE (KWh) MAE (KWh) MAPE (%)

bior2.4/Bi-GRU LSTM 0.07 0.03 5.09
rbio2.4/Bi-GRU LSTM 0.09 0.06 13.41
db2/Bi-GRU LSTM 0.12 0.05 7.10
coif2/Bi-GRU LSTM 0.23 0.1 12.92
sym2/Bi-GRU LSTM 0.13 0.07 12.81

Table 3. Accuracy measures of different mother wavelet on SWT using Bi-GRU 1 min time stamp
over IHEPC dataset.

Wavelet + Deep
Learning RMSE (KWh) MAE (KWh) MAPE (%)

bior2.4/Bi-GRU 0.07 0.03 5.18
rbio2.4/Bi-GRU 0.07 0.03 6.13

db2/Bi-GRU 0.12 0.05 7.35
coif2/Bi-GRU 0.22 0.08 10.13
sym2/Bi-GRU 0.12 0.06 8.73

Table 4. Accuracy measures of different mother wavelet on SWT using Bi-LSTM 1 min time stamp
over IHEPC dataset.

Wavelet + Deep
Learning RMSE (KWh) MAE (KWh) MAPE (%)

bior2.4/Bi-LSTM 0.07 0.04 7.93
rbio2.4/Bi-LSTM 0.06 0.03 4.92

db2/Bi-LSTM 0.12 0.05 6.49
coif2/Bi-LSTM 0.22 0.08 10.81
sym2/Bi-LSTM 0.12 0.05 7.25

Table 5. Accuracy measures of different mother wavelet on SWT using LSTM 1 min time stamp over
IHEPC dataset.

Wavelet + Deep
Learning RMSE (KWh) MAE (KWh) MAPE (%)

bior2.4/ LSTM 0.07 0.05 8.83
rbio2.4/ LSTM 0.07 0.04 6.53

db2/ LSTM 0.12 0.06 8.13
coif2/ LSTM 0.22 0.08 10.76
sym2/ LSTM 0.12 0.05 7.70
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Table 6. Accuracy measures of different mother wavelet on SWT using GRU 1 min time stamp over
IHEPC dataset.

Wavelet + Deep
Learning RMSE (KWh) MAE (KWh) MAPE (%)

bior2.4/GRU 0.06 0.03 5.65
rbio2.4/GRU 0.07 0.04 7.76

db2/GRU 0.12 0.05 7.14
coif2/GRU 0.22 0.10 14.25
sym2/GRU 0.12 0.05 7.15

Figure 5. (a) Prediction performance of the proposed model 1 min time stamp over the IHEPC dataset;
(b) zoomed-in part of 1 day of the prediction performance of the proposed model with a 1 min time
stamp over the IHEPC dataset.

Table 7 summarizes the results of several deep learning algorithms. LSTM obtained
0.46, 0.28 and 38.41 RMSE, MAE and MPAE; GRU obtained 0.46, 0.28 and 39.13 RMSE,
MAE and MPAE; Bi-GRU obtained 0.46, 0.28, and 43.58 RMSE, MAE, and MPAE; Bi-LSTM
obtained 0.46, 0.28, and 37.75 RMSE, MAE and MPAE; and Bi-GRU LSTM obtained 0.47,
0.29, and 40.75 RMSE, MAE and MPAE. The model fails to estimate the precise value when
there is a quick change or a peak in consumption. The results suggest that employing deep
learning algorithms to estimate power usage is not always reliable as shown in Figure 6.
Several factors influence the prediction performance, such as lowering the quantity of data
in the database utilized by the model.
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Table 7. Performance of deep learning model 15 min time stamp.

Deep Learning RMSE (KWh) MAE (KWh) MAPE (%)

LSTM 0.47 0.28 38.41
GRU 0.46 0.28 39.13

Bi-GRU 0.46 0.28 43.58
Bi-LSTM 0.46 0.28 37.75

Bi-GRU LSTM 0.47 0.29 40.75

Figure 6. (a) Prediction performance of the GRU model with a 15 min time stamp over the IHEPC
dataset. (b) Zoomed-in part of 3 days of the prediction performance of the GRU model with a 15 min
time stamp over the IHEPC dataset.

Table 8 summarizes the findings for mother wavelet bior2.4 combined with different
deep learning algorithms (LSTM, GRU, Bi-LSTM, Bi-GRU, and Bi-GRU LSTM). For bior2.4
paired with these models, there is a notable improvement in the energy consumption
prediction accuracy. bior2.4/LSTM achieved RMSE, MAE, and MPAE scores of 0.16, 0.11,
and 15.66, respectively, showing improvements of 65.95%, 60.71%, and 59.22% in RMSE,
MAE, and MAPE. bior2.4/GRU obtained scores of 0.15, 0.10, and 13.62, demonstrating
improvements of 67.73%, 64.28%, and 65.19% in RMSE, MAE, and MPAE. bior2.4/Bi-LSTM
recorded RMSE, MAE, and MPAE scores of 0.15, 0.11, and 17.55, reflecting improvements
of 67.39%, 60.71%, and 53.50%. bior2.4/Bi-GRU achieved 0.15, 0.10, and 15.07 in RMSE,
MAE, and MPAE, showing improvements of 67.39%, 64.28%, and 59.72%. bior2.4/Bi-GRU
LSTM obtained scores of 0.16, 0.11, and 15.66, with improvements of 65.95%, 62.06%, and
61.57%. From these results obtained, we can deduce that the bior2.4/GRU model gives the
most precise model. These findings confirm our ability to accurately predict the challenging
numbers associated with significant variance in power consumption, resulting in precise
and reliable power usage forecasts as shown in Figure 7.
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Table 8. Accuracy measures of bior2.4 mother wavelet on SWT using deep learning algorithms 15 min
time stamp over the IHEPC dataset.

Wavelet + Deep
Learning RMSE (KWh) MAE (KWh) MAPE (%)

bior2.4/Bi-GRU LSTM 0.16 0.11 15.66
bior2.4/Bi-GRU 0.15 0.10 15.07
bior2.4/Bi-LSTM 0.15 0.11 17.55

bior2.4/LSTM 0.15 0.10 13.55
bior2.4/GRU 0.15 0.1 13.62

Figure 7. (a) Prediction performance of the proposed model with a 15 min time stamp over the IHEPC
dataset. (b) Zoomed-in part of 3 days of the prediction performance of the proposed model with a
15 min time stamp over the IHEPC dataset.

Table 9 summarizes the results of several deep learning algorithms. LSTM obtained
0.50, 0.37, and 52.39 RMSE, MAE, and MPAE; GRU obtained 0.52, 0.38, and 55.44 RMSE,
MAE, and MPAE; Bi-GRU obtained 0.52, 0.36, and 47.28 RMSE, MAE, and MPAE; Bi-LSTM
obtained 0.51, 0.36, and 49.71 RMSE, MAE and MPAE; and Bi-GRU LSTM obtained 0.52,
0.37, and 52.72 RMSE, MAE, and MPAE. The model struggles to accurately estimate values
during sudden changes or peaks in consumption. The findings indicate that using deep
learning algorithms to predict power usage can sometimes be unreliable. Various factors,
including a reduction in the amount of data available to the model, affect its prediction
performance as demonstrated in Figure 8.
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Table 9. Performance of deep learning models with a 1 h time stamp.

Deep Learning RMSE (KWh) MAE (KWh) MAPE (%)

LSTM 0.52 0.37 52.39
GRU 0.52 0.38 55.44

Bi-GRU 0.52 0.36 47.28
Bi-LSTM 0.51 0.36 49.71

Bi-GRU LSTM 0.52 0.37 52.72

Figure 8. (a) Prediction performance of the GRU model with a 1 h time stamp over the IHEPC dataset.
(b) Zoomed-in part of 6 days of the prediction performance of the GRU model with a 1 h time stamp
over the IHEPC dataset.

Table 10 summarizes the results for mother wavelet bior2.4 combined with different
deep learning algorithms (LSTM, GRU, Bi-LSTM, Bi-GRU, and Bi-GRU LSTM). Pairing
bior2.4 with these models leads to significant improvements in predicting energy consump-
tion accuracy. bior2.4/LSTM achieved RMSE, MAE, and MPAE scores of 0.18, 0.13, and
18.98, respectively, showing improvements of 65.38%, 64.48%, and 63.77% in RMSE, MAE,
and MAPE. bior2.4/GRU obtained scores of 0.18, 0.13, and 18.21, demonstrating improve-
ments of 65.38%, 65.78%, and 67.15% in RMSE, MAE, and MPAE. bior2.4/Bi-LSTM recorded
RMSE, MAE, and MPAE scores of 0.18, 0.14, and 20.83, reflecting improvements of 64.70%,
61.11%, and 58.09%. bior2.4/Bi-GRU achieved scores of 0.17, 0.13, and 17.53 in RMSE,
MAE, and MPAE, showing improvements of 67.30%, 63.88%, and 62.92%. bior2.4/Bi-GRU
LSTM obtained scores of 0.18, 0.13, and 17.91, reflecting improvements of 65.38%, 64.86%,
and 66.02%. These results indicate that the bior2.4/Bi-GRU and bior2.4/GRU models
give the most accurate predictions. The results of these two models are nearly identical
across all metrics used to assess accuracy. However, since the simulation time of the
bior2.4/GRU model is faster than that of the bior2.4/Bi-GRU model, we can conclude that
the bior2.4/GRU model is more efficient for predicting power consumption. These results
validate our capability to precisely forecast the demanding figures linked with notable
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fluctuations in power consumption, leading to dependable and accurate predictions of
power usage as shown in Figure 9.

Table 10. Accuracy measures of bior2.4 mother wavelet on SWT using deep learning algorithms with
a 1 h time stamp over the IHEPC dataset.

Wavelet + Deep
Learning RMSE (KWh) MAE (KWh) MAPE (%)

bior2.4/Bi-GRU LSTM 0.18 0.13 17.91
bior2.4/Bi-GRU 0.17 0.13 17.53
bior2.4/Bi-LSTM 0.18 0.14 20.83

bior2.4/LSTM 0.18 0.13 18.98
bior2.4/GRU 0.18 0.13 18.21

Figure 9. (a) Prediction performance of the proposed model with a 1 h time stamp over the IHEPC
dataset. (b) Zoomed-in part of 6 days of the prediction performance of the proposed model with a 1 h
time stamp over the IHEPC dataset.

Our analysis shows that the proposed model excels in predicting sudden changes or
peaks in consumption more accurately than deep learning algorithms. Although wavelet
and deep learning methods are generally dependable for forecasting power consumption,
the proposed model surpasses these approaches in both precision and reliability. Several
factors affect the performance of the prediction such as reducing the amount of data and
complexity in the database used in the model. These methods have been demonstrated to
generate reliable forecasts. While various methods exist for predicting power consumption,
they often fail to consistently achieve expected performance levels due to their unique
advantages and disadvantages. Denoising helps remove unnecessary noise, enabling the
model to focus on the essential patterns and correlations within the data. As a result,
the original time series was denoised using wavelet transformation prior to applying the
model. The stationary wavelet transform was performed using the bior2.4 wavelet filter,
decomposing each series before feeding it into the LSTM, GRU, Bi-LSTM, Bi-GRU, and
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Bi-GRU LSTM models. The models’ hyperparameters were fine-tuned through numerous
simulations of expected values. In this database, we employed many domestic devices
such as a dishwasher, an oven, and a microwave in the kitchen. In the laundry area, we
also have a washing machine, a tumble dryer, a refrigerator, and a lamp. We utilized a
water heater that was powered by electricity and an air conditioner in the remainder of the
residence. It is critical to reduce the prediction error associated with sudden fluctuations.
Our model is able to predict the sudden change in electric charge when using critical loads
like washing machines, ovens, and air conditioners.

5. Conclusions

Building safe, dependable, entirely automated smart grid systems necessitates the
use of a reliable power consumption modeling system. This work makes two significant
contributions to the field of energy forecasting, showcasing advancements in both analytical
methods and predictive modeling.

Firstly, the application of biorthogonal wavelets (bior2.4) for time series decomposition
represents a major innovation. Its properties of perfect reconstruction and symmetry have
proven highly effective in analyzing energy consumption patterns. By employing the
stationary wavelet transform (SWT), we extracted detailed insights from various frequency
components of the time series data. This method offers a more refined understanding of
short-term fluctuations and long-term trends in energy consumption.

Secondly, the incorporation of Gated Recurrent Units (GRUs) into predictive models
marks a notable advancement in deep learning. GRUs, with their sophisticated architecture,
excel at processing sequential data and capturing time-dependent patterns, making them
particularly reliable for energy forecasting. The synergy between GRU modeling and
stationary wavelet-transformed data with mother wavelet bior2.4 significantly enhanced
prediction accuracy. The models were rigorously validated using a real-world electrical
load forecasting dataset on different time stamps 1 min, 15 min, and 1 h. It is important
to note whether or not the choice of intervals 1 min, 15 min, and 1 h affects the accuracy
and reliability of the proposed method. Based on the analysis, the difference between these
intervals significantly impacts the predictive performance. For example, the prediction
accuracy decreases as the interval duration increases as shown by quantitative error mea-
surements such as the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE).
This indicates that shorter intervals result in more accurate predictions, thus demonstrat-
ing the sensitivity of the method to interval length. Comparative analysis between SWT
with the bior2.4 filter and traditional models confirmed the substantial improvement in
predictive accuracy introduced by wavelet transforms. Across all time intervals, denoising
consistently led to significant reductions in error metrics, with decreases ranging from 60%
to over 70%. These findings emphasize the potential of integrating advanced analytical
techniques with innovative deep learning methods to improve forecasting accuracy and
reliability, contributing valuable insights to the field and setting the stage for future research
and practical applications.
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Abbreviations
The following abbreviations are used in this manuscript:

LSTM Long Short-Term Memory
Bi-LSTM Bidirectional long Short-Term Memory
GRU Gated Recurrent Units
Bi-GRU Bidirectional Gated Recurrent Units
RNN Recurrent Neural Network
AI Artificial Intelligence
SARIMA Seasonal Autonomous Integrated Moving Average
ARIMA autoregressive integrated moving average
SVM Support Vector Machine
ANN Artificial Neural Network
RMSE Root Mean Square Error
MAE Mean Absolute Error
DWT Discrete Wavelet Transform
SWT Stationary Wavelet Transform
MAPE Mean Absolute Percentage Error
OPEC Organization of the Petroleum Exporting Countries
ESN echo state network
CNN Convolutional Neural Network
IHEPC Individual Household Electric Power Consumption
UCI Machine Learning Repository
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