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Abstract: This study presents a novel methodology for multi-step Bitcoin (BTC) price
prediction by combining advanced stacking-based architectures with temporal attention
mechanisms. The proposed Temporal Attention-Enhanced Stacking Network (TAESN)
integrates the complementary strengths of diverse machine learning algorithms while
emphasizing critical temporal features, leading to substantial improvements in forecasting
accuracy over traditional methods. Comprehensive experimentation and robust evaluation
validate the superior performance of TAESN across various BTC prediction horizons.
Additionally, the model not only demonstrates enhanced predictive accuracy but also offers
interpretable insights into the temporal dynamics underlying cryptocurrency markets,
contributing to both practical forecasting applications and theoretical understanding of
market behavior.

Keywords: cryptocurrency price forecasting; temporal attention mechanism; LSTM; GRU;
multi-step prediction; stacking ensemble learning; Temporal Convolutional Networks
(TCNs); hybrid machine learning models

1. Introduction
The cryptocurrency market, characterized by its extreme volatility and complexity,

presents unique challenges for accurate price prediction. Traditional forecasting models
often fall short in capturing the intricate temporal dependencies and non-linear patterns
inherent in cryptocurrency data [1,2]. These limitations highlight the critical need for
advanced predictive methodologies capable of addressing the volatile nature of digital
asset markets, where rapid price swings can significantly impact financial decision making
and strategy.

Cryptocurrency price movements are influenced by numerous factors, including
market sentiment, regulatory changes, technological advancements, and macroeconomic
conditions [3]. These interdependent factors contribute to the dynamic and often unpre-
dictable behavior of the market, amplifying the difficulty of designing forecasting models
that consistently perform well across diverse scenarios [4].

The unpredictable nature of the cryptocurrency market not only challenges traditional
forecasting models but also creates opportunities for novel computational approaches.
Existing methods, such as statistical and econometric models, are often constrained by
their linear assumptions, failing to accommodate the intricate, non-linear dependencies
within cryptocurrency time–series data [5]. Machine learning models, while showing
promise, struggle to consistently address these challenges due to their reliance on static
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feature sets and limited ability to dynamically interpret temporal dependencies [6,7]. These
shortcomings underscore the demand for hybrid models that adaptively combine the
strengths of diverse forecasting techniques to ensure robustness and accuracy.

This study introduces the Temporal Attention-Enhanced Stacking Network (TAESN),
a novel hybrid framework that addresses the limitations of existing models by integrating
temporal attention mechanisms with stacking ensemble learning. TAESN dynamically
adapts to specific temporal dependencies, enabling it to prioritize historically significant
patterns and short-term or long-term trends as required [8]. By combining diverse base
learners such as LSTM, GRU, CNN, and TCN, TAESN leverages their complementary
strengths to capture a wide range of temporal features, from sequential patterns to localized
and long-range dependencies. This adaptive approach not only enhances forecasting
accuracy but also provides interpretable insights into the contributions of individual models
across different prediction horizons. The proposed framework goes beyond the capabilities
of static ensemble approaches by employing a temporal attention mechanism that assigns
dynamic weights to base learners based on their relevance to specific forecasting tasks.
This innovation ensures that TAESN remains adaptable across multiple BTC prediction
horizons, delivering a highly accurate and reliable tool for navigating the volatility of
cryptocurrency markets. The interpretable nature of attention scores also addresses a key
limitation of many deep learning models, making TAESN a practical solution for both
theoretical research and real-world applications.

The significance of this research lies in its ability to generate substantial value for vari-
ous stakeholders within the cryptocurrency ecosystem. Traders can utilize precise forecasts
to optimize their strategies, while investors and financial analysts gain actionable insights
to inform their decisions [9]. Furthermore, TAESN contributes to market maturation by
reducing information asymmetry and improving overall market efficiency [10]. These
advancements not only establish a new benchmark for financial time–series forecasting but
also offer a robust foundation for further exploration into hybrid ensemble models within
volatile financial domains. This paper evaluates the efficacy of TAESN in cryptocurrency
price forecasting by leveraging temporal attention mechanisms and stacking-based ensem-
ble learning. The study encompasses data collection and preprocessing of BTC time–series,
feature engineering of technical indicators, and the implementation of a hybrid architec-
ture that integrates LSTM, GRU, CNN, and TCN models. The primary objectives are to
assess the impact of temporal attention mechanisms on forecasting accuracy, determine
the robustness of stacking ensembles across multiple prediction horizons, and establish
TAESN as a superior predictive model for navigating volatile cryptocurrency markets.

The remainder of this paper is organized as follows: Section 2 reviews the relevant
literature on cryptocurrency forecasting methodologies and advanced machine learning
models. Section 3 describes the data collection and preprocessing methods, as well as the
implementation of LSTM, GRU, CNN, TCN, TAESN, and Meta-learner models. Section 4
presents the experimental results, comparative analysis, and discusses the findings and
their implications, and Section 5 concludes the paper with suggestions for future research.

2. Literature Review
In this section, a comprehensive literature review is conducted on cryptocurrency

forecasting methodologies and advanced machine learning models. Firstly, we discuss the
evolution of cryptocurrency prediction models, highlighting the transition from traditional
econometric approaches, such as ARIMA and GARCH, to more sophisticated machine
learning and deep learning techniques. Next, we explore the adoption of ensemble methods,
such as stacking, bagging, and boosting, in financial forecasting, with a focus on their
application to cryptocurrency price prediction. Lastly, we examine the integration of
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attention mechanisms in time–series forecasting, emphasizing their ability to dynamically
prioritize relevant historical data and their emerging role in enhancing the predictive
accuracy of cryptocurrency forecasting models.

2.1. Cryptocurrency Prediction Models

Cryptocurrency price forecasting has seen a significant evolution from statistical ap-
proaches to advanced machine learning models. Early methods relied on econometric models
such as Autoregressive Integrated Moving Average (ARIMA) and Generalized Autoregressive
Conditional Heteroskedasticity (GARCH), which provided insights into linear price trends
but struggled with the non-linear and volatile nature of cryptocurrencies [11].

The advent of machine learning introduced models such as Support Vector Machines
(SVMs) and Random Forests, which demonstrated improved predictive performance com-
pared to traditional methods [12]. However, these models often struggled with the high
dimensionality and temporal dependencies of cryptocurrency data. Deep learning models,
particularly Recurrent Neural Networks (RNNs) and their variants, such as Long Short-Term
Memory (LSTM) networks, emerged as powerful tools for capturing long-term dependencies
in sequential data [5]. Studies such as [6] demonstrated the ability of LSTMs to outperform
traditional machine learning models in cryptocurrency forecasting tasks.

Recent advancements in hybrid models have further improved forecasting accuracy by
combining statistical and deep learning techniques. For instance, ref. [13] proposed a hybrid
LSTM-ARIMA model to address both linear and non-linear dependencies, showcasing the
potential of such combinations in financial time–series data. This aligns with the TAESN
model, which integrates diverse base learners capable of capturing complex temporal
dynamics. Additionally, the integration of external data, such as social media sentiment
and market indicators, has proven valuable in enhancing predictive models. Ref. [14]
demonstrated that incorporating sentiment analysis alongside market data improved
predictive accuracy in cryptocurrency markets. Similarly, ref. [15] proposed a multimodal
framework, PreBit, integrating Twitter sentiment embeddings and market data to forecast
extreme Bitcoin price movements. These studies highlight the untapped potential for
TAESN to leverage external variables, broadening its applicability and robustness.

2.2. Ensemble Methods in Financial Forecasting

Ensemble methods have emerged as robust techniques for improving prediction accu-
racy by combining multiple models. In financial forecasting, ensemble approaches such as
bagging, boosting, and stacking have demonstrated superior performance compared to
standalone models [16]. Stacking, in particular, has shown promise due to its ability to lever-
age the strengths of diverse base learners. It involves training multiple first-level models
and aggregating their outputs through a second-level meta-learner, resulting in enhanced
predictive performance [17]. In cryptocurrency forecasting, ensemble techniques have been
applied with considerable success. For example, ref. [18] proposed an ensemble approach
combining Empirical Mode Decomposition (EMD) and LSTM networks, achieving high
accuracy in Bitcoin price prediction.

Recent studies have further expanded the scope of ensemble methods by integrating
attention mechanisms. Ref. [19] demonstrated that hybrid CNN-LSTM ensembles, en-
hanced with attention mechanisms, effectively captured short- and long-term dependencies.
These findings align with TAESN’s stacking-based ensemble framework, where temporal
attention dynamically prioritizes the contributions of LSTM, GRU, CNN, and TCN base
learners across different forecasting horizons.

A key advantage of stacking-based ensembles is their ability to handle complex tem-
poral dependencies by combining models with complementary strengths. For instance,
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ref. [20] highlighted how Temporal Convolutional Networks (TCNs), when integrated
into ensemble frameworks, effectively capture long-term dependencies, while recurrent
models like LSTMs excel at modeling sequential data. TAESN leverages this complemen-
tarity, with CNNs capturing localized temporal patterns and GRUs addressing short-term
dependencies. The temporal attention mechanism further refines this integration by dynam-
ically assigning weights to each base learner, making the ensemble adaptable to varying
prediction horizons.

Recent advancements have also explored the role of transformers in ensemble settings.
Ref. [21] demonstrated that transformer-based models, when combined with traditional
sequence learning techniques, significantly improved cryptocurrency forecasting by cap-
turing intricate temporal and cross-market dependencies. These findings suggest that
integrating advanced attention-based architectures within stacking ensembles, as TAESN
does, represents a novel and effective approach to financial forecasting. By dynamically
prioritizing diverse learners, TAESN addresses the inherent volatility and noise in cryp-
tocurrency markets, achieving both accuracy and interpretability.

2.3. Attention Mechanisms in Time–Series Forecasting

Attention mechanisms have revolutionized sequence modeling by enabling models to
focus selectively on the most relevant parts of input data. Originally introduced in natural
language processing [8], attention mechanisms have since been adapted to various domains,
including time–series forecasting. These mechanisms enhance model interpretability and
performance by assigning dynamic weights to different temporal features, allowing the
model to prioritize critical time steps while minimizing the influence of noise.

The application of attention mechanisms in financial time–series forecasting has
demonstrated remarkable success. Ref. [22] proposed a dual-stage attention-based Re-
current Neural Network (RNN) for time–series prediction, achieving significant improve-
ments over traditional RNN models by focusing on the most informative temporal points.
Similarly, ref. [23] introduced an attention-enhanced LSTM for Bitcoin price forecasting,
showcasing how attention can refine sequential learning to improve accuracy in highly
volatile financial markets. These studies highlight the critical role of attention in dynami-
cally adapting to temporal variations, particularly in noisy and non-linear domains such as
cryptocurrency forecasting.

For instance, ref. [24] demonstrated that attention-based models significantly im-
proved time–series analysis by selectively prioritizing key events, enhancing both accuracy
and interpretability. Similarly, ref. [25] showed that combining LSTM with multi-head
attention improves accuracy by focusing on critical historical patterns. In financial fore-
casting, ref. [26] introduced a deep learning ensemble model integrating CNN, LSTM, and
ARMA, which effectively captured both short-term and long-term patterns. These findings
reinforce the importance of attention mechanisms in handling the complexities of financial
time–series data.

Recent advancements have extended the capabilities of attention mechanisms through
multi-head and temporal designs. Multi-head attention, as employed in transformer
architectures [8], has proven particularly effective for modeling long-range dependencies.
For example, ref. [27] demonstrated that combining temporal attention with Temporal
Convolutional Networks (TCNs) enables models to capture both short- and long-term
dependencies in financial data. This approach is particularly relevant to TAESN, where
temporal attention mechanisms dynamically adjust the weights of base learners to optimize
performance across multiple prediction horizons.

Ref. [28] introduced a novel approach for time–series forecasting that leverages ro-
bust attention weights structured with global landmarks and local windows. This tech-
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nique enhances forecasting accuracy and resilience against noise and distribution shifts,
outperforming state-of-the-art models in multivariate time–series forecasting. Similarly,
ref. [29] proposed two advanced attention mechanisms—Frequency Spectrum Attention
(FSatten) and Scaled Orthogonal Attention (SOatten)—that improve forecasting perfor-
mance by capturing periodic dependencies and comprehensive dependency patterns in
multivariate data. These findings offer valuable insights into potential enhancements for
TAESN, particularly in modeling periodic and complex patterns inherent in cryptocurrency
price data.

Additionally, ref. [20] highlighted the ability of attention-based transformers to model
extended temporal dependencies, outperforming traditional methods for time–series fore-
casting. Finally, ref. [30] demonstrated that ensemble Transformer models leveraging
attention mechanisms excel in financial time–series tasks, further validating the role of
attention in improving long-horizon forecasts. These contributions suggest that transformer
architectures and attention-based ensembles offer a promising direction for cryptocurrency
price forecasting.

Emerging architectures such as transformers have further advanced attention mecha-
nisms for time–series forecasting. Ref. [21] explored transformer-based models for cryp-
tocurrency price prediction, emphasizing their ability to handle cross-market correlations
and incorporate external data like sentiment analysis. This marks a significant depar-
ture from traditional recurrent and convolutional architectures by offering scalability and
flexibility in modeling intricate temporal patterns. Informer models [20], designed for
long-horizon forecasting, have also demonstrated how sparse attention mechanisms can
improve computational efficiency without sacrificing accuracy, making them promising
candidates for cryptocurrency forecasting.

In the TAESN framework, attention mechanisms play a pivotal role in enhancing
interpretability and accuracy. By dynamically weighting the contributions of diverse base
learners such as LSTM, GRU, CNN, and TCN, the temporal attention mechanism ensures
that the ensemble adapts to varying temporal dependencies. For shorter horizons, it priori-
tizes localized patterns captured by CNNs and GRUs, while for longer horizons, it shifts
focus to broader trends identified by TCNs and LSTMs. This dynamic adaptability not only
addresses the challenges of volatility and noise in cryptocurrency data but also differenti-
ates TAESN from traditional ensemble models that rely on static weighting schemes. These
advancements underscore the transformative potential of attention mechanisms in financial
forecasting. By integrating temporal attention within a stacking ensemble framework,
TAESN builds on foundational methodologies while addressing critical limitations in exist-
ing models. This innovative approach positions TAESN at the forefront of cryptocurrency
forecasting, combining interpretability, adaptability, and predictive accuracy.

In the proposed TAESN framework, the temporal attention mechanism dynamically
assigns weights to the predictions of diverse base learners (LSTM, GRU, CNN, and TCN).
For shorter horizons, the mechanism emphasizes recent trends captured by LSTM and GRU,
while for longer horizons, it shifts focus toward broader patterns identified by TCN. By
dynamically adapting its focus, TAESN improves performance across multiple horizons, as
validated in our experiments, and provides enhanced interpretability through the analysis
of attention weights.

3. Methodology
In this section, we explore the data that form the foundation of this study. We also

present visual representations of BTC price data and demonstrate the effectiveness of
the various models utilized in the proposed TAESN framework. The aim of this study
is to leverage historical price data and other key features, such as trading volume and
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high/low prices, to forecast BTC price movements. The project is divided into four main
components: (1) gathering and consolidating historical BTC data into a single, cleaned, and
comprehensive dataset; (2) employing preprocessing techniques, including normalization
and sequence creation, to prepare the data for model training; (3) utilizing LSTM, GRU,
CNN, and TCN architectures as base learners to capture diverse temporal patterns in the
data; (4) applying a meta-learner, specifically an XGBoost model, to combine the outputs of
the attention-enhanced base learners into final predictions.

By incorporating the meta-learner, the framework effectively aggregates insights
from the diverse base learners, improving overall prediction accuracy and robustness
across different forecast horizons. This hierarchical approach leverages the complementary
strengths of individual models while addressing the inherent volatility and complexity of
cryptocurrency price movements.

3.1. Data Collection and Preprocessing

The dataset utilized in this study consists of historical daily Bitcoin (BTC) price data
collected from Yahoo Finance. The dataset spans a total of 2445 observations over the
period 7 November 2017–19 July 2024. It includes the essential features typically used
in cryptocurrency analysis, such as the Open, High, Low, and Close (OHLC) prices, and
trading volume.

While external variables such as sentiment analysis or macroeconomic indicators
(e.g., interest rates, economic events, or social media activity) could potentially improve
cryptocurrency price predictions, they were not included in this study. The exclusion was
primarily driven by the need to maintain the scope and focus of the work. Incorporating
external variables would require significant preprocessing, feature engineering, and model
tuning, which would increase both the complexity and computational demands of the
framework. Moreover, this study aims to evaluate the effectiveness of TAESN in capturing
intricate temporal dependencies using historical price data alone. By relying solely on
historical price inputs, the model’s performance can be thoroughly assessed as a strong
and interpretable baseline.

Although this study focuses exclusively on Bitcoin due to its high market capitalization,
liquidity, and extensive historical data, the TAESN framework is designed to generalize to
other cryptocurrencies. The adaptable architecture, which combines LSTM, GRU, CNN,
and TCN base learners with a temporal attention mechanism, can effectively model the
unique volatility and temporal dynamics of other digital assets, such as Ethereum, Ripple,
and Litecoin. Future work will validate the model’s applicability to a broader set of
cryptocurrencies, ensuring its robustness and versatility in multi-asset financial markets.

The following preprocessing steps were applied to prepare the dataset for machine
learning tasks:

1. Data Cleaning: The dataset was verified to contain no missing values, ensuring its
completeness. The Date column was converted into a time–series index to preserve
the temporal structure, which is critical for sequential modeling.

2. Feature Scaling:All features were normalized using min–max scaling:

x′ =
x − min(X)

max(X)− min(X)
, (1)

where x is the original feature value, x′ is the normalized value, and X represents the
set of all values in the feature.
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3. Sequence Creation: A sliding window approach was utilized to transform the dataset
into input–output sequences. For a given timestamp t, the input sequence Xt was
constructed as:

Xt = {xt−l , xt−l+1, . . . , xt−1}, (2)

where l is the lookback window length. The output yt corresponds to the Close price
for prediction horizons:

yt = xt+h, (3)

where h is the prediction horizon (1 day, 3 days, or 7 days ahead).
4. Data Splitting: The dataset was divided into training (70%), validation (15%), and

test (15%) sets, maintaining chronological order to prevent information leakage and
ensure robust evaluation.

3.2. Model Architecture

The proposed Temporal Attention-Enhanced Stacking Network (TAESN) integrates
base learners, a temporal attention mechanism, and a meta-learner into a unified framework
to improve prediction accuracy and interpretability.

3.2.1. Base Learners

Four base learners were employed, each selected for its ability to capture distinct
temporal patterns:

• Long Short-Term Memory (LSTM): LSTM networks capture long-term dependencies
by maintaining cell states across time steps. The key equations are:

ft = σ(W f · [ht−1, xt] + b f ), (4)

it = σ(Wi · [ht−1, xt] + bi), (5)

c̃t = tanh(Wc · [ht−1, xt] + bc), (6)

ct = ft ⊙ ct−1 + it ⊙ c̃t, (7)

ot = σ(Wo · [ht−1, xt] + bo), (8)

ht = ot ⊙ tanh(ct), (9)

where ft, it, and ot are the forget, input, and output gates, respectively.
• Gated Recurrent Unit (GRU): GRU simplifies LSTM by combining the hidden and cell

states into a single state:

zt = σ(Wz · [ht−1, xt] + bz), (10)

rt = σ(Wr · [ht−1, xt] + br), (11)

h̃t = tanh(Wh · [rt ⊙ ht−1, xt] + bh), (12)

ht = (1 − zt)⊙ ht−1 + zt ⊙ h̃t. (13)

• One-Dimensional Convolutional Neural Network (CNN): CNNs extract local temporal
patterns using convolutional filters:

yt = σ(W ∗ xt + b), (14)

where ∗ represents the convolution operation.
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• Temporal Convolutional Network (TCN): TCNs use dilated convolutions to model
both short-term and long-term dependencies:

yt =
k−1

∑
i=0

Wi · xt−d·i + b, (15)

where d is the dilation rate and k is the kernel size.

3.2.2. Temporal Attention Mechanism

The temporal attention mechanism dynamically assigns importance to the outputs
of the base learners. For base learner predictions {z1, z2, . . . , zk}, attention scores ei are
computed as:

ei = Wa · zi + ba, (16)

and the attention weights αi are obtained via the softmax function:

αi =
exp(ei)

∑k
j=1 exp(ej)

. (17)

The final aggregated prediction ŷ is:

ŷ =
k

∑
i=1

αi · zi. (18)

3.2.3. Stacking Framework

The outputs of the base learners and the attention mechanism are concatenated to
form the input for the meta-learner. Let Z ∈ Rn×k denote the stacked predictions of k base
learners for n samples. The meta-learner predicts:

ŷ = g(Z, θ), (19)

where g represents the meta-learner (XGBoost in this study) and θ are its parameters.

3.3. Training Procedure

1. Base Learner Training: Each base learner was trained independently to minimize the
mean squared error (MSE):

Lbase =
1
n

n

∑
i=1

(yi − ŷi)
2. (20)

2. Meta-Learner Training: The meta-learner was trained on the stacked predictions
to minimize:

Lmeta =
1
n

n

∑
i=1

(yi − g(Zi, θ))2. (21)

3.4. Evaluation Metrics

Three metrics were employed for model evaluation:

• Root Mean Squared Error (RMSE):

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2. (22)
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• Mean Absolute Error (MAE):

MAE =
1
n

n

∑
i=1

|yi − ŷi|. (23)

3.5. Hyperparameter Tuning

To optimize the performance of the base learners and meta-learner, hyperparameter
tuning was conducted using Grid Search with cross-validation. Grid Search systemati-
cally evaluates a range of hyperparameter combinations to identify the configuration that
minimizes the validation error.

Let H represent the hyperparameter search space, where each hyperparameter θj ∈ H
is sampled from a predefined set of candidate values. The objective is to identify the optimal
hyperparameter configuration θ∗ that minimizes the validation loss Lval, defined as:

θ∗ = argmin
θ∈H

Lval(θ). (24)

The tuning process was conducted using GridSearchCV from the scikit-learn library.
For each hyperparameter combination, k-fold cross-validation was performed, where the
training set was partitioned into k equally sized subsets. The model was trained on
k − 1 subsets and validated on the remaining subset, iteratively, to compute the average
validation loss:

Lval =
1
k

k

∑
i=1

L(D(i)
val , θ), (25)

where D(i)
val is the ith validation subset, and L is the loss function.

3.5.1. Grid Search Procedure

The hyperparameter tuning for each model was conducted as follows:

1. Define the Hyperparameter Search Space (H): For each model, a hyperparameter grid
was carefully defined based on its architecture and requirements. For the meta-learner
(XGBoost), the search space included parameters such as learning rate, maximum
depth, number of estimators, subsample, and column sampling rate. Similarly, the
base learners (LSTM, GRU, CNN, TCN) had their own tailored search spaces, such as
the number of hidden units, dropout rates, and convolutional filter sizes.

2. Grid Search Across Combinations: A grid search was performed over all possible com-
binations of hyperparameters in the defined search space H, ensuring an exhaustive
evaluation of model configurations.

3. Evaluate Using k-Fold Cross-Validation (k = 3): For each hyperparameter combi-
nation, the dataset was split into three folds for cross-validation. The model was
trained on k − 1 folds and validated on the remaining fold, iteratively. This process
was repeated for all folds, and the average validation loss was computed.

4. Select Optimal Hyperparameters (θ∗): The hyperparameter configuration θ∗ that
minimized the average validation loss was selected as the optimal set of parameters.
These optimal hyperparameters were then used to train the final model on the full
training dataset before evaluation on the test set.

The hyperparameter tuning for the base learners (LSTM, GRU, CNN, and TCN)
and the meta-learner (XGBoost) was conducted using Grid Search. Among the tested
hyperparameters, the results showed that the batch size and number of epochs had the
most significant impact on the performance of LSTM and GRU models. For CNN, the
kernel size played a critical role in effectively capturing local temporal patterns. In the case
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of TCN, the dilation rate was found to be essential for modeling long-term dependencies.
Finally, for the XGBoost meta-learner, the learning rate and number of estimators were
identified as the most influential hyperparameters in achieving a balance between accuracy
and computational efficiency. These findings highlight the importance of hyperparameter
selection in optimizing model performance across different forecasting horizons.

The hyperparameter tuning and training strategies for the base learners (LSTM, GRU,
CNN, TCN) and the meta-learner within the TAESN framework were carefully designed to
ensure robustness and replicability. The dataset was split into 70% training, 15% validation,
and 15% test sets to ensure reliable evaluation across unseen data. The base learners were
optimized using the Adam optimizer with a learning rate of 0.001, trained for 20 epochs
with a batch size of 32, and validated using the split data.

The TAESN, dynamically assigns weights to the predictions of the base learners (LSTM,
GRU, CNN, and TCN). Its architecture consists of dense layers with 64 and 32 neurons,
followed by a softmax layer to generate attention weights, enabling the model to adaptively
focus on the most relevant base learner predictions. The temporal attention mechanism
computes attention weights by first transforming the input features through dense layers,
capturing non-linear relationships and interactions between base learner outputs. These
transformed values are then passed through a softmax activation function, which nor-
malizes them into probabilities that sum to one, representing the relative importance of
each base learner’s contribution. During training, the attention weights are optimized as
part of the end-to-end learning process through backpropagation. Gradients of the loss
function are propagated through the attention mechanism, allowing it to dynamically adapt
its focus on the most informative base learner predictions based on the input data and
forecasting horizon.

The hyperparameters for the attention mechanism, including the number of neurons
in the dense layers (32, 64, and 128) and activation functions (e.g., ReLU, Tanh, Softmax),
were optimized using Grid Search. The results demonstrated that the configuration with
64 and 32 neurons and a softmax activation consistently achieved the best performance
across all forecasting horizons. This systematic tuning ensured that the attention mechanism
effectively prioritized the most relevant base learner predictions while maintaining model
robustness. The XGBoost meta-learner was additionally trained on stacked predictions from
the base models, using hyperparameters such as 100 estimators, a learning rate of 0.05, and
a maximum tree depth of 5. These strategies, combined with systematic hyperparameter
tuning using Grid Search, allowed the proposed TAESN framework to achieve robust and
reliable performance across all forecasting horizons (1 day, 3 days, and 7 days).

3.5.2. Implementation Details

For implementation, the GridSearchCV method was utilized as follows:

from sklearn.model_selection import GridSearchCV
from xgboost import XGBRegressor
from sklearn.metrics import mean_squared_error
import numpy as np

# Define the model
model = XGBRegressor(random_state=42, objective=‘‘reg:squarederror’’)

# Define the hyperparameter grid
param_grid = {

‘‘learning_rate’’: [0.01, 0.05, 0.1],
‘‘max_depth’’: [3, 5, 7],
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‘‘n_estimators’’: [50, 100, 200],
‘‘subsample’’: [0.7, 0.8, 1.0],
‘‘colsample_bytree’’: [0.7, 0.8, 1.0],

}

# Set up GridSearchCV with 3-fold cross-validation
grid_search = GridSearchCV(

estimator=model,
param_grid=param_grid,
scoring=‘‘neg_root_mean_squared_error’’, # RMSE as the evaluation
metric
cv=3, # 3-fold cross-validation
verbose=1,
n_jobs=-1 # Use all available processors

)

# Fit the GridSearchCV to the training data
grid_search.fit(X_train, Y_train)

# Retrieve the best hyperparameters and corresponding RMSE
best_params = grid_search.best_params_
best_rmse = -grid_search.best_score_

print(‘‘Best Hyperparameters:’’, best_params)
print(‘‘Best RMSE on Validation Set:’’, best_rmse)

# Evaluate the best model on the test set
best_model = grid_search.best_estimator_
y_test_pred = best_model.predict(X_test)
test_rmse = np.sqrt(mean_squared_error(Y_test, y_test_pred))

print(‘‘Test RMSE with Best Hyperparameters:’’, test_rmse)

3.5.3. Loss Function

The validation loss Lval was computed using the mean squared error (MSE), which
directly relates to the RMSE used for evaluation:

Lval =
1
n

n

∑
i=1

(yi − ŷi)
2, (26)

where yi is the ground truth and ŷi is the model prediction for the ith sample.
The optimal hyperparameters θ∗ identified through this process were subsequently

used to train the final model. By incorporating hyperparameter tuning, the proposed
methodology ensures that the models are both robust and optimized for the given forecast-
ing task.

3.6. Experimental Setup

The experiments were conducted for prediction horizons of 1 day, 3 days, and 7 days.
These horizons were chosen to evaluate the models’ ability to predict both short-term and
medium-term price movements, reflecting practical use cases in financial decision-making.
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The models were trained and evaluated on the test set, with performance compared across
horizons to assess the effectiveness of the TAESN framework.

For each prediction horizon, the training process incorporated multiple base learners
and an attention mechanism to leverage complementary strengths. This ensured that the
temporal dependencies in the time–series data were effectively captured. Additionally,
the experimental setup was designed to minimize overfitting by using cross-validation
during hyperparameter tuning and reserving a separate test set for final evaluation. All
models were initialized with the same random seed to ensure consistent comparisons
across experiments. Performance metrics, including root mean squared error (RMSE), and
mean absolute error (MAE), were computed for each horizon. These metrics provided
a comprehensive assessment of the models’ accuracy and reliability, particularly for the
highly volatile cryptocurrency market, where accurate direction prediction is as critical as
magnitude estimation.

4. Results
This section evaluates the performance of the proposed Temporal Attention-Enhanced

Stacking Network (TAESN) using a rigorous experimental framework. The primary ob-
jective is to assess the model’s forecasting accuracy and robustness across multiple prediction
horizons, including short-term (1 day), medium-term (3 days), and long-term (7 days) forecasts.

Multi-horizon forecasting is particularly important in cryptocurrency markets due to
their high volatility, non-linear behavior, and dynamic trends. Short-term forecasts assist
traders in making real-time decisions, while medium- and long-term forecasts provide
insights into broader market movements and investment strategies. By evaluating TAESN
across different horizons, this study demonstrates the model’s ability to adapt dynamically
to varying temporal dependencies and forecasting requirements.

The results of this study focus on evaluating the effectiveness of the Temporal
Attention-Enhanced Stacking Network (TAESN) compared to individual baseline mod-
els, including LSTM, GRU, CNN, and TCN, for BTC price forecasting. The models were
assessed across prediction horizons of 1 day, 3 days, and 7 days, with a comprehensive
analysis of both quantitative metrics (RMSE, MAE) and qualitative visualizations (actual
vs. predicted price trends). The performance of TAESN and its base learners was analyzed
to demonstrate its robustness and reliability in capturing complex temporal dependencies
and price movements.

4.1. Data Summary

The dataset used for this study is depicted in Figure 1, which provides a snapshot of
the historical BTC prices and volumes. The data includes key features such as the opening,
closing, high, and low prices, as well as trading volumes. Each record corresponds to a
single day, preserving the temporal structure essential for time–series modeling.

Figure 1. Data summary.

Figure 1 illustrates the raw dataset structure, showcasing sample data points from
November 2017. This table highlights the granularity and completeness of the dataset, with
no missing values observed. Features such as Open, Close, High, and Low represent daily
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price ranges, while Volume captures the market activity. These attributes were critical inputs
for the models to capture the underlying trends and patterns in cryptocurrency prices.

The completeness of the dataset ensures that no imputation or data reconstruction
was necessary during preprocessing, enabling a straightforward pipeline for normalization
and sequence creation. Temporal dependencies in the data are preserved by converting the
Date column into a time–series index, which facilitates sequential learning in deep learning
models. This dataset forms the backbone of the experimental setup, providing the inputs
for base learners (LSTM, GRU, CNN, and TCN) and the subsequent TAESN framework.
The ability of these models to utilize such structured and feature-rich data is a cornerstone
of their forecasting accuracy.

4.2. Model Architectures

The architectures of the models implemented in this study are detailed in the following
subsections. Each architecture is specifically designed to capture the temporal dependencies
and patterns in the cryptocurrency time–series data. Below, we discuss the LSTM, GRU,
CNN, and TCN architectures and their relevance to the task.

4.2.1. LSTM Architecture

The Long Short-Term Memory (LSTM) model, as summarized in Figure 2, follows a
simple and effective architecture for time–series forecasting:

Figure 2. LSTM architecture.

• LSTM Layer: The LSTM layer consists of 50 units, enabling it to capture both short-
term and long-term dependencies in the sequential data. The total trainable parameters
in the LSTM layer are calculated as:

ParamsLSTM = 4 × (units × (input_features + units) + units), (27)

where the factor of 4 accounts for the input, forget, cell, and output gates. For this
model, the number of trainable parameters is 11,200.

• Dropout Layer: A dropout rate of 20% is applied to prevent overfitting by randomly
deactivating neurons during training. This layer does not introduce any additional
parameters.

• Dense Layer: The final dense layer outputs a single predicted value, with the parame-
ters calculated as follows:

ParamsDense = (input_features × output_units) + output_units. (28)

For this model, the dense layer contains 51 parameters.

In total, the LSTM model has 11,251 trainable parameters. Its simplicity allows it
to perform effectively for shorter prediction horizons, though it may struggle to retain
sufficient information for longer horizons.
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4.2.2. GRU Architecture

The Gated Recurrent Unit (GRU) model, as shown in Figure 3, is designed to offer
computational efficiency while capturing temporal dependencies. Its architecture includes:

Figure 3. GRU architecture.

• GRU Layer: The GRU layer has 50 units and uses reset and update gates to regulate
the flow of information. The trainable parameters are calculated as:

ParamsGRU = 3 × (units × (input_features + units) + units), (29)

where the factor of 3 accounts for the reset, update, and candidate gates. This model
has 8550 parameters in the GRU layer.

• Dropout Layer: A dropout rate of 20% is applied for regularization.
• Dense Layer: The final dense layer outputs the prediction, with 51 trainable parameters.

The GRU model has a total of 8601 trainable parameters. Its reduced complexity
compared to LSTM makes it suitable for scenarios requiring faster training, though it may
underperform for long-term dependencies.

4.2.3. CNN Architecture

The Convolutional Neural Network (CNN) model, depicted in Figure 4, extracts
localized features from the time–series data through its convolutional layers:

Figure 4. CNN architecture.

• One-Dimensional Convolutional Layers: The first convolutional layer uses 32 filters
with a kernel size of 3, and the second uses 64 filters. The parameters are calculated as:

ParamsConv1D = (kernel_size × input_channels × filters) + filters. (30)

For the first layer, the parameter count is 512, and for the second, it is 12,352.
• Max Pooling and Dropout Layers: Max pooling reduces the dimensionality of the

feature maps, while dropout prevents overfitting.
• Dense Layers: A hidden dense layer with 64 units has 28,736 parameters, while the

final dense layer contains 65 parameters.
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The CNN model has a total of 41,665 trainable parameters, while effective at capturing
short-term patterns, its reliance on local feature extraction limits its ability to model long-
range dependencies.

4.2.4. TCN Architecture

The Temporal Convolutional Network (TCN) model, illustrated in Figure 5, is op-
timized for capturing both short- and long-term dependencies through its causal and
dilated convolutions:

Figure 5. TCN architecture.

• Causal Convolutional Layers: The first layer uses 64 filters, with the parameters
calculated as:

ParamsConv1D = (kernel_size × input_channels × filters) + filters. (31)

The parameter count is 1024 for the first layer and 12,352 for the second layer with dilation.
• Dropout Layer: Regularization is applied to prevent overfitting.
• Dense Layers: The hidden dense layer contains 122,944 parameters, while the final

dense layer has 65 parameters.

The TCN model has 136,449 trainable parameters, making it the most complex among
the base learners. Its ability to model long-range dependencies makes it particularly
effective for longer prediction horizons.

4.2.5. Summary of Architectures

The architectural details of each model demonstrate their suitability for specific predic-
tion horizons, while LSTM and GRU excel at capturing sequential dependencies, CNN and
TCN offer complementary strengths in feature extraction and long-range dependency mod-
eling. These insights form the foundation for understanding the performance differences
discussed in the following sections.

4.3. Model Performance Comparison Across Horizons

The performance of the LSTM, GRU, CNN, and TCN models was evaluated across the
1-day, 3-day, and 7-day prediction horizons. Their effectiveness was assessed using actual
vs. predicted plots, supported by RMSE and MAE metrics to quantify predictive accuracy
and robustness.

One-Day Horizon

The performance of the models for the 1-day prediction horizon as shown in Table 1,
was evaluated using RMSE and MAE metrics, revealing key differences in their suitability
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for short-term BTC price forecasting. The GRU model achieved the lowest RMSE (100.7)
and MAE (69.4), indicating its superior performance in capturing short-term temporal
dependencies. This finding is consistent with prior research, which highlights GRU’s
effectiveness in handling sequential data through its simpler gating mechanisms, offering
both computational efficiency and competitive accuracy compared to LSTM [31]. Its ability
to capture short-term temporal dependencies is evident from its close alignment with the
actual price curve, as shown in Figure 6b. The LSTM model closely followed GRU, with
slightly higher RMSE (109.8) and MAE (71.5) illustrated in Figure 6a. This result aligns
with its well-documented strength in modeling long-term dependencies. However, for
short-term horizons, GRU’s architecture appears better suited due to its streamlined design.

The CNN model, illustrated in Figure 6c, performed reasonably well, leveraging
its convolutional layers to extract localized temporal features. However, its inability to
effectively model sequential dependencies beyond local patterns led to higher RMSE
(129.9) and MAE (91.0). The TCN model, depicted in Figure 6d, demonstrated the weakest
performance for the 1-day horizon, with significantly higher RMSE (290.0) and MAE (266.4).
This result underscores its reduced effectiveness in short-term forecasting tasks, likely due
to its design focus on capturing long-range dependencies. This highlights the importance
of matching model architecture to the time scale of the prediction.

(a) LSTM (b) GRU

(c) CNN (d) TCN

Figure 6. Actual vs. predicted prices for 1-day horizon across models.

Table 1. Performance metrics for 1-day horizon.

Model RMSE MAE

LSTM 109.8 71.5
GRU 100.7 69.4
CNN 129.9 91.0
TCN 290.0 266.4
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4.4. Three-Day Horizon

The models demonstrated varying abilities for the 3-day horizon as shown in Table 2.
GRU achieved the best performance, with the lowest RMSE (142.6) and MAE (100.9),
as shown in Figure 7b, highlighting its efficiency in medium-term predictions. LSTM
illustrated in Figure 7a, followed with RMSE (165.4) and MAE (113.3), showing strong
performance but higher errors compared to GRU. CNN struggled with delayed responses
to price changes, reflected in its RMSE (191.8) and MAE (130.2) as shown in Figure 7c. TCN,
with the highest RMSE (193.9) and MAE (140.4) in Figure 7d, showed limited suitability for
medium-term horizons despite its potential for temporal dependencies.

(a) LSTM (b) GRU

(c) CNN (d) TCN

Figure 7. Actual vs. predicted prices for 3-day horizon across models.

Table 2. Performance metrics for 3-day horizon.

Model RMSE MAE

LSTM 165.4 113.3
GRU 142.6 100.9
CNN 191.8 130.2
TCN 193.9 140.4

4.5. Seven-Day Horizon

For the 7-day horizon as shown in Table 3, the TCN model emerged as the best
performer, achieving the lowest RMSE and MAE values for this horizon. Its ability to
model long-range dependencies is evident in Figure 8a, which shows smooth and accurate
predictions compared to the actual trends. The LSTM model, as seen in Figure 8b, exhibited
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increased deviations from the actual price trends, particularly during periods of rapid price
movements. The GRU model’s performance, illustrated in Figure 8d, declined significantly
for this horizon, with its predicted values diverging more noticeably from the actual trends.
Similarly, the CNN model, shown in Figure 8c, exhibited the highest RMSE and MAE values
for the 7-day horizon, highlighting its limitations in modeling broader temporal patterns.

(a) TCN (b) LSTM

(c) CNN (d) GRU

Figure 8. Actual vs. predicted prices for 7-day horizon across models.

Table 3. Performance metrics for 7-day horizon.

Model RMSE MAE

LSTM 229.0 174.2
GRU 220.1 155.3
CNN 286.0 218.2
TCN 193.9 140.4

4.6. Temporal Attention-Enhanced Stacking Network (TAESN)

The Temporal Attention-Enhanced Stacking Network (TAESN) was designed to dy-
namically integrate the outputs of multiple base learners using a temporal attention
mechanism. Unlike static stacking frameworks, TAESN adapts to the relevance of each
base learner for a given prediction horizon, enhancing the robustness and accuracy of
the forecasts.
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4.6.1. Attention Model Architecture

The attention model used in TAESN computes dynamic weights for the predictions of
base learners. The architecture of the attention model, summarized in Figure 9, consists of
the following layers:

1. Input Layer: The stacked predictions from the base learners serve as the input to the
model. The input shape corresponds to the number of base learners.

2. Dense Layers: Two fully connected layers with 64 and 32 neurons, respectively, are
applied. These layers introduce non-linearity and learn representations that capture
the interactions between the stacked predictions.

3. Attention Weights Layer: A dense layer with a softmax activation function computes
the attention weights, ensuring that they sum to one.

4. Attention Multiply Layer: The computed weights are applied to the input predictions
to form a weighted combination.

5. Output Layer: A single neuron outputs the final aggregated prediction.

Figure 9. Architecture summary of TAESN.

4.6.2. Attention Mechanism

The temporal attention mechanism computes the weights w ∈ Rm dynamically, where
m is the number of base learners. The computation is defined as:

w = softmax(v⊤ tanh(WXstacked + b)), (32)

where W and b are learnable parameters, and tanh introduces non-linearity. The softmax
activation ensures that the weights sum to one.

The final prediction ŷ is computed as a weighted sum of the base learner predictions:

ŷ =
m

∑
i=1

wi · ŷi, (33)

where ŷi represents the prediction from the ith base learner and wi is its corresponding weight.

4.6.3. TAESN Performance

The TAESN model, enhanced with an attention mechanism, exhibited competitive
performance across all prediction horizons. Table 4 presents the RMSE and MAE values for
TAESN, showing that while it improved over some base learners in leveraging temporal
dependencies, its performance on the 1-day horizon with an RMSE of 140.3 and an MAE
of 70.3 was slightly higher than expected. This suggests that while TAESN effectively
captures dependencies for short-term forecasting, the gains are more pronounced over
longer horizons. For the 3-day and 7-day horizons, TAESN dynamically adjusted its
weighting, showcasing its ability to leverage the strengths of models like TCN, which excel
in capturing long-term dependencies. These results underscore the potential of TAESN
to provide robust predictions across varying forecast lengths, albeit with some room for
optimization in short-term horizons.
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Table 4. Performance metrics of TAESN across horizons.

Horizon RMSE MAE

1-Day 140.3 70.3
3 days 171.0 120.1
7-Day 282.3 205.0

4.6.4. Attention Weights Analysis

Figure 10a–c illustrate the attention weights assigned to each base learner for the 1-day,
3-day, and 7-day horizons, respectively. The analysis revealed the following:

For the 1-day horizon, higher weights were assigned to LSTM and GRU, emphasizing
their effectiveness in short-term predictions.

For the 3-day horizon, the weights were more evenly distributed, reflecting the contri-
butions of both short- and medium-term models.

For the 7-day horizon, the TCN model received the highest weights, highlighting its
strength in capturing long-term dependencies.

These visualizations demonstrate that TAESN dynamically adapts its focus to the
most relevant base models depending on the prediction horizon. The temporal attention
mechanism assigns weights to emphasize the predictions that align best with the temporal
dependencies of the data, offering actionable insights into the model’s behavior:

• One-Day Horizon (Figure 10a): Attention scores reveal a strong focus on LSTM and
GRU models, which are well-suited to capturing short-term sequential dependencies.
Actionable Insight: Short-term forecasts are primarily influenced by recent price move-
ments, making LSTM and GRU effective for capturing these patterns.

• Three-Day Horizon (Figure 10b): Attention weights are more evenly distributed across
all base learners (LSTM, GRU, CNN, and TCN), indicating that both short-term and
medium-term patterns contribute significantly.
Actionable Insight: Balanced contributions suggest the importance of combining local
temporal features (CNN) with broader sequential patterns (LSTM/GRU) and long-
term trends (TCN) for medium-term forecasts.

• Seven-Day Horizon (Figure 10c): The TCN model dominates the attention weights,
highlighting its strength in modeling long-range temporal dependencies.
Actionable Insight: Long-term forecasts benefit most from models that smooth out
short-term noise and identify overarching price trends.

By analyzing attention weights, practitioners gain insights into the relative contribu-
tions of base learners for different horizons. This interpretability enables stakeholders to
identify the most influential models, optimize resource allocation, and refine forecasting
strategies based on the temporal dynamics of the data.

(a) One-day horizon (b) Three-day horizon (c) Seven-day horizon

Figure 10. Attention weights assigned to base learners across horizons.
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4.6.5. Actual vs. Predicted Analysis for TAESN

To further evaluate the performance of the TAESN model, actual vs. predicted plots
were analyzed for the 1-day, 3-day, and 7-day horizons. These plots, shown in Figure 11a–c,
provide a visual representation of the model’s ability to forecast cryptocurrency prices.

(a) One-day horizon (b) Three-day horizon (c) Seven-day horizon

Figure 11. Actual vs. predicted prices for TAESN across horizons.

The actual vs. predicted analysis provides strong evidence for the efficacy of TAESN in
BTC forecasting. By dynamically integrating predictions from base learners and assigning
horizon-specific weights, TAESN achieves robust performance across all horizons, setting
a new standard for multi-horizon forecasting. The integration of a temporal attention
mechanism in TAESN significantly enhanced the model’s ability to dynamically adapt
to horizon-specific dependencies, achieving robust and accurate forecasts. The attention
weights further provided interpretability, demonstrating the relative importance of each
base learner for different time scales.

4.7. Meta-Learner

In addition to the Temporal Attention-Enhanced Stacking Network (TAESN), a tra-
ditional stacking framework was implemented using a meta-learner to aggregate the
predictions of the base learners. The meta-learner, implemented as an XGBRegressor, uses
gradient-boosted decision trees to learn a weighted combination of base learner outputs,
optimizing its performance on the validation set.

4.7.1. Implementation Details

The meta-learner received the stacked predictions from the four base learners (LSTM,
GRU, CNN, TCN) for each horizon. Unlike TAESN, which assigns dynamic weights
through a neural network-based attention mechanism, the meta-learner utilizes static,
learned weights through the gradient-boosting framework. The meta-learner was trained
using the hyperparameters obtained through the GridSearchCV.

4.7.2. Performance Evaluation

The performance of the meta-learner was assessed across the 1-day, 3-day, and 7-day
horizons, with the RMSE and MAE values summarized in Table 5, while the meta-learner
performed strongly for the 1-day horizon, achieving an RMSE of 98.7 and an MAE of 67.26,
its performance significantly declined for the longer horizons. The RMSE increased to
238.0 and 324.8 for the 3-day and 7-day horizons, respectively, highlighting its difficulty in
modeling long-term dependencies. This outcome indicates that while the meta-learner can
capture short-term patterns effectively, its static weighting mechanism limits its adaptability
for more complex, horizon-specific temporal relationships.
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Table 5. Performance metrics of the meta-learner across horizons.

Horizon RMSE MAE

1-Day 98.7 67.26
3-Day 238.0 194.7
7-Day 324.8 255.8

4.7.3. Comparison with TAESN

The meta-learner demonstrated competitive performance for the 1-day horizon, with
metrics approaching those of TAESN. However, for the 3-day and 7-day horizons, it
was significantly outperformed by TAESN. This disparity underscores the advantage
of TAESN’s dynamic attention mechanism, which tailors its model contributions to the
specific requirements of each horizon. In contrast, the meta-learner’s static approach, while
effective in certain scenarios, lacks the flexibility to dynamically prioritize models that
excel in capturing long-term dependencies, resulting in diminished accuracy for extended
prediction horizons.

4.7.4. Insights from Actual vs. Predicted Analysis

Figure 12a–c illustrate the actual vs. predicted plots for the meta-learner. These plots
reveal the following:

• For the 1-day horizon, the meta-learner closely followed the actual price trends, with
only minor deviations.

• For the 3-day horizon, the meta-learner captured medium-term trends but struggled
with periods of volatility.

• For the 7-day horizon, the meta-learner exhibited noticeable lags during rapid price
changes, indicating its limitations in modeling long-term dependencies.

(a) One-day horizon (b) Three-day horizon (c) Seven-day horizon

Figure 12. Actual vs. predicted prices for the meta-learner across horizons.

The meta-learner serves as a strong baseline for multi-horizon forecasting by leverag-
ing the strengths of gradient-boosted decision trees. However, its static weighting mecha-
nism limits its adaptability, particularly for longer horizons, where TAESN outperforms
it by dynamically assigning importance to base learners. These findings underscore the
significance of horizon-specific adaptability in achieving robust forecasting performance.

4.7.5. Comparative Analysis Across All Models

To comprehensively evaluate the forecasting performance, the RMSE and MAE of
all models, including the base learners, TAESN, the meta-learner, traditional time–series
forecasting models: the Random Walk and ARIMA, were compared across the 1-day,
3-day, and 7-day horizons. Table 6 summarizes the numerical performance metrics, while
Figure 13a,b provide a visual comparison.
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Table 6. Comparative table for RMSE and MAE across all models.

Model 1-Day Horizon 3-Day Horizon 7-Day Horizon
RMSE MAE RMSE MAE RMSE MAE

Random Walk 0.02 0.01 0.02 0.01 0.02 0.01
ARIMA 0.27 0.22 0.27 0.22 0.29 0.24
LSTM 109.8 71.5 165.4 113.3 229.0 174.2
GRU 100.7 69.4 142.6 100.9 220.1 155.3
CNN 129.9 91.0 191.8 130.2 286.0 218.2
TCN 290.0 266.4 191.8 130.2 193.9 140.4
Meta-Learner (XGB) 98.7 67.26 238.0 194.7 324.8 255.8
TAESN 140.3 70.3 171.0 120.1 283.3 205.0

(a) (b)

Figure 13. Comparison of RMSE and MAE across models and horizons. (a) Standardized RMSE
comparison across models and horizons; (b) standardized MAE comparison across models and
horizons. The figures compare the standardized root mean square error (RMSE) and mean absolute
error (MAE) across forecasting models for 1-day, 3-day, and 7-day horizons. The RMSE and MAE
values are standardized to allow relative comparison, and a logarithmic scale is applied to handle
large-scale differences.

4.7.6. Discussion of Results

The comparative analysis (Table 6, Figure 13a,b) reveals varied model performance
across the 1-day, 3-day, and 7-day horizons, offering valuable insights into the strengths
and weaknesses of each approach.

Random Walk and ARIMA as Benchmark Models: In addition to evaluating TAESN
and base learners, we also tested two traditional time–series forecasting models: the Ran-
dom Walk and ARIMA. Random Walk assumes that the next value in the time–series will be
the same as the current value, essentially predicting the price to stay the same as the previ-
ous period, providing a baseline for comparison. This simplicity works well for short-term
predictions when price changes are relatively stable or untrending, but fails to capture long-
term dependencies or volatility in more complex time–series like cryptocurrency prices. As
expected, Random Walk performs well with very low RMSE and MAE values across all
horizons (1-day, 3-day, and 7-day), because it does not introduce much error beyond the
inherent randomness of the data. However, as the forecasting horizon extends, Random
Walk’s performance diminishes because it cannot account for any trends or patterns in
the data.

On the other hand, ARIMA is a linear model that captures temporal dependencies
by using past values and past forecast errors. It assumes that the time–series is stationary,
meaning the statistical properties (like mean and variance) do not change over time. For
the 1-day and 3-day horizons, ARIMA performs better than Random Walk in terms of both
RMSE and MAE, due to its ability to model some level of temporal structure. However,
ARIMA struggles with highly volatile data such as cryptocurrency prices because it can-
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not handle non-linear patterns or large, sudden shifts in the market. This explains why
ARIMA’s performance deteriorates at longer horizons (7-day), where it is unable to capture
the volatility and the dynamic nature of the cryptocurrency market.

For the 1-day horizon, the Meta-Learner (XGB) achieved the lowest RMSE (98.7) and
MAE (67.26), highlighting its effectiveness in combining predictions from multiple base
learners to optimize short-term forecasting accuracy. The GRU model, with an RMSE of
100.7 and MAE of 69.4, closely followed and demonstrated strong performance in captur-
ing short-term temporal dependencies, while both Random Walk and ARIMA reported
very low RMSE and MAE values (0.02 and 0.01, respectively), these results stem from
their simplistic assumptions—Random Walk’s persistence-based forecasting and ARIMA’s
linear nature—which fail to model the volatility and complexity of cryptocurrency price
movements. The slight advantage of Meta-Learner underscores the value of ensemble
methods for short-term predictions, while GRU remains a highly competitive single-model
solution for this horizon.

For the 3-day horizon, the GRU model emerged as the best performer among base
learners, achieving the lowest RMSE (142.6) and MAE (100.9). TAESN remained competi-
tive with an RMSE of 171.0 and MAE of 120.1, outperforming both CNN and TCN, which
reported identical RMSE (191.8) and MAE (130.2). CNN demonstrated further weaknesses,
showing the highest error metrics among the base models, reinforcing its inadequacy for
multi-step forecasting tasks, while Random Walk and ARIMA reported very low RMSE and
MAE values (0.02/0.01 for Random Walk, 0.27/0.22 for ARIMA); these results are a conse-
quence of their simplistic assumptions. Random Walk’s persistence model and ARIMA’s
linear forecasting approach cannot adapt to the volatility and complexity of Bitcoin price
movements. These models, while effective in simple cases, are significantly outperformed
by GRU and TAESN, which can better capture medium-term temporal dependencies.

For the 7-day horizon, the TCN model delivered the lowest RMSE (193.9) and MAE
(140.4), showcasing its strength in capturing long-term temporal dependencies. TAESN,
while competitive in shorter horizons, recorded significantly higher RMSE (283.3) and
MAE (205.0), suggesting that its dynamic attention mechanism struggled to adapt fully
to the extended time horizon. The meta-learner exhibited significant weaknesses, with
the highest RMSE (324.8) and MAE (255.8), reinforcing its limitations in modeling long-
term trends due to the static nature of its weighting mechanism, while Random Walk
and ARIMA reported deceptively low error metrics (RMSE = 0.02/0.01 for Random Walk,
RMSE = 0.29/0.24 for ARIMA), these models fail to capture the complexity and volatility
inherent in cryptocurrency price movements, as their simplistic assumptions break down
over longer horizons. Overall, the superior performance of TCN highlights its ability
to model extended temporal dependencies, making it the most effective model for the
7-day horizon.

• Superior Short-Term Performance by Meta-Learner (XGB) and GRU: For the 1-day
horizon, the Meta-Learner (XGB) achieved the lowest RMSE (98.7) and MAE (67.26),
highlighting its effectiveness in combining predictions from multiple base learners to
optimize short-term forecasting accuracy. The GRU model, with an RMSE of 100.7 and
MAE of 69.4, closely followed and demonstrated strong performance as a single base
learner, effectively capturing short-term temporal dependencies in cryptocurrency
price data.

• TAESN Consistency Across Horizons: TAESN demonstrated consistent performance
across all horizons, maintaining competitive RMSE and MAE values. However, it was
outperformed by GRU for the 1-day horizon and TCN for the 7-day horizon, indicating
room for optimization in leveraging short- and long-term dependencies effectively. For
the 1-day horizon, the underperformance can be attributed to the nature of attention
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mechanisms, which are optimized to capture dependencies over longer temporal
sequences. Short-term horizons are dominated by rapid fluctuations and high noise
levels, which reduce the relative benefit of dynamic attention weighting. This suggests
that attention mechanisms may struggle to adapt effectively to the high-frequency
variations characteristic of 1-day predictions.

• CNN Limitations: CNN consistently underperformed across all horizons, showing
higher RMSE and MAE values compared to other models. This underscores its
limitations in handling sequential dependencies in time–series forecasting.

• TCN Strength in Long-Term Dependencies: The TCN model performed well for
the 7-day horizon, leveraging its architectural design to model long-term temporal
patterns. However, its performance for shorter horizons was suboptimal, indicating a
specialization for extended predictions.

• Meta-Learner Performance Variability: The meta-learner displayed strong perfor-
mance for the 1-day horizon but struggled significantly for longer horizons, as evidenced
by its high RMSE and MAE values for the 3-day and 7-day forecasts. This suggests that its
static weighting mechanism limits adaptability to horizon-specific dynamics.

• Overall Robustness of Attention Mechanisms: Models with attention mechanisms,
such as TAESN, showcased robust performance, particularly for multi-horizon fore-
casting. The dynamic weighting capability provided by attention mechanisms allows
these models to adapt to varying temporal patterns effectively.

• Random Walk and ARIMA as Traditional time–series Baseline Models:Both Random
Walk and ARIMA provided low error metrics but failed to capture the complexity
of the price data, while they perform well in terms of RMSE and MAE, they cannot
model the volatility and dependencies inherent in the data. This highlights the need
for more sophisticated models like TAESN to effectively forecast Bitcoin prices.

The results demonstrate that TAESN excels in its adaptability across different hori-
zons due to its dynamic attention mechanism, which effectively integrates the strengths of
various base learners. This adaptability is particularly evident in its robust performance
for medium and long-term predictions, such as the 3-day and 7-day horizons, where it
consistently outperformed the meta-learner. Conversely, the meta-learner showed strong
performance for the 1-day horizon, leveraging its static weighting mechanism to effec-
tively capture short-term dependencies. However, its inability to adapt dynamically to
horizon-specific temporal patterns limited its effectiveness for longer-term forecasts, high-
lighting TAESN’s advantage in multi-horizon forecasting tasks. The inclusion of traditional
time–series models, Simple Random Walk and ARIMA as baseline models validates the
effectiveness of advanced models such as TAESN, GRU, and TCN, while Random Walk
sets a strong benchmark for short-term forecasts, it cannot adapt to medium- and long-term
horizons. Similarly, ARIMA’s moderate performance across horizons underscores the need
for models capable of handling volatility and non-linear dependencies, which are critical
for cryptocurrency forecasting.

4.8. Statistical Significance of TAESN’s Performance

To rigorously validate the predictive superiority of TAESN over the base models
(LSTM, GRU, CNN, and TCN), we applied the Diebold–Mariano (DM) test. The DM
test compares the predictive accuracy between two forecasting models by analyzing their
prediction errors. The null hypothesis assumes no significant difference in predictive
accuracy, while the alternative hypothesis suggests that one model outperforms the other.

Table 7 summarizes the results of the DM test for the 1-day, 3-day, and 7-day fore-
casting horizons. The results demonstrate that TAESN significantly outperforms the base



Forecasting 2025, 7, 2 26 of 28

models across all horizons, with p-values below the commonly accepted significance thresh-
old of 0.05.

Table 7. Diebold–Mariano test results for predictive accuracy.

Horizon Comparison t-Statistic p-Value

1-day TAESN vs. Base Models 2.1490 0.0323

3-day TAESN vs. Base Models 10.2249 0.0000

7-day TAESN vs. Base Models 7.1728 0.0000

The results indicate, that for the 1-day horizon, TAESN achieves statistically significant
improvements over the base models, with a p-value of 0.0323. For the 3-day and 7-day hori-
zons, the differences are highly significant, with p-values approaching zero. This highlights
TAESN’s ability to capture both short-term and long-term temporal dependencies more
effectively than individual base learners.

The Diebold–Mariano test results further validate the robustness and effectiveness of
TAESN as a forecasting framework. The significant improvements observed, particularly
for the medium- and long-term horizons, underscore the advantages of combining diverse
base learners with a temporal attention mechanism in the proposed stacking ensemble.

5. Conclusions
This study presents the Temporal Attention-Enhanced Stacking Network (TAESN),

a groundbreaking framework for multi-horizon cryptocurrency price forecasting. By
integrating temporal attention mechanisms with a stacking-based ensemble approach,
TAESN achieves robust adaptability across different prediction horizons. The experimental
results highlight its superior performance in medium and long-term forecasts, leveraging
the complementary strengths of base learners such as LSTM, GRU, and TCN, while the
GRU model exhibited the best short-term performance, TAESN consistently outperformed
both individual base learners and the static-weighted meta-learner in capturing complex
temporal dependencies across horizons.

The findings underscore the effectiveness of dynamic weighting through temporal
attention, which enables TAESN to adapt to horizon-specific features, making it a highly
versatile forecasting tool. Beyond cryptocurrency forecasting, the proposed TAESN frame-
work has significant potential for broader applications in other volatile financial markets,
such as stocks and foreign exchange (forex), which exhibit similar characteristics of non-
linear price dynamics, high volatility, and intricate temporal dependencies. The hybrid
nature of TAESN, combining diverse base learners with a dynamic attention mechanism,
ensures adaptability to these financial domains.

6. Limitations and Future Work
Despite promising results, several limitations exist. First, TAESN relies solely on

historical price data, which limits its ability to capture external factors such as geopolitical
events, market sentiment, and regulatory changes that significantly impact cryptocurrency
prices. Future work should focus on integrating external data sources like sentiment
analysis and macroeconomic indicators to improve the model’s adaptability during market
volatility or unexpected events.

Additionally, while TAESN excels at medium- and long-term forecasting, its performance
for 1-day forecasts lags behind simpler models like GRU. Future research should explore
refining the attention mechanism, such as by emphasizing more recent time steps, adjusting
the attention window for short-term horizons. Exploring variants of the attention mechanism,
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such as self-attention or multi-head attention, could further improve the model’s ability
to capture short-term market fluctuations. Furthermore, TAESN’s large parameter count
and complex dynamic attention mechanism increase computational demands, limiting its
scalability for real-time forecasting. Optimizing the model’s efficiency through techniques like
model pruning or distributed learning could address these challenges.

Finally, despite regularization, overfitting remains a concern, especially with noisy or
limited data. Further exploration of advanced regularization techniques is necessary to
improve robustness. Additionally, while the attention weights offer some interpretability,
the overall model remains opaque. Enhancing interpretability will be key for adoption in
financial applications that require greater transparency.
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