An Investigation of Electrochemical Dechlorination of Wrought Iron Specimens from the Marine Environment
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Electrochemical Treatment
3.2. Determination of Final Chloride Concentration with HNO3
3.3. Factors of Chloride Ion Diffusion
- I: current density;
- t: time;
- M: molecular weight of chloride;
- n: number of electrons on the chloride ion;
- F: Faraday constant.
- [Cl−]th: the theoretical concentration of chloride ion extraction;
- [Cl−]t: the experimental concentration of chloride ions in the alkaline solution for 24, 48, and 72 h.
3.4. SEM-EDX Analysis
3.5. A Mathematical Model for Extraction Ratio of Chloride Ions
- Cf0: the initial concentration of the free chloride;
- Cb0: the initial concentration of the binding chloride;
- A: the area of the object;
- D: the length of the object.
4. Conclusions
- Marine iron objects can be electrochemically dechlorinated with the use of a porous medium with sodium hydroxide solutions;
- The use of a sponge is inferior for the removal of chloride ions versus the complete immersion in sodium hydroxide solutions;
- When a porous medium is used, a lower volume of alkaline solution is required than complete immersion;
- Changing the porous medium every 24 h increases chloride iron removal compared to using the same sponge during the electrochemical treatment;
- The performance of electrochemical method improves as the current density increases.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Batis, G.; Zacharopoulou, A.; Zacharopoulou, E.; Siova, H.; Argyropoulos, V. Dechlorinationof Large Marine Iron Artifact Using a Novel Technique Involving Impressed Current. Anti-Corros. Methods Mater. 2015, 62, 259–269. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, M.; Lu, X.; Wang, Z. Effect of Temperature and Ultraviolet Radiation on Corrosion Behavior of Carbon Steel in High Humidity Tropical Marine Atmosphere. Mater. Chem. Phys. 2022, 277, 124962. [Google Scholar] [CrossRef]
- Tian, H.; Cui, Z.; Ma, H.; Zhao, P.; Yan, M.; Wang, X.; Cui, H. Corrosion Evolution and Stress Corrosion Cracking Behavior of Low Carbon Steel Bainite Steel in the Marine Environments: Effect of Marine Zones. Corros. Sci. 2022, 206, 110490. [Google Scholar] [CrossRef]
- De Baare, K.; Van Haelst, S.; Chaves, I.; Luyckx, D.; Van Den Bergh, K.; Verbeken, K.; De Meyer, E.; Verhasselt, K.; Meskens, R.; Potters, G.; et al. The Influence of Concretion on the Long-Term Corrosion Rate of Steel Shipwrecks in the Belgian North Sea. Corros. Sci. 2020, 56, 71–80. [Google Scholar] [CrossRef]
- Ashkenazi, D.; Nusbaum, I.; Shacham-Diamand, Y.; Cvikel, D.; Kahanov, Y.; Inberg, A. A Method of Conserving Ancient Iron Artefacts Retrieved from Shipwrecks Using a Combination of Silane Self-Assembled Monolayers and Wax Coating. Corros. Sci. 2017, 123, 88–102. [Google Scholar] [CrossRef]
- North, Ν.A.; Mac Leod, I.D. Corrosion of Metals. In Conservation of Marine Archaeological Objects, 2nd ed.; Series in Conservaion and Museology; Butterworth-Heinemann: Oxford, UK, 1987; pp. 68–98. [Google Scholar]
- Degrigny, C.; Spitery, L. Electrochemical Monitoring of Marine Iron Artefacts During Their Storage/Stabilisation in Alkaline Solution. In Proceedings of the Metal 2004, Canberra, Austrila, 4–8 October 2004; National Museum of Australia Camberra: Canberra, Austrila, 2004; pp. 315–331. [Google Scholar]
- Réguer, S.; Mirambet, F.; Rémazeilles, C.; Vantelon, D.; Kergourlay, F.; Neff, D.; Dillmann, P. Iron Corrosion in Archaelogical Context: Structural Refinement of the Ferrous Hydroxychloride β-Fe2(OH)Cl. Corros. Sci. 2015, 100, 589–598. [Google Scholar] [CrossRef]
- Turgoose, S. The Nature of Surviving Iron Objects, in Conservation of Iron. Stud. Conserv. 1982, 27, 97–101. [Google Scholar] [CrossRef]
- Bayle, M.; De Vivies, P.; Memet, J.-B.; Foy, E.; Dillmann, P.; Neff, D. Corrosion Product Transformation in Alkaline Baths Under Pressure and High Temperature: The Sub-Critical Stabilisation of Marine Iron Artefacts Stored Under Atmospheric Conditions. Mater. Corros. 2015, 167, 190–199. [Google Scholar] [CrossRef]
- Rimmer, M.; Watkinson, D.; Wang, Q. The Efficiency of Chloride Extraction from Archaeological Iron Objects Using Deoxygenated Alkaline Solutions. Stud. Conserv. 2012, 57, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Lv, G.C.; Wang, Z.S.; Wu, L.M.; Xu, C. Charactirization of Corrosion Products on Archaeological Iron Coins. Anti-Corros. Methods Mater. 2011, 58, 39–45. [Google Scholar] [CrossRef]
- Kergoulay, F.; Reguer, S.; Neff, D.; Foy, E.; Picca, F.E.; Saneb, M.; Hustache, S.; Mirambet, F.; Dillmann, P. Stabilization Treatment of Cultural Heritage Artefacts: In Situ Monitoing of Marine Iron Objects Dechlorinated in Alkaline Solution. Corros. Sci. 2018, 132, 21–38. [Google Scholar] [CrossRef]
- Coelho, J.C.; Oliveira, C.M.; Carvalho, M.D.; Fonseca, I.T.E. The Efficiency of Electochemical Methods for the Removal of Chloride Ions from Marine Archaeological Objects. Mater. Corros. 2014, 65, 38–44. [Google Scholar] [CrossRef]
- Argyropoulos, V.; Batis, G. Saving a Marine Iron Paddle Wheel Removed from the 1868 Steam Engine Shipwreck ‘Patris’ During an Economic Crises in Greece. In Big Stuff Heritage; Canada Science and Technology Museum: Ottawa, ON, Canada, 2013. [Google Scholar]
- Pedefferi, P. Cathodic Protection and Cathodic Prevention. Constraction Build. Mater. 1998, 10, 341–402. [Google Scholar] [CrossRef]
- Broomfield, J.P. The Application of Elecrochemical and Other Techniques to Our Aging Built Infrastructure for the Repair and Conservation of Buildings, Bridges and Structures of Historic and Architectural Importance; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar] [CrossRef]
- Batis, G.; Rakanta, E. Corrosion of Steel Reinforcement Due to Atmospheric Pollution. Cem. Concr. Compos. 2005, 27, 269–275. [Google Scholar] [CrossRef]
- Kouloumbi, N.; Batis, G. Chloride Corrosion of Steel Rebars in Mortars with Fly Ash Admixtures. Cem. Concr. Compos. 1992, 14, 199–207. [Google Scholar] [CrossRef]
- Elsener, B.; Angst, U. Mechanism of Electrochemical Chloride Removal. Corros. Sci. 2007, 49, 4504–4522. [Google Scholar] [CrossRef]
- Feng, W.; Dong, Z.; Liu, W.; Cui, H.; Tang, W.; Xing, F. An Experimental Study on the Influence of Applied Voltage on Current Efficiency of Rebars with a Modified Accelerated Corrosion Test. Cem. Concr. Compos. 2021, 122, 10412. [Google Scholar] [CrossRef]
- Selwyn, L.S.; McKinnon, W.R.; Argyropoulos, V. Models of Chloride Ion Diffusion in Archaeological Iron. Stud. Conserv. 2001, 46, 109–121. [Google Scholar] [CrossRef]
- Kergoulay, F.; Remazeilles, C.; Neff, D.; Foy, E.; Conforto, E.; Guilminot, E.; Reguer, S.; Dillmann, P.; Nicot, F.; Mielcarek, F.; et al. Mechanisms of Dechlorinatio of Iron Archaeological Artifacts Extracted from Seawater. Corros. Sci. 2011, 53, 2474–2483. [Google Scholar] [CrossRef]
- Denbigh, K. The Principles of Chemical Equilibrium, 4th ed.; Cambridge University Press: Cambridge, UK, 1981. [Google Scholar]
- Abbott, M.M.; Van Ness, H.C. Schaum’s Outline of Theory and Problems of Thermodynamics; McGraw-Hill: New York, NY, USA, 1972; Available online: https://snia.mop.gob.cl/repositoriodga/handle/20.500.13000/2577 (accessed on 12 December 2022).
- Quyang, W.; Xia, C.; Wang, N. A Mathematical Model for Electrochemical Chloride Removal from Marine Cast Iron. Acta Metall. Sin. 2009, 22, 91–99. [Google Scholar] [CrossRef]
Specimen | Dimensions (cm) (Length, Ø Diameter) |
---|---|
Reference (R) | 15, Ø 3.4 |
3 | 15, Ø 3.4 |
4 | 15, Ø 3.5 |
5 | 15, Ø 3.4 |
6 | 15, Ø 3.5 |
7 | 15, Ø 3.5 |
8 | 15, Ø 3.6 |
9 | 15, Ø 3.5 |
10 | 15, Ø 3.6 |
11 | 15, Ø 3.5 |
12 | 15, Ø 3.4 |
13 | 15, Ø 3.4 |
14 | 15, Ø 3.4 |
15 | 15, Ø 3.4 |
16 | 15, Ø 3.5 |
17 | 15, Ø 3.5 |
18 | 15, Ø 3.4 |
20 | 15, Ø 3.5 |
Specimen | Porous Medium | Volume of Alkaline Solution 1N NaOH (mL) | Current Density (mA/cm2) | Voltage (mV) SSE | Time (h) |
---|---|---|---|---|---|
Reference R | - | - | - | - | - |
3 | Sponge (same) | 350 | 1 | −980 to −900 | 72 |
4 | Sponge (same) | 350 | 5 | −980 to −900 | 72 |
5 | Sponge(same) | 350 | 7.5 | −980 to −900 | 72 |
6 | Sponge (same) | 350 | 10 | −980 to −900 | 72 |
7 | Sponge (same) | 350 | 15 | −980 to −900 | 72 |
8 | No sponge | 1000 | 1 | −980 | 72 |
9 | No sponge | 1000 | 5 | −980 | 72 |
10 | No sponge | 1000 | 7.5 | −980 | 72 |
11 | No sponge | 1000 | 10 | −980 | 72 |
12 | No sponge | 1000 | 15 | −980 | 72 |
13 | No sponge | 1000 | 8 | −795 to −835 | 72 |
14 | Sponge | 180 | 4 | −880 to −840 | 24 |
15 | Sponge | 180 | 4 | −890 to −680 | 48 |
16 | Sponge | 180 | 4 | −820 to −660 | 72 |
17 | Different sponge every 24 h | 350 | 8 | −785 to −690 | 72 |
18 | Sponge | 350 | 8 | −760 to −700 | 72 |
20 | Sponge and mesh | 350 | 8 | −760 to −680 | 72 |
Chloride Ion Concentration | |||
---|---|---|---|
Specimen | 24 h | 48 h | 72 h |
14 | 294.98 | - | - |
15 | - | 439.71 | - |
16 | - | - | 478.45 |
Specimen | ||||||||
---|---|---|---|---|---|---|---|---|
R | 13 | 14 | 15 | 16 | 17 | 18 | 20 | |
Chloride ion concentration (ppm) | 601 | 234 | 478 | 445 | 399 | 329 | 352 | 336 |
Specimen 13 | Specimen 14 | Specimen 15 | Specimen 16 | Specimen 17 | Specimen 18 | Specimen 20 | |
---|---|---|---|---|---|---|---|
Chloride ion concentration (ppm) | 367 | 123 | 156 | 202 | 272 | 249 | 265 |
Current Density (mA/cm2) | Theoretical Concentration of Chloride Ions Diffusion (g) | ||
---|---|---|---|
24 h | 48 h | 72 h | |
1 | 0.032 | 0.064 | 0.095 |
4 | 0.127 | - | - |
- | 0.254 | - | |
- | - | 0.381 | |
5 | 0.159 | 0.317 | 0.476 |
7.5 | 0.238 | 0.476 | 0.715 |
8 | 0.264 | 0.508 | 0.762 |
10 | 0.317 | 0.634 | 0.953 |
15 | 0.476 | 0.952 | 1.429 |
Specimen | Current Density (mA/cm2) | Porous Medium | 1 − α 24 h | 1 – α 48 h | 1 – α 72 h |
---|---|---|---|---|---|
3 | 1 | Sponge | 0.102 | 0.387 | 0.534 |
4 | 5 | Sponge | 0.758 | 0.851 | 0.900 |
5 | 7.5 | Sponge | 0.849 | 0.899 | 0.929 |
6 | 10 | Sponge | 0.830 | 0.909 | 0.930 |
7 | 15 | Sponge | 0.850 | 0.921 | 0.943 |
8 | 1 | No sponge | 0.023 | 0.164 | 0.111 |
9 | 5 | No sponge | 0.403 | 0.680 | 0.752 |
10 | 7.5 | No sponge | 0.590 | 0.747 | 0.825 |
11 | 10 | No sponge | 0.609 | 0.789 | 0.858 |
12 | 15 | No sponge | 0.685 | 0.840 | 0.881 |
13 | 8 | No sponge | 0.610 | 0.744 | 0.784 |
14 | 4 | Sponge | 0.429 | - | - |
15 | 4 | Sponge | - | 0.567 | - |
16 | 4 | Sponge | - | - | 0.686 |
17 | 8 | Different sponge | 0.716 | 0.759 | 0.811 |
18 | 8 | Sponge | 0.723 | 0.824 | 0.870 |
20 | 8 | Sponge and mesh | 0.862 | 0.858 | 0.846 |
Specimen | Average Chloride Ion Concentration % wt of the Points A, B, C, D | Time (h) |
---|---|---|
R (initial chloride ion concentration) | 4.61 | 0 |
13(I = 8 mA) no sponge | 1.71 | 72 |
14 (I = 4 mA) sponge | 3.69 | 24 |
15 (I = 4 mA) sponge | 3.38 | 48 |
16 (I = 4 mA) sponge | 3.20 | 72 |
17 (I = 8 mA) different sponge | 2.40 | 72 |
18 (I = 8 mA) same sponge | 3.07 | 72 |
20 (I = 8 mA) sponge and mesh | 2.67 | 72 |
R (5 g) after dissolution with 5 N HNO3 | 0.13 | 48 |
Specimen | Treatment | Factor (F) |
---|---|---|
13 | No sponge | 0.630 |
14 | Sponge | 0.200 |
15 | Sponge | 0.266 |
16 | Sponge | 0.305 |
17 | Different sponge | 0.479 |
18 | Same sponge | 0.334 |
20 | Sponge with mesh | 0.419 |
R reference after treatment with 5 N HNO3 | Treatment with 5 N HNO3 | 0.972 |
Specimen | Current Density I (mA/cm2) | Volume of Alkaline Solution (mL) | Treatment | Extraction Ratio % |
---|---|---|---|---|
13 | 8 | 1000 | No sponge (72 h) | 63.1 |
14 | 4 | 180 | Sponge (24 h) | 19.9 |
15 | 4 | 180 | Sponge (48 h) | 26.5 |
16 | 4 | 180 | Sponge (72 h) | 30.5 |
17 | 8 | 350 | Different sponge every 24 h | 47.1 |
18 | 8 | 350 | Sponge (72 h) | 33.4 |
20 | 8 | 350 | Sponge and mesh (72 h) | 41.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siova, E.; Argyropoulos, V.; Batis, G. An Investigation of Electrochemical Dechlorination of Wrought Iron Specimens from the Marine Environment. Heritage 2023, 6, 587-599. https://doi.org/10.3390/heritage6010031
Siova E, Argyropoulos V, Batis G. An Investigation of Electrochemical Dechlorination of Wrought Iron Specimens from the Marine Environment. Heritage. 2023; 6(1):587-599. https://doi.org/10.3390/heritage6010031
Chicago/Turabian StyleSiova, Eleni, Vasilike Argyropoulos, and George Batis. 2023. "An Investigation of Electrochemical Dechlorination of Wrought Iron Specimens from the Marine Environment" Heritage 6, no. 1: 587-599. https://doi.org/10.3390/heritage6010031
APA StyleSiova, E., Argyropoulos, V., & Batis, G. (2023). An Investigation of Electrochemical Dechlorination of Wrought Iron Specimens from the Marine Environment. Heritage, 6(1), 587-599. https://doi.org/10.3390/heritage6010031