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Abstract: This work presents the results of the exposure of soda-lime, potash-lime and mixed-alkali
silicate glasses during ten and twenty months in different Portuguese monuments with historical
stained-glass windows to characterize the influence of local environmental conditions. The glass
samples were exposed in the Monastery of Batalha (Batalha), the Monastery of Jerónimos (Lisbon),
and the Cathedral of Évora (Évora). A set of analytical techniques to assess the physicochemical
effects were used, including optical microscopy and Fourier transform infrared spectroscopy. All the
samples presented crystalline deposits on their surface; however, their quantity and nature depended
on the atmospheric conditions during the days before the collection. Potash-lime silicate glass was
the most altered glass in comparison with soda-lime and mixed-alkali silicate glasses. The samples
from the Cathedral of Évora showed a high content of dust and salts on their surface but without
severe chemical pathologies; however, those samples exposed in the Monastery of Jerónimos and the
Monastery of Batalha presented alteration layers due to a high humidity environment.
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1. Introduction

Portugal has an extensive collection of historical stained-glass windows from different
chronologies spread around the country. The most ancient stained-glass windows in Portugal are
located in the Monastery of Batalha, built between around 1388 and 1533 (for what is to be seen
in-situ), in the church aisle, south transept and west windows as well as in the Founder’s Chapel.
Various panels of these ancient windows, preserved in the monastery, were designed by Luis Alemão
(Louis the German) and present figurative and geometric motifs [1,2]. Afterward, a more realistic style
of stained-glass windows was produced. An example of this movement was observed in the church
choir and chapter house glazings, produced between 1514 and around 1531. They were certainly
designed (and partly painted) by Francisco Henriques and financed by the King Manuel I of Portugal.

During the 16th century, stained-glass windows were frequent in Portuguese monuments;
however, the majority of them have been lost. A few examples of them are still preserved either
as window panels in monuments or in museums. From these examples, it is important to highlight the
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fragments located in the Convent of Christ in Tomar, a small heraldic panel at the National Museum
Soares dos Reis in Porto, a dated piece at the Museum of Setubal, and two figurative half-panels at the
Church of Viana do Alentejo. From the 17th century, some panels have been preserved in the National
Palace of Pena in Sintra, along with a few more ancient ones, brought to Portugal by King Ferninand II
in the 19th century.

In the 18th century, the Portuguese stained-glass windows were severely damaged, with many
gaps and bad-quality restorations, due to a change in the decorative movements together with
the destructive consequences of the earthquake from 1755 and the Peninsular War (1807–1814) [3].
However, in the second half of the 19th century, the stained-glass windows rose again in Portugal due
to the renascence of this art as part of the architectonic context, not only in religious buildings but
also in public and private constructions. They were complex works in which big uncolored pieces of
glass were painted with enamels and grisailles, and the lead cames were concealed in the contours of
the figures. Progressively, enamels were replaced by colored glasses in which the lead cames and the
grisaille defined the contours and shadows [2]. During this period, stained-glass windows competed
with the panels of ceramic tiles, very frequent in Portugal, as decorative elements [2].

Historical stained-glass windows are usually situated in buildings as part of their façade.
This position permits to illuminate the inner part of the building, to serve as decoration with an
instructive function, and also to protect the building from the external environmental conditions (rain,
wind, extreme temperatures . . . ). Nevertheless, this latter function is the most hazardous for the
conservation of historical stained-glass windows.

The influence of environmental conditions has been an important field of study in recent years
since many European medieval windows present a poor state of conservation [4–15]. Nevertheless, few
works have been done to compare the alteration mechanism of the same glass composition in different
places. In the framework of the “International Co-operative Programme on Effects on Materials
including Historic and Cultural Monuments” (ICP Materials) [16,17], some glass samples with
medieval and modern composition were spread around Europe in different atmospheres (industrial,
urban, rural) [7,10,18]. The exposure of these samples showed that the glasses exposed in polluted
environments (industrial atmosphere) present a faster alteration due to the influence of the higher
concentration of the pollution gases (CO2, SO2, NOx). With a similar procedure, the glass-sensors
developed by the Fraunhofer-Institut für Silicatforschung (Germany), were used as alteration sensors
in European stained-glass windows by the assessment of environmental corrosive stresses in low
durability glasses. For the same time of exposure, sensors with a more advanced degradation state
indicate that the stained-glass windows are in a more hazardous environment [19,20].

In spite of these works, there is not a systematic analysis of how Portuguese stained-glass windows
can be affected by the environmental conditions. For this reason, the aim of this study is to determine
the chemical stability of three glasses (soda-lime, potash-lime, and mixed-alkali silicate glasses) in
different Portuguese monuments with historical stained-glass windows. The glass samples were
exposed in the Monastery of Batalha (Batalha), the Monastery of Jerónimos (Lisbon), and the Cathedral
of Évora (Évora). This research will be especially useful to evaluate the conservation strategies of
Portuguese stained-glass windows.

2. Materials and Methods

2.1. Glass Samples

Three different glasses were formulated following the composition of the most common glasses
from historical stained-glass windows: soda-lime silicate (NCV), mixed-alkali silicate (MCV) and
potash-lime silicate glasses (KCV) (Table 1). They were melted in the laboratory and blown into the
form of a roundel using the same procedure as the historical production of crown window glass.
Samples of each glass were cut into slices of (1 × 1 × 0.2) cm3.
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Table 1. Chemical composition of soda-lime silicate (NCV), mixed-alkali silicate (MCV) and potash-lime
silicate (KCV) glasses analyzed by Particle Induced X-ray Spectrometry (PIXE).

Chemical Composition (wt. %)

Na2O MgO Al2O3 SiO2 P2O5 SO3 Cl− K2O CaO TiO2 MnO Fe2O3 CuO ZnO SnO2 PbO

NCV 16.91 1.77 3.15 66.12 0.02 0.03 0.01 2.86 7.30 0.03 0.09 0.27 - 1.15 0.28 -
MCV 11.70 3.43 6.81 62.97 0.12 - 0.01 4.72 8.83 0.12 0.38 0.55 - - 0.38 -
KCV 0.10 1.96 4.16 57.14 1.76 0.01 - 17.56 16.64 0.06 - 0.12 0.01 - 0.45 0.01

2.2. Corrosion Tests

The samples were exposed in three Portuguese monuments with historical stained-glass windows:
Monastery of Jerónimos (Lisbon), Monastery of Batalha, and Cathedral of Évora (Figure 1).
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Figure 1. Monuments where the glass samples were exposed.

The Monastery of Jerónimos, in Lisbon, has stained-glass windows from the first half of the
20th century. The panels, designed by Abel Manta and executed in the Atelier of Ricardo Leone,
showed the economic and industrial renascence of Portugal [2]. The Monastery of Batalha has
stained-glass windows principally from the 15th and 16th century, but also modern windows from the
19th and 20th century with decorative or historicist style, and different restoration interventions [2].
Finally, the Cathedral of Évora had 15th-century stained-glass windows; however, they were destroyed
over the centuries. Currently, two modern roses are placed face to face in the transept of the Cathedral.
All these stained-glass windows are exposed as part of the building’s façade, some of them with
protective glazing.

To assess the environmental conditions of these stained-glass windows, replica glass samples
were exposed for periods of 10 and 20 months. They were placed in a vertical position unsheltered
from the rain. The meteorological conditions of the environment have been recorded by the Portuguese
Information System of Water Resources and the Institute of Earth Sciences from the University of
Évora (Table 2). The glasses and the support structure exposed in Batalha were stolen during the final
months of the experiment.

Table 2. Average value of meteorological parameters in the nearest meteorological stations to the
three monuments.

Lisbon (Caparica Station) Batalha (Pedrogão Station) Évora (Évora Station)

Meteorological Parameters 10 Months 20 Months 10 Months 20 Months 10 Months 20 Months

Temperature (◦C) 16 ± 5 17 ± 5 16 ± 6 - 17 ± 6 18 ± 7
Days with precipitation > 0.1 mm

Total days of exposure (%) 26.9 20.4 31.1 - 25.3 23.1
Days with precipitation > 1 mm

Total days of exposure (%) 16.2 10.8 18.6 - 17.0 16.7
Relative Humidity (%) 72 ± 14 71 ± 15 69 ± 19 - 62 ± 15 60 ± 16
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2.3. Characterization Techniques

Glass samples were characterized by Optical microscopy (OM) and Fourier Transform Infrared
Spectroscopy in Attenuated Total Reflectance (FTIR-ATR).

OM was carried out by a Zeiss Axioplan 2 microscope equipped with the objectives ×5, ×20,
×50 and ×100 in reflective light mode with bright field. The images were taken with a Nikon digital
DXM1200F camera coupled to the microscope. The particles measurements were carried out with the
software Motic Images Plus 2.0 ML.

Fourier Transform Infrared spectroscopy (FTIR) was carried out with a 4300 Handheld FTIR
spectrometer of Agilent Technologies. The measurements were obtained in Attenuated Total Reflection
(FTIR-ATR) mode with a spectral range from 4000 to 650 cm−1 and a spectral resolution of 4 cm−1.
Each spectrum was the product of 32 internal scans. In order to compare spectra, the horizontal
baseline was corrected with the baseline subtraction in the range 3800–4000 cm−1 and, then, spectra
were normalized to the maximum peak with the software Spectragryph version 1.2.6.

3. Results

3.1. Surface Pathologies

The glasses exposed in the three locations did not have any damage or deposits before exposure
(Figure 2a). However, after exposure, all glasses presented deposits on their surface. Their quantity and
distribution depended on the place of exposure (Figure 2). The samples exposed in the Monastery of
Jerónimos (Lisbon) presented both big (>40 µm) and medium (15–30 µm) deposits spread on the surface
(Figure 2b); also, very small particles (<3 µm) were observed at high magnification. The samples from
Batalha showed few big (>30 µm) and medium particles (~10 µm) distributed heterogeneously on the
glass surface (Figure 2c), and the samples exposed in Évora showed very small particles (~2.5 µm)
spread homogeneously on the surface (Figure 2d), together with medium and big deposits (>20 µm).
The different morphology of the deposits can be related with the environmental aerosols in each place
of exposure.
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The most frequent natural aerosols in the Iberian Peninsula are small particles from European
continental air masses and forest fires, and large particles from both maritime aerosols and the African
desert dust plumes [21–23]. In Lisbon, marine particles contribute most to aerosols due to its proximity
to the mouth of the Tagus River and the coast of the Atlantic Ocean [24,25]; nevertheless, the city also
has a high content of aerosols from anthropogenic sources such as particles from road traffic activity
(engine combustion, tire and brake wear, etc.) or re-suspension of road dust [26,27]. Restoration works
were also carried out on the façades of the Monastery of Jerónimos, which also contributed to the large
deposits located on the glasses. All contributions agree with the different diameter of the deposits
observed on the glass surfaces from the Monastery of Jerónimos (Figure 2b).

The quantity of marine aerosols decreases as the distance to the coast increases [22]. For this
reason, the places located inland, such as Batalha and Évora, presented a lower contribution of marine
aerosols and higher contribution from European continental air aerosols [22]. These latter particles
used to be smaller than those from the marine atmosphere, which agrees with the deposits observed
on the glass samples (Figure 2c,d). The glasses exposed in the Monastery of Batalha presented deposits
with different diameters due to the particles from road traffic activity from near main roads (IC2 and
A19) (Figure 2c). The low content of deposits observed on the samples is related to the frequent rains
from this place (Table 2). Regarding the samples exposed in Évora, the deposits observed on the
samples showed small deposits dispersed homogeneously (Figure 2d), which could be related with
the aerosols that are characteristic of continental areas [22].

Circular halos were observed around the largest deposits on the glass samples as a result of the
evaporation of water drops (Figure 3a). These deposits can retain the environmental humidity on the
surface, inducing the hydration and dealkalinization of the glass surface in the long-term. The static
condition of this water can accelerate these alteration reactions, inducing the formation of punctual
circular alteration layers (Figure 3b). These layers are very fragile and any movement (wind, physical
impacts, manual manipulation . . . ) can break them, forming a hole in which the water can be retained,
accelerating the alteration mechanism (Figure 3c). These marks, related to the formation of punctual
pits, were observed in all the samples, but they were more abundant in the samples from the Monastery
of Jerónimos, where the environmental humidity was higher (Table 2).
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Figure 3. OM images of (a) circular halos due to the evaporation of water drops, (b) punctual circular
alteration layer, (c) pit in a preliminary state, in potash-lime silicate glasses after 20 months of exposure.

In addition to the pits, potash-lime silicate glasses showed interference colors after 10 months
of exposure in the Monasteries of Jerónimos and Batalha; and after 20 months in the samples from
the Monastery of Jerónimos and the Cathedral of Évora. The glass samples and the metallic support
exposed during 20 months in the Monastery of Batalha disappeared before their collection. These colors
of interference are characteristic of the initial stage of the alteration layer. The samples exposed near
the coast (Monastery of Jerónimos) showed a more intense phenomenon (Figure 4b) than the samples
located far from the coast (Figure 4a). The potash-lime silicate glasses exposed in the Cathedral of
Évora showed an irregular “tridimensional” morphology; however, it is an optical effect due to the
formation of the hydration layer (Figure 4a) [28]. An advanced state of alteration was observed in
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the samples from the Monastery of Jerónimos; a homogeneous pink layer was detected on the glass
samples as well as circular halos with bluish and yellowish colors and, usually, black deposits in their
center (Figure 4b).Heritage 2018, 2, x FOR PEER REVIEW  6 of 12 
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Figure 4. OM images of the surface of potash-lime silicate glasses exposed for 20 months in (a) Cathedral
of Évora, (b) Monastery of Jerónimos (Lisbon).

3.2. Chemical Alteration

The alteration of the glass surface was assessed by FTIR-ATR. Spectra of soda-lime silicate glasses
after 10 and 20 months of exposure in the three monuments were similar to the original sample
(Figure 5a). The modification of the infrared bands was almost negligible, in contrast to the increase
on the bands of the hydroxyl groups (δH2O ~1650 cm−1) due to the adsorption of the environmental
water. Similar behavior was observed in the mixed-alkali silicate glasses (Figure 5b), in which a few
increase was observed on the bands related with the water adsorption and, in the samples from the
Monastery of Jerónimos, the bands of the carbonate groups (υCO3

2− ~1410 cm−1). These compounds
could be environmental deposits or could be formed as a result of the reaction between the leached
ions from the glass with the environmental CO2. The most likely compound is CaCO3, which is the
most stable deposit and with less solubility according to the evolution of the crystalline phases on
glass alteration [29].
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In contrast to soda-lime silicate and mixed-alkali silicate glasses, the spectra of the potash-lime
silicate glasses exposed in the three environments were completely different (Figure 5c). The increase
in the asymmetric stretching bands of the Si-O-Si group was observed, which can be related to
the formation of the silica gel layer on the surface [30]. The band attributed to the bending of the
molecular water adsorbed on the surface (δH2O) also increased its intensity due to the adsorption of
the environmental water (Figure 5c). It is interesting that the samples exposed in the Cathedral of
Évora showed a shoulder on the silicate bands, which can be related with a very thin alteration layer;
however, the samples exposed in the Monasteries of Jerónimos and Batalha presented a significant
increase in the stretching band of Si-O-Si bonds due to the thick alteration layer formed on the glass
surface. These alteration layers were previously observed by optical microscopy (Section 3.1).

4. Discussion

4.1. Influence of the Glass Composition

The glasses presented different behaviors depending on their chemical composition. Soda-lime
silicate and mixed-alkali silicate glasses were “almost” stable glasses, in contrast to potash-lime silicate
glass which was the most altered glass.

This different behavior was related to the structural package of the glass lattice. The K+-ions
(0.133 nm) have a higher radius than Na+-ions (0.097 nm) [31], which forms a glass network opener.
This open lattice, in addition to the lower bond strength of the [Si-O-K], makes the reactions of
dealkalinization (Reaction 1) and hydrolytic attack (Reaction 2) more favorable.

≡Si-O-M + H2O→≡Si-O-H + M+ + OH− (1)

≡Si-O-Si≡ + H2O 
 2 ≡Si-O-H (2)

The reaction between the leached ions from the glass (K+, Na+, Ca2+ . . . ) with environmental CO2

and SO2, solubilized in the rainwater, can form crystals of carbonate and sulphates (Reactions 3 and 4).

2M+ + CO2 +
1
2

O2 →M2CO3 [M = alkaline ions] (3)

M+ + CO2 +
1
2

O2 →MCO3 [M = alkaline-earth ions] (4)

The mixed-alkali silicate glass (~5% K2O) showed a similar behavior to soda-lime silicate glass
(Sections 3.1 and 3.2) even with the moderate content of K2O. This behavior could be related to the
structural package. The Na+-ions can fill the empty space, creating a better structural package which
protects the K+-ions and avoids the hydrolytic attack.

Similar pathologies, but in an advanced alteration state, were observed on medieval potash-lime
silicate glasses from the Monastery of Batalha [32–34]. The historical fragments showed fissured
surfaces with detachments, interconnected holes with loss of material, iridescent layers due to
the hydration of the glass surface, and the formation of a thick corrosion crust enriched in
calcium carbonates.

4.2. Influence of the Environment

The glass samples were exposed in three monuments with historical stained-glass windows
in different regions of Portugal (Figure 1). According to the Köppen–Geiger climate classification,
the monuments are placed in two different climates [35,36] (Figure 6a). The Monastery of Jerónimos
(Lisbon) and the Cathedral of Évora present a warm temperate climate with dry and hot summers
(Csa) (T (temperature)max > 22 ◦C, P (precipitations)min_summer < Pmin_winter, Pmax_winter > 3 Pmin_summer,
and Pmin_summer <40 mm); while the Monastery of Batalha presents a warm temperate climate with dry
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and temperate summers (Csb) (T (temperature)max < 22 ◦C, Tmean > 10 ◦C for more than 4 months per year,
P (precipitations)min_summer < Pmin_winter, Pmax_winter > 3 Pmin_summer, and Pmin_summer < 40 mm) [37].Heritage 2018, 2, x FOR PEER REVIEW  8 of 12 
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During the exposure, the main air temperature in the three monuments was similar (Table 2).
Nevertheless, a slightly higher value in Évora was observed, which agrees with the mean air
temperature measured by the Instituto de Meteorologia de Portugal [36]. This similar value in
the measured temperature will induce an equivalent alteration rate.

Évora had lowest relative humidity because it is placed in a continental area, far from the ocean
(Figure 6c). On the contrary, Lisbon has the highest RH because of the influence of the Tagus River and
the coast of the Atlantic Ocean (Figure 6c and Table 2). Batalha also had high relative humidity because
it is located in an area with low temperature and frequent precipitations (Figure 6b,c). The high content
of humidity favors the formation of few monolayers of liquid water on the glass surface [39], which can
produce the dealkalization of the glass surface (Reaction 1) and the hydrolytic attack of the glass lattice
(Reaction 2). The silanol bonds formed as a result of these reactions can polymerize between them
to form a porous layer enriched in SiO2 (Reaction 2) [40]. This silica gel layer was observed in the
samples exposed in the Monastery of Jerónimos (Lisbon) and the Monastery of Batalha (Batalha) due
to the high humidity in these places. However, the low humidity in Évora decreased the alteration
rate, which favored the preservation of the most vulnerable glasses.

Additionally, the high content of marine aerosols in the areas near the coast, such as in the
Monastery of Jerónimos, increases the alteration rate of the glasses [41]. The marine aerosols can
increase the hygroscopicity of the glass surface and, also, open the glass structure, favoring the
alteration of the glass surface [42–44].

Another important factor in the alteration of historical glasses is the frequency of precipitations.
Rainwater can wash the leached ions (alkaline, alkaline-earth and hydroxyl ions) from the glass
surface. The removal of hydroxyl ions favors the maintenance of a neutral pH in the surface glass,
which prevents the basic corrosion mechanism. Precipitations in Batalha were recurrent during the
exposure period (Table 2 and Figure 6c). It rained around 30% of the days of the exposure, and the
precipitation was moderate (>1 mm) more than 18% of these days (Table 2). The rain washed the
glass surface, and the deposits and leached ions from the glass were removed frequently [4,5]. For this
reason, the samples exposed in the Monastery of Batalha showed few deposits in comparison with the
samples from the other two places, and less punctual damages than the samples from the Monastery
of Jerónimos (Figure 2).

The Cathedral of Évora, exposed to low humidity and occasional rainfall (Table 2), is the
best environmental condition for the preservation of the exposed samples, as was observed in
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Sections 3.1 and 3.2. The Monastery of Batalha is placed in an area with high humidity, which favors
the alteration rate of the glass; however, the frequent rainfall in this area favored the removal of
the aggressive species from the glass surface, avoiding the formation of isolated pits but forming
a homogeneous alteration layer in the potash-lime silicate glass after just 10 months. Finally,
the Monastery of Jerónimos, located in the mouth of the Tagus River and near the coast of the Atlantic
Ocean, is exposed to high humidity and marine aerosols, but with occasional rainfall. This meteorology
produces a very high risk for the preservation of historical stained-glass windows. The formation of
both a homogeneous silica gel layer on the potash-lime silicate glass and isolated pits in the three
glasses was observed due to the hydration and retention of environmental water on the deposits.

According to the environmental climatology of Portugal and the alteration observed on the glasses
exposed, a map of the risk of alteration of historical glasses was made (Figure 7). The highest risk was
observed in the coastal areas and in the south of Portugal, where higher environmental humidity was
measured (Figure 6c). On the contrary, the inner part of Portugal, with drier conditions (Figure 6c,d),
presented a better climatology for the preservation of historical glass windows (Figure 7).
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5. Conclusions

The present study has proved that the preservation of historical stained-glass windows in
Portugal depends on the type of glass used and on the meteorological conditions specific to each place.
Medieval stained-glass windows, usually made with potash-lime silicate glass, are the most vulnerable
because they have an open glass network which favors the hydrolytic attack of the glass. On the
contrary, soda-lime silicate glass and mixed-alkali silicate glass have the highest chemical resistance to
the environmental conditions because they present a better structural package.

Regarding the climatology, glasses located near the coast and in areas with high humidity were
the most threatened because of the great impact of the environmental water on the glass surface.
Meanwhile, those located in the inner part of the country with a drier climate, were better preserved.
From the point of view of heritage conservation, it is recommended to conduct an individual study in
each environment due to the specific characteristics of each place.
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