Chemical and Mechanical Differences between Historic and Modern Scots Pine Wood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Historic and Modern Wood Samples
2.2. FTIR Microscopy
2.3. Compression Testing of Stiffness
3. Results
3.1. FTIR
3.1.1. Spectral Assignment
3.1.2. FTIR Difference Spectra
3.2. Acetyl Content
3.3. Lignin Content
3.4. Compression Testing for Stiffness
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Forster, A.M. Building conservation philosophy for masonry repair: part 2—“principles”. Struct. Surv. 2010, 28, 165–188. [Google Scholar] [CrossRef]
- Kranitz, K.; Sonderegger, W.; Bues, C.-T.; Niemz, P. Effects of aging on wood: a literature review. Wood Sci. Technol. 2015, 50, 7–22. [Google Scholar] [CrossRef]
- Riggio, M.; D’Ayala, D.; Parisi, M.A.; Tardini, C. Assessment of heritage timber structures: Review of standards, guidelines and procedures. J. Cult. Herit. 2018, 31, 220–235. [Google Scholar] [CrossRef]
- Lindfors, E.-L.; Lindström, M.; Iversen, T. Polysaccharide degradation in waterlogged oak wood from the ancient warship Vasa. Holzforschung 2008, 62, 57–63. [Google Scholar] [CrossRef]
- Lichtblau, D.; Strlic, M.; Trafela, T.; Kolář, J.; Anders, M. Determination of mechanical properties of historical paper based on NIR spectroscopy and chemometrics – a new instrument. Appl. Phys. A 2008, 92, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Menart, E.; De Bruin, G.; Strlic, M. Effects of NO2 and acetic acid on the stability of historic paper. Cellulose 2014, 21, 3701–3713. [Google Scholar] [CrossRef] [Green Version]
- Tetreault, J.; Dupont, A.-L.; Bégin, P.; Paris, S. The impact of volatile compounds released by paper on cellulose degradation in ambient hygrothermal conditions. Polym. Degrad. Stab. 2013, 98, 1827–1837. [Google Scholar] [CrossRef] [Green Version]
- Becker, M.; Meyer, F.; Jeong, M.-J.; Ahn, K.; Henniges, U.; Potthast, A. The museum in a test tube – Adding a third dimension to the evaluation of the impact of volatile organic acids on paper. Polym. Degrad. Stab. 2016, 130, 109–117. [Google Scholar] [CrossRef]
- Gibson, L.; Watt, C. Acetic and formic acids emitted from wood samples and their effect on selected materials in museum environments. Corros. Sci. 2010, 52, 172–178. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, C. The Role of Heritage Science in Conservation Philosophy and Practice. Hist. Environ. Policy Pract. 2015, 6, 214–228. [Google Scholar] [CrossRef]
- Douglas-Jones, R.; Hughes, J.; Jones, S.; Yarrow, T. Science, value and material decay in the conservation of historic environments. J. Cult. Herit. 2016, 21, 823–833. [Google Scholar] [CrossRef]
- Sonderegger, W.; Kranitz, K.; Bues, C.-T.; Niemz, P. Aging effects on physical and mechanical properties of spruce, fir and oak wood. J. Cult. Herit. 2015, 16, 883–889. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, W. Nondestructive Evaluation and Reliability Analysis for Determining the Mechanical Properties of Old Wood of Ancient Timber Structure. BioResources 2017, 12. [Google Scholar] [CrossRef] [Green Version]
- Eder, M.; Jungnikl, K.; Burgert, I. A close-up view of wood structure and properties across a growth ring of Norway spruce (Picea abies [L] Karst.). Trees 2008, 23, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, S.; Sethy, A. Differences in dynamic modulus of elasticity determined by three vibration mthods and their relationship with static modulus of elasticity. Maderas-Cienc. Tecnol. 2016, 18, 373–382. [Google Scholar]
- Hudson-McAulay, K.; Auty, D.; Jarvis, M.C. FTIR Measurement of Cellulose Microfibril Angle in Historic Scots Pine Wood and Its Use to Detect Fungal Decay. Stud. Conserv. 2017, 63, 375–382. [Google Scholar] [CrossRef]
- Altaner, C.M.; Thomas, L.; Fernandes, A.N.; Jarvis, M.C. How Cellulose Stretches: Synergism between Covalent and Hydrogen Bonding. Biomacromolecules 2014, 15, 791–798. [Google Scholar] [CrossRef] [Green Version]
- Fackler, K.; Schwanninger, M. How spectroscopy and microspectroscopy of degraded wood contribute to understand fungal wood decay. Appl. Microbiol. Biotechnol. 2012, 96, 587–599. [Google Scholar] [CrossRef] [Green Version]
- Canmore. Edinburgh, Abbey Strand, Abbey Sanctuary. Available online: https://canmore.org.uk/site/52248/edinburgh-abbey-strand-abbey-sanctuary (accessed on 20 January 2020).
- Canmore. Dysart, Panhall, 1 Pan Ha’, Bay House. Available online: http://canmore.org.uk/site/53989/dysart-panhall-1-pan-ha-bay-house (accessed on 20 January 2020).
- Crone, A. Carnock House, Stirling; Dendrochronological Analysis of the Painted Oak Beams; AOC Archaeology Group: Edinburgh, UK, 2011. [Google Scholar]
- Auty, D.; Gardiner, B.; Achim, A.; Moore, J.; Cameron, A.D. Models for predicting microfibril angle variation in Scots pine. Ann. For. Sci. 2012, 70, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Faix, O.; Boettcher, J.H.; Bertelt, E. Using FTIR spectroscopy and FTIR microscopy for the examination of wood and wood tissue. Luebeck DL Tentat. 1992, 1575, 428–430. [Google Scholar] [CrossRef]
- Leonardon, M.; Altaner, C.M.; Vihermaa, L.; Jarvis, M.C. Wood shrinkage: influence of anatomy, cell wall architecture, chemical composition and cambial age. Holz als Roh- und Werkst. 2009, 68, 87–94. [Google Scholar] [CrossRef]
- Auty, D.; Achim, A. The relationship between standing tree acoustic assessment and timber quality in Scots pine and the practical implications for assessing timber quality from naturally regenerated stands. Forestry 2008, 81, 475–487. [Google Scholar] [CrossRef] [Green Version]
- Brancheriau, L.; Baillères, H.; Guitard, D. Comparison between modulus of elasticity values calculated using 3 and 4 point bending tests on wooden samples. Wood Sci. Technol. 2002, 36, 367–383. [Google Scholar] [CrossRef]
- Nocetti, M.; Brancheriau, L.; Bacher, M.; Brunetti, M.; Crivellaro, A. Relationship between local and global modulus of elasticity in bending and its consequence on structural timber grading. Holz als Roh- und Werkst. 2013, 71, 297–308. [Google Scholar] [CrossRef]
- Lourenço, P.B.; Feio, A.; Machado, J. Chestnut wood in compression perpendicular to the grain: Non-destructive correlations for test results in new and old wood. Constr. Build. Mater. 2007, 21, 1617–1627. [Google Scholar] [CrossRef] [Green Version]
- Kacurã¡kovã¡, M. Developments in mid-infrared FT-IR spectroscopy of selected carbohydrates. Carbohydr. Polym. 2001, 44, 291–303. [Google Scholar] [CrossRef]
- Nuopponen, M.H.; Birch, G.M.; Sykes, R.J.; Lee, S.J.; Stewart, D. Estimation of Wood Density and Chemical Composition by Means of Diffuse Reflectance Mid-Infrared Fourier Transform (DRIFT-MIR) Spectroscopy. J. Agric. Food Chem. 2006, 54, 34–40. [Google Scholar] [CrossRef]
- Åkerholm, M.; Salmén, L. Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 2001, 42, 963–969. [Google Scholar] [CrossRef]
- Pizzo, B.; Pecoraro, E.; Alves, A.; Macchioni, N.; Rodrigues, J. Quantitative evaluation by attenuated total reflectance infrared (ATR-FTIR) spectroscopy of the chemical composition of decayed wood preserved in waterlogged conditions. Talanta 2015, 131, 14–20. [Google Scholar] [CrossRef]
- Windeisen, E.; Strobel, C.; Wegener, G. Chemische Charakterisierung von thermisch belastetem Holz: Bestimmung des Acetylgruppengehalts und FTIR-Spektroskopie. Holz als Roh- und Werkst. 2003, 61, 471–472. [Google Scholar] [CrossRef]
- Xu, C.; Leppänen, A.-S.; Eklund, P.C.; Holmlund, P.; Sjöholm, R.; Sundberg, K.; Willför, S. Acetylation and characterization of spruce (Picea abies) galactoglucomannans. Carbohydr. Res. 2010, 345, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Simonović, J.; Stevanic, J.; Djikanović, D.; Salmen, L.; Radotić, K. Anisotropy of cell wall polymers in branches of hardwood and softwood: a polarized FTIR study. Cellulose 2011, 18, 1433–1440. [Google Scholar] [CrossRef]
- Holmbom, B. Isolation and characterisation of water soluble polysaccharides from Norway spruce and Scots pine. Wood Sci. Technol. 2004, 38, 173–179. [Google Scholar] [CrossRef]
- Stevanic, J.S.; Salmén, L. Orientation of the wood polymers in the cell wall of spruce wood fibres. Holzforschung 2009, 63, 497–503. [Google Scholar] [CrossRef]
- Nuopponen, M. FT-IR and UV Raman spectroscopic studies on thermal modification of Scots pine wood and its extractable compounds. Ph.D. Thesis, Helsinki University of Technology, Helsinki, Finland, 2005. [Google Scholar]
- Mattos, B.; Lourençon, T.V.; Gatto, D.A.; Serrano, L.; Labidi, J. Chemical characterization of wood and extractives of fast-growing Schizolobium parahyba and Pinus taeda. Wood Mater. Sci. Eng. 2014, 11, 1–8. [Google Scholar] [CrossRef]
- Caron-Decloquement, A. Extractives from Sitka spruce. Ph.D. Thesis, University of Glasgow, Glasgow, UK, 2008. [Google Scholar]
- Arantes, V.; Goodell, B. Current Understanding of Brown-Rot Fungal Biodegradation Mechanisms: A Review. In ACS Symposium Series; American Chemical Society (ACS): Washington, DC, USA, 2014; Volume 1158, pp. 3–21. [Google Scholar] [CrossRef]
- Kandemir-Yücel, A.; Tavukçuoğlu, A.; Caner-Saltik, E.; Caner-Saltık, E. In situ assessment of structural timber elements of a historic building by infrared thermography and ultrasonic velocity. Infrared Phys. Technol. 2007, 49, 243–248. [Google Scholar] [CrossRef]
- Altunişik, A.C.; Kalkan, E.; Okur, F.; Ozgan, K.; Karahasan, O.; Bostanci, A. Non-destructive modal parameter identification of historical timber bridges using ambient vibration tests after restoration. Measurement 2019, 146, 411–424. [Google Scholar] [CrossRef]
- Henniges, U.; Schwanninger, M.; Potthast, A. Non-destructive determination of cellulose functional groups and molecular weight in pulp hand sheets and historic papers by NIR-PLS-R. Carbohydr. Polym. 2009, 76, 374–380. [Google Scholar] [CrossRef]
- Hudson-McAulay, K. The Structural and Mechanical Integrity of Historic Wood. Ph.D. Thesis, University of Glasgow, Glasgow, UK, 2016. [Google Scholar]
Sample Length mm | n | Mean Modulus MPa | SD |
---|---|---|---|
80 | 4 | 11804 | 1563 |
40 | 8 | 7604 | 3464 |
20 | 16 | 5170 | 3275 |
10 | 32 | 4266 | 2579 |
20 mm reinforced | 16 | 10185 | 5200 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hudson-McAulay, K.; Kennedy, C.J.; Jarvis, M.C. Chemical and Mechanical Differences between Historic and Modern Scots Pine Wood. Heritage 2020, 3, 116-127. https://doi.org/10.3390/heritage3010007
Hudson-McAulay K, Kennedy CJ, Jarvis MC. Chemical and Mechanical Differences between Historic and Modern Scots Pine Wood. Heritage. 2020; 3(1):116-127. https://doi.org/10.3390/heritage3010007
Chicago/Turabian StyleHudson-McAulay, Kate, Craig J. Kennedy, and Michael C. Jarvis. 2020. "Chemical and Mechanical Differences between Historic and Modern Scots Pine Wood" Heritage 3, no. 1: 116-127. https://doi.org/10.3390/heritage3010007
APA StyleHudson-McAulay, K., Kennedy, C. J., & Jarvis, M. C. (2020). Chemical and Mechanical Differences between Historic and Modern Scots Pine Wood. Heritage, 3(1), 116-127. https://doi.org/10.3390/heritage3010007