Vegetation Conditions in Sacred Compounds at Myanmar’s Bagan Cultural Heritage Site
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Aerial Photography and Field Operations
2.3. Image Processing and Analysis
- Initial processing for calibrated and geolocated images,
- Point cloud densification and generation of 3D texture mesh with optimal point density, and
- DSM and orthomosaic image generations for the production of GeoTIFF-encoded raster images.
2.4. Data Analysis
3. Results
3.1. Relative Areas of Components in Sacred Compounds
3.2. Coverage of Other Components and Scrub Vegetation Canopy in the Three Subzones
3.3. Factors Influencing the Occurrence of Each Scrub Vegetation Type
4. Discussion
4.1. Components Integrating into Sacred Compounds
4.2. Scrub Vegetation Canopy Coverage against Subzones
4.3. Socio-Cultural Implications of Scrub Vegetation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Caneva, G.; Benelli, F.; Bartoli, F.; Cicinelli, E. Safeguarding natural and cultural heritage on Etruscan tombs (La Banditaccia, Cerveteri, Italy). Rend. Lincei. Sci. Fis. Nat. 2018, 29, 891–907. [Google Scholar] [CrossRef]
- Caneva, G.; Bartoli, F.; Ceschin, S.; Salvadori, O.; Futagami, Y.; Salvati, L. Exploring ecological relationships in the biodeterioration patterns of Angkor temples (Cambodia) along a forest canopy gradient. J. Cult. Herit. 2015, 16, 728–735. [Google Scholar] [CrossRef]
- Steinbauer, M.J.; Gohlke, A.; Mahler, C.; Schmiedinger, A.; Beierkuhnlein, C. Quantification of wall surface heterogeneity and its influence on species diversity at medieval castles—implications for the environmentally friendly preservation of cultural heritage. J. Cult. Herit. 2013, 14, 219–228. [Google Scholar] [CrossRef]
- Motti, R.; Stinca, A. Analysis of the biodeteriogenic vascular flora at the Royal Palace of Portici in southern Italy. Int. Biodeterior. Biodegrad. 2011, 65, 1256–1265. [Google Scholar] [CrossRef]
- Caneva, G.; Galotta, G.; Cancellieri, L.; Savo, V. Tree roots and damages in the Jewish catacombs of Villa Torlonia (Roma). J. Cult. Herit. 2009, 10, 53–62. [Google Scholar] [CrossRef]
- Mishra, A.K.; Jain, K.K.; Garg, K.L. Role of higher plants in the deterioration of historic buildings. Sci. Total Environ. 1995, 167, 375–392. [Google Scholar] [CrossRef]
- Caneva, G.; Pacini, A.; Grapow, L.C.; Ceschin, S. The Colosseum’s use and state of abandonment as analysed through its flora. Int. Biodeterior. Biodegrad. 2003, 51, 211–219. [Google Scholar] [CrossRef]
- Aung, M.Z.N.; Shibata, S. Contemporary landscape structure within Monumental Zone-1 at the Bagan Cultural Heritage Site, Myanmar. Heritage 2019, 2, 1748–1761. [Google Scholar] [CrossRef]
- Forest Department. Forest Reference Level (FL) of Myanmar; Ministry of Natural Resources and Environmental Conservation: Nay Pyi Taw, Myanmar, 2018. Available online: https://redd.unfccc.int/ files/2018_frel_ submission_myanmar.pdf (accessed on 27 May 2019).
- Food and Agricultural Organization. The State of the World’s Forest Genetic Resources, Country Report: Myanmar; FAO: Rome, Italy, 2010; Available online: http://www.fao.org/3/i3825e/i3825e46.pdf (accessed on 27 May 2019).
- Kress, W.J.; DeFilipps, R.A.; Farr, E.; Kyi, Y.Y. A brief review of the geology, climate and vegetation of Myanmar. In A Checklist of the Trees, Shrubs, Herbs, and Climbers of Myanmar; Department of Systematic Biology–Botany, National Museum of Natural History, Smithsonian Institution: Washington, DC, USA, 2003; Volume 45, pp. 19–31. [Google Scholar]
- Briggs, J.M.; Spielmann, K.A.; Schaafsma, H.; Kintigh, K.W.; Kruse, M.; Morehouse, K.; Schollmeyer, K. Why ecology needs archaeologists and archaeology needs ecologists. Front. Ecol. Environ. 2006, 4, 180–188. [Google Scholar] [CrossRef] [Green Version]
- Dehnen-Schmutz, K. Alien species reflecting history: Medieval castles in Germany. Divers. Distrib. 2004, 10, 147–151. [Google Scholar] [CrossRef]
- Roy, N.; Bhiry, N.; Woollett, J.; Fréchette, B. Vegetation history since the mid-Holocene in northeastern Iceland. Ecoscience 2018, 25, 109–123. [Google Scholar] [CrossRef]
- Wacnik, A.; Tylmann, W.; Bonk, A.; Goslar, T.; Enters, D.; Meyer-Jacob, C.; Grosjean, M. Determining the responses of vegetation to natural processes and human impacts in north-eastern Poland during the last millennium: combined pollen, geochemical and historical data. Veg. Hist. Archaeobot. 2016, 25, 479–498. [Google Scholar] [CrossRef] [Green Version]
- Hudson, B.; Lwin, N.; Maung, W. The origins of Bagan: New dates and old inhabitants. Asian Perspect. 2001, 40, 48–74. [Google Scholar] [CrossRef]
- Hudson, B. The Origins Bagan. The archaeological landscape of Upper Burma to A.D. 1300. Ph.D. Thesis, The University of Sydney, New South Wales, Australia, 2004; pp. 188–219. [Google Scholar]
- Hudson, B. Restoration and reconstruction of monuments at Bagan (Pagan), Myanmar (Burma), 1995–2008. World Archae. 2008, 40, 553–571. [Google Scholar] [CrossRef]
- Han, N. A Retrospective and Prospective Review on the Conservation of Ancient Monuments in Pagan. Cultural Heritage in Asia (4): Study on Pagan, Mandalay and Pagan, Myanmar, 1–6 August 1988; Institute of Asian Cultures, Sophia University: Tokyo, Japan, 1989; pp. 91–99. [Google Scholar]
- Hla, T. Anantasura’s Inscriptions: Why among Others? Bagan Metropolis, Yangon, Myanmar, 9–15 July 2017; SOAPS University of London: London, UK; Available online: https://www.soas.ac.uk/saaap/ news/file124888.pdf (accessed on 6 April 2019).
- Trager, F.N.; Koenig, W.J. Central Burma. In Burmese Sit-Tans 1764–1826: Records of Rural Life and Administration; The University of Arizona Press: Tucson, AZ, USA, 1979; pp. 190–356. [Google Scholar]
- Aung-Twin, M. The institutional context: Organization of human and material resources. In Pagan: The Origins of Modern Burma; University of Hawaii Press: Honolulu, HI, USA, 1985; pp. 69–165. [Google Scholar]
- Tun, T. Agriculture in Myanmar, A. D. 1000–1300. In Some Observations on History and Culture of Early Myanmar; Myanmar Historical Commission, Ministry of Education, Union of Myanmar: Yangon, Myanmar, 2004; pp. 22–29. [Google Scholar]
- Luce, G.H. Economic life of the early Burman. J. Burma Res. Soc. 1940, 30, 283–335. [Google Scholar]
- Koller, A. Architectural design at Bagan and Angkor: A comparison. J. R. Asiat. Soc. 2017, 27, 93–141. [Google Scholar] [CrossRef]
- Pichard, P. Inventory of Monuments at Pagan; Kiscadale EFEO UNESCO: Paris, France, 1992–1995; Volumes 1–6. [Google Scholar]
- Tun, T. Religious buildings of Burma A.D. 1000–1300. J. Burma Res. Soc. 1959, 42, 71–80. [Google Scholar]
- Tun, T. Religion in Burma, A. D. 1000–1300. J. Burma Res. Soc. 1959, 42, 47–69. [Google Scholar]
- Luce, G.H. Rise of Pagan. In Old Burma–Early Pagan; J. J. Augustin Publisher: New York, NY, USA, 1969; Volume 1, pp. 4–11. [Google Scholar]
- World Heritage Committee. Convention Concerning the Protection of the World Cultural and Natural Heritage. Thirty Second Session, Quebec, Canada, 2–10 July 2008; UNESCO: Paris, France, 2008; Available online: http://whc.unesco.org/archive/2008/whc08-32com-9e.pdf (accessed on 8 October 2019).
- Department of Archaeology and National Museum. Proposed World Heritage List Bagan: Cultural Heritage Sites in Myanmar; Ministry of Religious Affairs and Culture, The Republic of the Union of Myanmar: Nay Pyi Taw, Myanmar, 2018.
- Department of Population. The 2014 Myanmar Population and Housing Census, Mandalay Region, Nyaung-U District, Nyaung-U Township; Ministry of Labour, Immigration and Population, The Republic of the Union of Myanmar: Nay Pyi Taw, Myanmar, 2017. Available online: www.dop.gov.mm/sitesdop.gov.mm/ files/publication_docs/naung_u.pdf (accessed on 1 April 2019).
- Hudson, B. The King of Free Rabbit Island: A G.I.S.-based archaeological approach to Myanmar’s medieval capital, Bagan. In Proceedings of the Myanmar Two-millennial Conference, Yangon, Myanmar, 15–17 December 1999; Universities Historical Research Centre: Yangon, Myanmar, 2000; pp. 10–19. [Google Scholar]
- Myanmar Information Management Unit (MIMU). Myanmar State/Region (with Sub-Regions), District, Township Boundary Lines. 2019. Available online: geonode.themimu.info/layers/?limit=100&offset=0 (accessed on 11 June 2019).
- United States Geological Survey (USGS). Available online: https://earthexplorer.usgs.gov/ (accessed on 7 October 2019).
- Natural Earth. Available online: https://www.naturalearthdata.com/downloads/10m-raster-data/10m- natural-earth-1/ (accessed on 7 October 2019).
- Pichard, P. Inventory of Monuments at Pagan; Kiscadale EFEO UNESCO: Paris, France, 1992; Volume 1 (Monuments 1–255), pp. 1–41. [Google Scholar]
- Csecserits, A.; Botta-Dukát, Z.; Kröel-Dulay, G.; Lhotsky, B.; Ónodi, G.; Rédei, T.; Szitár, K.; Halassy, M. Tree plantations are hot-spots of plant invasion in a landscape with heterogeneous land-use. Agric. Ecosyst. Environ. 2016, 226, 88–98. [Google Scholar] [CrossRef] [Green Version]
- Mosher, E.S.; Silander, J.A., Jr.; Latimer, A.M. The role of land-use history in major invasions by woody plant species in the northeastern North American landscape. Biol. Invasions 2009, 11, 2317–2318. [Google Scholar] [CrossRef]
- Aung-Twin, M. The effects of beliefs and institutions on events. In Pagan: The Origins of Modern Burma; University of Hawaii Press: Honolulu, HI, USA, 1985; pp. 167–198. [Google Scholar]
- Aung-Thwin, M.; Aung-Thwin, M. Pagan: The golden age of Myanmar. In A History of Myanmar Since Ancient Times, Traditions and Transformations; Reaktion Books Ltd.: London, UK, 2012; pp. 77–106. [Google Scholar]
- Davis, J.H. Classification of types of forests and other woody vegetation. In The Forest of Burma; University of Florida: Gainesville, FL, USA, 1960; pp. 2–4. [Google Scholar]
- Oo, W.P.; Koike, F. Dry forest community types and their predicted distribution based on a habitat model for the central dry zone of Myanmar. For. Ecol. Manag. 2015, 358, 108–121. [Google Scholar] [CrossRef]
- Aung, T.; Koike, F. Identification of invasion status using a habitat invasibility assessment model: The case of Prosopis species in the dry zone of Myanmar. J. Arid Environ. 2015, 120, 87–95. [Google Scholar] [CrossRef]
- Deak, B.; Tothmeresz, B.; Valko, O.; Sudnik-Wojcikowska, B.; Moysiyenko, I.I.; Bragina, T.M.; Apostolova, I.; Dembicz, I.; Bykov, N.I.; Torok, P. Cultural monuments and nature conservation: A review of the role of kurgans in the conservation and restoration of steppe vegetation. Biodivers. Conserv. 2016, 25, 2473–2490. [Google Scholar] [CrossRef]
- Abbas, A.M.; Rubio-Casal, A.E.; De Cires, A.; Grewell, B.J.; Castillo, J.M. Differential tolerance of native and invasive tree seedlings from arid African deserts to drought and shade. S. Afr. J. Bot. 2019, 123, 228–240. [Google Scholar] [CrossRef]
- Mukherjee, A.; Velankar, A.D.; Kumara, H.N. Invasive Prosopis juliflora replacing the native floral community over three decades: A case study of a World Heritage Site, Keoladeo National Park, India. Biodivers. Conserv. 2017, 26, 2839–2856. [Google Scholar] [CrossRef]
- Shackleton, R.T.; LeMaitre, D.C.; VanWilgen, B.W.; Richardson, D.M. The impact of invasive alien Prosopis species (mesquite) on native plants in different environments in South Africa. S. Afr. J. Bot. 2015, 97, 25–31. [Google Scholar] [CrossRef]
- Nakano, H.; Nakajima, E.; Fujii, Y.; Yamada, K.; Shigemori, H.; Hasegawa, K. Leaching of the allelopathic substance L-tryptophan from the foliage of mesquite (Prosopis juliflora (Sw.) DC.) plants by water spraying. Plant Growth Regul. 2003, 40, 49–52. [Google Scholar] [CrossRef]
- Muturi, G.M.; Poorter, L.; Bala, P.; Mohren, G.M.J. Unleached Prosopis litter inhibits germination but leached stimulates seedling growth of dry woodland species. J. Arid Environ. 2017, 138, 44–50. [Google Scholar] [CrossRef]
- Drury, L.W. Hydrology of the Dry Zone—Central Myanmar; The Australian Water Partnership: Canberra, Australia, 2017; pp. 13–16. Available online: http://themimu.info/sites/themimu.info/files/documents/ Report_Hydrogeology_of_the_Dry_Zone-Central_Myanmar_2017_low-res.pdf (accessed on 1 August 2018).
- Guevara, A.; Pancotto, V.; Mastrantonio, L.; Giordano, C.V. Fine roots of Prosopis flexuosa trees in the field. Plant and soil variables that control their growth and depth distribution. Plant Ecol. 2018, 219, 1399–1412. [Google Scholar] [CrossRef]
- Zhou, Y.; Watts, S.E.; Boutton, T.W.; Archer, S.R. Root density distribution and biomass allocation of co-occurring woody plants on contrasting soils in a subtropical savanna parkland. Plant Soil 2019, 43, 263–279. [Google Scholar] [CrossRef]
- Zhou, Y.; Boutton, T.W.; Wu, X.B.; Wright, C.L.; Dion, A.L. Rooting strategies in a subtropical savanna: A landscape-scale three-dimensional assessment. Oecologia 2018, 186, 1127–1135. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Yasuda, H.; Sakurai, M.; Acharya, K.; Sueki, S.; Inosako, K.; Yoda, K.; Fujimaki, H.; Abd Elbasit, M.A.M.; Eldoma, A.M.; et al. Monitoring of stem water content of native and invasive trees in arid environments using GS3 soil moisture sensors. Vadose Zone J. 2016, 15, 1–9. [Google Scholar] [CrossRef]
- Cai, W.; Guan, T.; Li, H.; Lai, L.; Zhang, X.; Zhou, J.; Jiang, L.; Zheng, Y. Vegetation succession of abandoned croplands in Ruanliang and Yingliang in the Ordos Plateau. Acta Ecol. Sin. 2018, 38, 21–28. [Google Scholar] [CrossRef]
- Piche, N.; Kelting, D.L. Recovery of soil productivity with forest succession on abandoned agricultural land. Restor. Ecol. 2015, 23, 645–654. [Google Scholar] [CrossRef]
- Kumar, S.; Mathur, M. Impact of invasion by Prosopis juliflora on plant communities in arid grazing lands. Trop. Ecol. 2014, 55, 33–46. [Google Scholar]
- Bueno, A.; Llambi, L.D. Facilitation and edge effects influence vegetation regeneration in old-fields at the tropical Andean forest line. Appl. Veg. Sci. 2015, 18, 613–623. [Google Scholar] [CrossRef]
- Holl, K.D. Effect of shrub on tree seedling establishment in an abandoned tropical pasture. J. Ecol. 2002, 90, 179–187. [Google Scholar] [CrossRef]
Component | N | Area (ha) | % Sacred Compound | ||
---|---|---|---|---|---|
Total | Mean (× 10−4) | Range (× 10−4) | |||
1. Monuments † | 89 | 1.55 | 173.81 | 3.51–1197.48 | 6.92 |
2. Processed land | 36 | 5.59 | 1553.84 | 4.41–14,497.76 | 25.02 |
Farmland | 4 | 3.44 | 8591.27 | 4832.59–14,497.76 | 15.38 |
Active monastic residences | 6 | 1.31 | 2181.00 | 775.47–3489.60 | 5.86 |
Accessways | 26 | 0.84 | 311.06 | 4.41–1640.33 | 3.76 |
3. Shrub-hosting areas | 90 | 9.08 | 1008.70 | 1.95–14,063.77 | 40.60 |
4. Scrub vegetation | 1119 | 6.14 | 54.88 | 1.02–2390.33 | 27.46 |
Acacia leucophloea | 156 | 1.02 | 65.42 | 3.02–645.19 | 4.56 |
Acacia catechu | 25 | 0.06 | 24.56 | 3.19–66.09 | 0.27 |
Azadirachta indica | 119 | 0.31 | 26.24 | 1.09–250.02 | 1.40 |
Zizyphus jujuba | 212 | 0.35 | 16.72 | 1.02–157.99 | 1.58 |
Osyris wightiana | 38 | 0.04 | 11.16 | 2.84–43.74 | 0.19 |
Euphorbia antiquorum | 35 | 0.05 | 13.64 | 2.95–51.80 | 0.21 |
Prosopis juliflora | 356 | 3.60 | 102.34 | 1.24–2390.33 | 16.29 |
Other †† | 178 | 0.66 | 37.03 | 1.68–467.01 | 2.95 |
Sacred compounds | 27 | 22.36 | 8281.51 | 870.96–62,086.24 | 100.00 ††† |
Common (Local) Name | Scientific Name | Family | Habit |
---|---|---|---|
1. Tanaung | Acacia leucophloea (Roxb.) Willd. | Fabaceae | Tree |
2. Sha | Acacia catechu Willd. | Fabaceae | Tree |
3. Tama | Azadirachta indica A. Juss. | Meliaceae | Tree |
4. Zi | Zizyphus jujuba Lam. | Rhamnaceae | Tree |
5. Zaung-gyan | Osyris wightiana Wall. | Santalaceae | Shrub |
6. Tazaung-gyi | Euphorbia antiquorum L. | Euphorbiaceae | Small tree |
7. Gandayasein | Prosopis juliflora DC. | Fabaceae | Tree |
8. Other | |||
Htan † | Borassus flabellifer L. | Arecaceae | Tree |
Ohn † | Cocos nucifera L. | Arecaceae | Tree |
Ma-gyi † | Tamarindus indica L. | Caesalpiniaceae | Tree |
Tha-yet † | Mangifera indica L. | Anacardiaceae | Tree |
Sakku-pan † | Bougainvillea spp. | Nyctaginaceae | Climber |
Unknown † species | – | – | – |
Scrub Vegetation | N | Area (ha) (× 10−4) | % Grand Total | ||
---|---|---|---|---|---|
Total | Mean | Range | |||
A. leucophloea | 20 | 1883.82 | 125.59 | 12.48–344.03 | 11.56 |
A. catechu | 3 | 88.26 | 29.42 | 6.08–59.31 | 0.54 |
A. indica | 11 | 538.64 | 48.97 | 2.88–250.02 | 3.31 |
Z. jujuba | 10 | 158.22 | 15.82 | 0.98–50.17 | 0.97 |
P. juliflora | 62 | 12,747.08 | 205.60 | 1.32–2390.33 | 78.24 |
“Other” | 18 | 876.25 | 48.68 | 7.22–199.39 | 5.38 |
Grand total | 124 | 16,292.27 | 131.39 | 1.32–2503.11 | 100 |
Sub- zone | Scrub Vegetation Coverage Area (ha) (× 10−4) | Mean | |||||||
---|---|---|---|---|---|---|---|---|---|
A. leucophloea | A. catechu | A. indica | Z. jujuba | O. wightiana | E. antiquorum | P. juliflora | “Other” | ||
L1 | 90.22 a (± 16.73) | 18.89 a (± 4.11) | 24.90 a (± 9.90) | 11.03 b (± 1.16) | 7.46 b (± 1.42) | 11.79 a (± 2.29) | 36.92 b (± 4.46) | 19.66 b (± 3.00) | 30.22 B (± 2.91) |
L2 | 71.42 ab (± 8.95) | 29.47 a (± 10.01) | 22.47 a (± 5.18) | 19.52 a (± 2.48) | 8.38 b (± 1.23) | 13.49 a (± 3.48) | 68.42 ab (± 11.85) | 47.31 a (± 11.14) | 43.82 B (± 3.97) |
L3 | 47.11 b (± 10.57) | 31.59 a (± 7.02) | 34.74 a (± 8.57) | 18.36 a (± 1.75) | 21.86 a (± 4.58) | 14.26 a (± 2.37) | 149.77 a (± 26.07) | 41.84 ab (± 6.47) | 78.97 A (± 10.60) |
Mean | 65.42 AB (± 6.63) | 24.56 AB (± 3.56) | 26.24 AB (± 4.14) | 16.72 B (± 1.21) | 11.16 B (± 1.60) | 13.64 B (± 1.64) | 102.34 A (± 13.77) | 37.00 AB (± 4.24) |
Scrub Vegetation | Factor 1 (38.81%) (Eigenvalue = 2.04) | Factor 2 (36.90%) (Eigenvalue = 1.38) | Factor 3 (24.29%) (Eigenvalue = 0.97) |
---|---|---|---|
A. leucophloea | 0.595 | 0.241 | −0.109 |
A. catechu | 0.164 | 0.597 | −0.402 |
A. indica | 0.829 | −0.045 | 0.084 |
Z. jujuba | 0.685 | −0.031 | −0.058 |
O. wightiana | 0.025 | 0.641 | 0.204 |
E. antiquorum | −0.054 | 0.729 | 0.154 |
P. juliflora | −0.022 | 0.171 | 0.870 |
“Other” | 0.408 | 0.484 | −0.249 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aung, M.Z.N.; Shibata, S. Vegetation Conditions in Sacred Compounds at Myanmar’s Bagan Cultural Heritage Site. Heritage 2019, 2, 2745-2762. https://doi.org/10.3390/heritage2040170
Aung MZN, Shibata S. Vegetation Conditions in Sacred Compounds at Myanmar’s Bagan Cultural Heritage Site. Heritage. 2019; 2(4):2745-2762. https://doi.org/10.3390/heritage2040170
Chicago/Turabian StyleAung, Min Zar Ni, and Shozo Shibata. 2019. "Vegetation Conditions in Sacred Compounds at Myanmar’s Bagan Cultural Heritage Site" Heritage 2, no. 4: 2745-2762. https://doi.org/10.3390/heritage2040170
APA StyleAung, M. Z. N., & Shibata, S. (2019). Vegetation Conditions in Sacred Compounds at Myanmar’s Bagan Cultural Heritage Site. Heritage, 2(4), 2745-2762. https://doi.org/10.3390/heritage2040170