Landslides and Cultural Heritage—A Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Definition of the Search Criteria, Catalog Querying, and Database Management
2.2. Publication Review and Classification
- risk is the expected damage and loss derived from the adverse consequences of the occurrence of a landslide. For example, damages comprise casualties, damage to properties, infrastructures, cultural heritage, and the interruption of services [32]. Risk assessments result from the joint analysis of hazards and the value of the exposed elements, given by the element vulnerability [3].
3. Results
3.1. Publications by Year, Study Scope and Approach-Based Categories
3.2. Case Studies Geographical Distribution, Climatic Context and Landslide Types
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crozier, M.J. Landslide Geomorphology: An Argument for Recognition, with Examples from New Zealand. Geomorphology 2010, 120, 3–15. [Google Scholar] [CrossRef]
- Cruden, D.M.; Varnes, D.J. Landslide Types and Processes. In Landslides and Engineering Practice; Turner, A.K., Schuster, R.L., Eds.; Special Report, 247, 36–75; Transportation Research Board, US National Academy of Sciences: Washington, DC, USA, 1996; Volume 24, pp. 20–47. ISBN 0-309-06208-X. [Google Scholar]
- Crozier, M.J.; Glade, T. Landslide Hazard and Risk: Issues, Concepts and Approach. In Landslide Hazard and Risk; Glade, T., Anderson, M., Crozier, M.J., Eds.; Wiley: Hoboken, NJ, USA, 2005; pp. 1–40. ISBN 978-0-471-48663-3. [Google Scholar]
- Borgatti, L.; Soldati, M. Landslides and Climatic Change. In Geomorphological Hazards and Disaster Prevention; Alcántara-Ayala, I., Goudie, A.S., Eds.; Cambridge University Press: Cambridge, MA, USA, 2010; pp. 87–95. ISBN 978-0-521-76925-9. [Google Scholar]
- Froude, M.J.; Petley, D.N. Global Fatal Landslide Occurrence 2004 to 2016. Nat. Hazards Earth Syst. Sci. Discuss. 2018, 8, 1–44. [Google Scholar] [CrossRef]
- Micu, M.; Micu, D.; Soldati, M. Mass Movements in Changing Mountainous Environments. In Treatise on Geomorphology; Shroder, J.F., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 371–388. ISBN 978-0-08-088522-3. [Google Scholar]
- Corominas, J.; van Westen, C.; Frattini, P.; Cascini, L.; Malet, J.-P.; Fotopoulou, S.; Catani, F.; Van Den Eeckhaut, M.; Mavrouli, O.; Agliardi, F.; et al. Recommendations for the Quantitative Analysis of Landslide Risk. Bull. Eng. Geol. Environ. 2014, 73, 209–263. [Google Scholar] [CrossRef]
- Masson-Delmonte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, United Kingdom; New York, NY, USA, 2021. [Google Scholar]
- Nicu, I.C. Natural Hazards—A Threat for Immovable Cultural Heritage. A Review. Int. J. Conserv. Sci. 2017, 8, 375–388. [Google Scholar]
- UNESCO. Convention Concerning the Protection of the World Cultural and Natural Heritage; UNESCO World Heritage Centre: Paris, France, 1972. [Google Scholar]
- UNESCO; ICCROM; ICOMOS; IUCN. Managing Disaster Risks for World Heritage; UNESCO: Paris, France, 2010. [Google Scholar]
- UNESCO World Heritage Centre. Climate Change and World Heritage: Report on Predicting and Managing the Impacts of Climate Change on World Heritage and Strategy to Assist States Parties to Implement Appropriate Management Responses; World Heritage Reports: Paris, France, 2007. [Google Scholar]
- UNESCO Convention Concerning the Protection of the World Cultural and Natural Heritage. Thirty-Third Session of the World Heritage Committee; UNESCO World Heritage Centre: Paris, France, 2009. [Google Scholar]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development A/RES/70/1; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Bertolin, C. Preservation of Cultural Heritage and Resources Threatened by Climate Change. Geosciences 2019, 9, 250. [Google Scholar] [CrossRef]
- Sesana, E.; Gagnon, A.S.; Ciantelli, C.; Cassar, J.; Hughes, J.J. Climate Change Impacts on Cultural Heritage: A Literature Review. Wiley Interdiscip. Rev.-Clim. Change 2021, 12, e710. [Google Scholar] [CrossRef]
- ICOMOS, International Council on Monuments and Sites. World Report 2000 on Monuments and Sites in Danger; ICOMOS: Berlin, Germany, 2000. [Google Scholar]
- ICOMOS, Climate Change and Cultural Heritage Working Group. The Future of Our Pasts: Engaging Cultural Heritage in Climate Action; ICOMOS: Paris, France, 2019. [Google Scholar]
- ICOMOS International Council on Monuments and Sites. Heritage at Risk: World Report 2016–2019 on Monuments and Sites in Danger; Hendrik Bäßler Verlag: Berlin, Germany, 2020; ISBN 978-3-945880-67-8. [Google Scholar]
- Pavlova, I.; Makarigakis, A.; Depret, T.; Jomelli, V. Global Overview of the Geological Hazard Exposure and Disaster Risk Awareness at World Heritage Sites. J. Cult. Herit. 2017, 28, 151–157. [Google Scholar] [CrossRef]
- UNESCO, World Heritage Centre Policy Document on the Impacts of Climate Change on World Heritage Properties. Document WHC-07/16.GA/10 Adopted by the 16th General Assembly of State Parties to the World Heritage Convention (October 2007); UNESCO World Heritage Centre: Paris, France, 2008. [Google Scholar]
- Daly, C. Climate Change and the Conservation of Archaeological Sites: A Review of Impacts Theory. Conserv. Manag. Archaeol. Sites 2011, 13, 293–310. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, F.; Guo, H. Differential Radar Interferometry for Structural and Ground Deformation Monitoring: A New Tool for the Conservation and Sustainability of Cultural Heritage Sites. Sustainability 2015, 7, 1712–1729. [Google Scholar] [CrossRef]
- Cigna, F.; Tapete, D.; Lee, K. Geological Hazards in the UNESCO World Heritage Sites of the UK: From the Global to the Local Scale Perspective. Earth-Sci. Rev. 2018, 176, 166–194. [Google Scholar] [CrossRef]
- Fatorić, S.; Seekamp, E. Are Cultural Heritage and Resources Threatened by Climate Change? A Systematic Literature Review. Clim. Change 2017, 142, 227–254. [Google Scholar] [CrossRef]
- Orr, S.A.; Richards, J.; Fatorić, S. Climate Change and Cultural Heritage: A Systematic Literature Review (2016–2020). Hist. Environ. Policy Pract. 2021, 12, 434–477. [Google Scholar] [CrossRef]
- Quesada-Ganuza, L.; Garmendia, L.; Roji, E.; Gandini, A. Do We Know How Urban Heritage Is Being Endangered by Climate Change? A Systematic and Critical Review. Int. J. Disaster Risk Reduct. 2021, 65, 102551. [Google Scholar] [CrossRef]
- Seuring, S.; Gold, S. Conducting Content-analysis Based Literature Reviews in Supply Chain Management. Supply Chain Manag. Int. J. 2012, 17, 544–555. [Google Scholar] [CrossRef]
- Sarkar, N.; Rizzo, A.; Vandelli, V.; Soldati, M. A Literature Review of Climate-Related Coastal Risks in the Mediterranean, a Climate Change Hotspot. Sustainability 2022, 14, 15994. [Google Scholar] [CrossRef]
- Brabb, E.E. Innovative Approaches to Landslide Hazard Mapping. In Proceedings of the 4th International Symposium on Landslides, Toronto, ON, Canada, 16–21 September 1984; pp. 307–324. [Google Scholar]
- Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P. Landslide Hazard Evaluation: A Review of Current Techniques and Their Application in a Multi-Scale Study, Central Italy. Geomorphology 1999, 31, 181–216. [Google Scholar] [CrossRef]
- Hervás, J.; Bobrowsky, P. Mapping: Inventories, Susceptibility, Hazard and Risk. In Landslides—Disaster Risk Reduction; Sassa, K., Canuti, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 321–349. ISBN 978-3-540-69966-8. [Google Scholar]
- Hartlen, J.; Viberg, L. General Report: Evaluation of Land- Slide Hazard. In Proceedings of the V International Symposium on Landslides, Lausanne, Switzerland, 10–15 July 1988; pp. 1037–1057. [Google Scholar]
- Soeters, R.; van Westen, C.J. Slope Instability Recognition, Analysis, and Zonation. Landslides Investig. Mitig. 1996, 129–177. [Google Scholar]
- Van Westen, C.J.; van Asch, T.W.J.; Soeters, R. Landslide Hazard and Risk Zonation—Why Is It Still so Difficult? Bull. Eng. Geol. Environ. 2006, 65, 167–184. [Google Scholar] [CrossRef]
- Soldati, M. Deep-Seated Gravitational Slope Deformation. In Encyclopedia of Natural Hazards; Bobrowsky, P.T., Ed.; Encyclopedia of Earth Sciences Series; Springer: Dordrecht, Germany; New York, NY, USA, 2013; pp. 151–155. ISBN 978-90-481-8699-0. [Google Scholar]
- Canuti, P.; Casagli, N.; Catani, F.; Fanti, R. Hydrogeological Hazard and Risk in Archaeological Sites: Some Case Studies in Italy. J. Cult. Herit. 2000, 1, 117–125. [Google Scholar] [CrossRef]
- Fanti, R. Geomorphological Hazard in the Tharros Archaeological Area (Western Sardinia, Italy). In Proceedings of the Geoarchaeology of the Landscapes of Classical Antiquity, Ghent, Belgium, 23–24 October 1998; Peeters Vermeulen, F., De Dapper, M., Eds.; Peeters Publishers: Leuven, Belgium, 2000; pp. 85–95. [Google Scholar]
- Frodella, W.; Spizzichino, D.; Andrea, C.; Claudio, M.; Nicola, C. Hydrography and Geomorphology of Antananarivo High City (Madagascar). J. Maps 2021, 17, 215–226. [Google Scholar] [CrossRef]
- Frodella, W.; Rosi, A.; Spizzichino, D.; Nocentini, M.; Lombardi, L.; Ciampalini, A.; Vannocci, P.; Ramboason, N.; Margottini, C.; Tofani, V.; et al. Integrated Approach for Landslide Hazard Assessment in the High City of Antananarivo, Madagascar (UNESCO Tentative Site). Landslides 2022, 19, 2685–2709. [Google Scholar] [CrossRef]
- Valagussa, A.; Frattini, P.; Crosta, G.B.; Spizzichino, D.; Leoni, G.; Margottini, C. Hazard Ranking of the UNESCO World Heritage Sites (WHSs) in Europe by Multicriteria Analysis. J. Cult. Herit. Manag. Sustain. Dev. 2020, 10, 359–374. [Google Scholar] [CrossRef]
- Nicu, I.C. Application of Analytic Hierarchy Process, Frequency Ratio, and Statistical Index to Landslide Susceptibility: An Approach to Endangered Cultural Heritage. Environ. Earth Sci. 2018, 77, 79. [Google Scholar] [CrossRef]
- Nicu, I.C.; Asandulesei, A. GIS-Based Evaluation of Diagnostic Areas in Landslide Susceptibility Analysis of Bahluiet River Basin (Moldavian Plateau, NE Romania). Are Neolithic Sites in Danger? Geomorphology 2018, 314, 27–41. [Google Scholar] [CrossRef]
- Lombardo, L.; Tanyas, H.; Nicu, I.C. Spatial Modeling of Multi-Hazard Threat to Cultural Heritage Sites. Eng. Geol. 2020, 277, 105776. [Google Scholar] [CrossRef]
- Greif, V.; Drotar, T. Static and Pseudo Static Stability Analysis of the Medieval Castle Rock Slopes in Slovakia. In Landslide Science and Practice; Margottini, C., Canuti, P., Sassa, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 435–440. ISBN 978-3-642-31318-9. [Google Scholar]
- Vlcko, J.; Greif, V.; Grof, V.; Jezny, M.; Petro, L.; Brcek, M. Rock Displacement and Thermal Expansion Study at Historic Heritage Sites in Slovakia. Environ. Geol. 2009, 58, 1727–1740. [Google Scholar] [CrossRef]
- Pascale, S.; Pastore, V.; Sdao, F.; Sole, A. Landslide Susceptibility in Archaeological and Natural Historic Park of Rupestrian Churches. In Proceedings of the Landslide Science and Practice: Risk Assessment, Management and Mitigation 2013; Springer: Berlin/Heidelberg, Germany, 2013; Volume 6, pp. 715–722. [Google Scholar]
- Sdao, F.; Lioi, D.S.; Pascale, S.; Caniani, D.; Mancini, I.M. Landslide Susceptibility Assessment by Using a Neuro-Fuzzy Model: A Case Study in the Rupestrian Heritage Rich Area of Matera. Nat. Hazards Earth Syst. Sci. 2013, 13, 395–407. [Google Scholar] [CrossRef]
- Kasmer, O.; Ulusay, R.; Genis, M. Assessments on the Stability of Natural Slopes Prone to Toe Erosion, and Man-Made Historical Semi-Underground Openings Carved in Soft Tuffs at Zelve Open-Air Museum (Cappadocia, Turkey). Eng. Geol. 2013, 158, 135–158. [Google Scholar] [CrossRef]
- Yang, J.; You, Y.; Ye, X.; Lin, J. Cultural Heritage Sites Risk Assessment Based on RS and GIS—Takes the Fortified Manors of Yongtai as an Example. Int. J. Disaster Risk Reduct. 2023, 88, 103593. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Zhang, J.; Zhang, S.; Guo, Q. Rockfall Hazard Assessment of the Slope of Mogao Grottoes, China Based on AHP, F-AHP and AHP-TOPSIS. Environ. Earth Sci. 2022, 81, 377. [Google Scholar] [CrossRef]
- Fernandez-Merodo, J.A.; Mateos, R.M.; Azañon, J.M.; Ezquerro, P.; García-Davalillo, J.C.; Bejar, M.; Herrera, G.; Novo, C.; Bee, E.; Themistocleous, K.; et al. Multiscale Analysis of Geo-Hazards Affecting the Alhambra Cultural Heritage; Springer: Heidelberg, Germany, 2023; pp. 47–61. [Google Scholar] [CrossRef]
- Moreno, M.; Ortiz, R.; Cagigas-Muñiz, D.; Becerra, J.; Martin, J.M.; Prieto, A.J.; Garrido-Vizuete, M.A.; Macías-Bernal, J.M.; Chávez, M.J.; Ortiz, P. ART-RISK 3.0 a Fuzzy—Based Platform That Combine GIS and Expert Assessments for Conservation Strategies in Cultural Heritage. J. Cult. Herit. 2022, 55, 263–276. [Google Scholar] [CrossRef]
- Mondini, A.C.; Guzzetti, F.; Chang, K.-T.; Monserrat, O.; Martha, T.R.; Manconi, A. Landslide Failures Detection and Mapping Using Synthetic Aperture Radar: Past, Present and Future. Earth-Sci. Rev. 2021, 216, 103574. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned Aerial Systems for Photogrammetry and Remote Sensing: A Review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef]
- Telling, J.; Lyda, A.; Hartzell, P.; Glennie, C. Review of Earth Science Research Using Terrestrial Laser Scanning. Earth-Sci. Rev. 2017, 169, 35–68. [Google Scholar] [CrossRef]
- Themistocleous, K.; Cuca, B.; Agapiou, A.; Lysandrou, V.; Tzouvaras, M.; Hadjimitsis, D.G.; Kyriakides, P.; Kouhartsiouk, D.; Margottini, C.; Spizzichino, D.; et al. The Protection of Cultural Heritage Sites from Geo-Hazards: The PROTHEGO Project. Lect. Notes Comput. Sci. 2016, 10059 LNCS, 91–98. [Google Scholar] [CrossRef]
- Themistocleous, K.; Danezis, C.; Mendonidis, E.; Lymperopoulou, E. Monitoring Ground Deformation of Cultural Heritage Sites Using UAVs and Geodetic Techniques: The Case Study of Choirokoitia, JPI PROTHEGO Project. In Proceedings of the Earth Resources and Environmental Remote Sensing/GIS Applications VIII, Warsaw, Poland, 12–14 September 2017; Michel, U., Schulz, K., Nikolakopoulos, K., Civco, D., Eds.; Curran Associates: Red Hook, NY, USA, 2017; Volume 10428. [Google Scholar]
- Pastonchi, L.; Barra, A.; Monserrat, O.; Luzi, G.; Solari, L.; Tofani, V. Satellite Data to Improve the Knowledge of Geohazards in World Heritage Sites. Remote Sens. 2018, 10, 992. [Google Scholar] [CrossRef]
- Delmonaco, G.; Brini, M.; Cesaro, G. Advanced monitoring systems for landslide risk reduction in the ‘Siq’ of Petra (Jordan). In Proceedings of the ICOMOS/ISPRS International Scientific Committee on Heritage Documentation (CIPA) 26TH International CIPA Symposium—Digital Workflows for Heritage Conservation, Ottawa, ON, Canada, 28 August–1 September 2017; Hayes, J., Ouimet, C., Quintero, M., Fai, S., Smith, L., Eds.; UNESCO: Paris, France, 2017; Volume 42-2, pp. 163–169. [Google Scholar]
- Cigna, F.; Jordan, H.; Bateson, L.; McCormack, H.; Roberts, C. Natural and Anthropogenic Geohazards in Greater London Observed from Geological and ERS-1/2 and ENVISAT Persistent Scatterers Ground Motion Data: Results from the EC FP7-SPACE PanGeo Project. Pure Appl. Geophys. 2015, 172, 2965–2995. [Google Scholar] [CrossRef]
- Themistocleous, K.; Danezis, C.; Gikas, V. Monitoring Ground Deformation of Cultural Heritage Sites Using SAR and Geodetic Techniques: The Case Study of Choirokoitia, Cyprus. Appl. Geomat. 2021, 13, 37–49. [Google Scholar] [CrossRef]
- Devlioti, K.; Christaras, B.; Marinos, V.; Vouvalidis, K.; Giannakopoulos, N. Kinematic Analysis of Rock Instability in the Archaeological Site of Delphi Using Innovative Techniques. In Transdisciplinary Multispectral Modeling and Cooperation for the Preservation of Cultural Heritage; Moropoulou, A., Korres, M., Georgopoulos, A., Spyrakos, C., Mouzakis, C., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 962, pp. 407–418. ISBN 978-3-030-12959-0. [Google Scholar]
- Konstantinidis, I.; Marinos, V.; Papathanassiou, G. UAV-Based Evaluation of Rockfall Hazard in the Cultural Heritage Area of Kipinas Monastery, Greece. Appl. Sci. 2021, 11, 8946. [Google Scholar] [CrossRef]
- Gao, X.; Roder, G.; Jiao, Y.; Ding, Y.; Liu, Z.; Tarolli, P. Farmers’ Landslide Risk Perceptions and Willingness for Restoration and Conservation of World Heritage Site of Honghe Hani Rice Terraces, China. Landslides 2020, 17, 1915–1924. [Google Scholar] [CrossRef]
- Santoro, A.; Venturi, M.; Agnoletti, M. Landscape Perception and Public Participation for the Conservation and Valorization of Cultural Landscapes: The Case of the Cinque Terre and Porto Venere UNESCO Site. Land 2021, 10, 93. [Google Scholar] [CrossRef]
- Marra, A.; Fabbrocino, G.; Fabbrocino, S. Conservation and Enhancement of the Pietrabbondante Archaeological Site between History, Geology and Emerging Crowd-Based Digital Technologies. Heritage 2022, 5, 1504–1528. [Google Scholar] [CrossRef]
- Bollati, I.; Della Seta, M.; Pelfini, M.; Del Monte, M.; Fredi, P.; Lupia Palmieri, E. Dendrochronological and Geomorphological Investigations to Assess Water Erosion and Mass Wasting Processes in the Apennines of Southern Tuscany (Italy). Catena 2012, 90, 1–17. [Google Scholar] [CrossRef]
- Tarolli, P.; Preti, F.; Romano, N. Terraced Landscapes: From an Old Best Practice to a Potential Hazard for Soil Degradation Due to Land Abandonment. Anthropocene 2014, 6, 10–25. [Google Scholar] [CrossRef]
- Margottini, C. Instability and Geotechnical Problems of the Buddha Niches and Surrounding Cliff in Bamiyan Valley, Central Afghanistan. Landslides 2004, 1, 41–51. [Google Scholar] [CrossRef]
- Margottini, C. Recovery of the Buddha’s Niches and Cliff in Bamiyan (Central Afghanistan) after the Taliban Destruction of 2001. In Proceedings of the Landslides—Disaster Risk Reduction; Springer: Berlin/Heidelberg, Germany, 2009; pp. 191–210. [Google Scholar]
- Marinos, P.; Tsiambaos, G. Earthquake Triggering Rockfalls Affecting Historic Monuments and a Traditional Settlement in Skyros Island, Greece. In Proceedings of the International Symposium on Landslide Risk Mitigation and Protection of Cultural and Natural Heritage; UNESCO, ICL: Kyoto, Japan, 2002. [Google Scholar]
- Iannucci, R.; Martino, S.; Paciello, A.; D’Amico, S. Rock Mass Characterization Coupled with Seismic Noise Measurements to Analyze the Unstable Cliff Slope of the Selmun Promontory (Malta). Proced. Eng. 2017, 191, 263–269. [Google Scholar] [CrossRef]
- Bozdag, A. Rockfall Hazard Assessment in a Natural and Historical Site: The Case of Ancient Kilistra Settlement (Konya), Turkey. J. Mt. Sci. 2022, 19, 151–166. [Google Scholar] [CrossRef]
- Valagussa, A.; Frattini, P.; Crosta, G.; Spizzichino, D.; Leoni, G.; Margottini, C. Multi-Risk Analysis on European Cultural and Natural UNESCO Heritage Sites. Nat. Hazards 2021, 105, 2659–2676. [Google Scholar] [CrossRef]
- Brimblecombe, P.; Hayashi, M.; Futagami, Y. Mapping Climate Change, Natural Hazards and Tokyo’s Built Heritage. Atmosphere 2020, 11, 680. [Google Scholar] [CrossRef]
- Lollino, G.; Audisio, C. UNESCO World Heritage Sites in Italy Affected by Geological Problems, Specifically Landslide and Flood Hazard. Landslides 2006, 3, 311–321. [Google Scholar] [CrossRef]
- Bertolin, C.; Sesana, E. Natural Hazards Affecting Cultural Heritage: Assessment of Flood and Landslide Risk for the 28 Existing Norwegian Stave Churches. Int. J. Build. Pathol. Adapt. 2023. [Google Scholar] [CrossRef]
- Berardi, R.; Cambiaggi, L. Prediction of Slope Movement Effects on Churches for the Development of a Fragility Curve Approach. Lect. Notes Civ. Eng. 2020, 40, 82–91. [Google Scholar] [CrossRef]
- Cambiaggi, L.; Ferrero, C.; Berardi, R.; Calderini, C.; Vecchiattini, R. Effect of slow-moving landslides on churches in the Liguria region: A geotechnical approach. In Proceedings of the 12th International Conference on Structural Analysis of Historical Constructions (SAHC 2021), Online, 29 September–1 October 2021; Roca, P., Pela, L., Molins, C., Eds.; pp. 1074–1085. [Google Scholar]
- Colucci, E. Mountain Hamlet Heritage Between Risk and Enhancement. Lect. Notes Netw. Syst. 2022, 482 LNNS, 2575–2586. [Google Scholar] [CrossRef]
- Lazzari, M.; Geraldi, E.; Lapenna, V.; Loperte, A. Natural Hazards vs Human Impact: An Integrated Methodological Approach in Geomorphological Risk Assessment on the Tursi Historical Site, Southern Italy. Landslides 2006, 3, 275–287. [Google Scholar] [CrossRef]
- Marchetti, D.; Amato Avanzi, G.D.; Sciarra, N.; Calista, M.; Mazzanti, G. Numerical Modeling Applied to a Cultural Heritage Site Threatened by Rock Falls in Tuscany (Italy). In Proceedings of the Rock Mechanics in Civil and Environmental Engineering—Proceedings of the European Rock Mechanics Symposium, EUROCK 2010, Lausanne, Switzerland, 19 May 2010; pp. 647–650. [Google Scholar] [CrossRef]
- Margottini, C. Low Environmental Impact Consolidation Works in the Rock Cliff of Civita Di Bagnoregio (Central Italy). In Proceedings of the Landslide Science and Practice: Risk Assessment, Management and Mitigation 2013; Springer: Berlin/Heidelberg, Germany; Volume 6, pp. 647–654.
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A Review of Statistically-Based Landslide Susceptibility Models. Earth-Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Yoshimatsu, H.; Abe, S. A Review of Landslide Hazards in Japan and Assessment of Their Susceptibility Using an Analytical Hierarchic Process (AHP) Method. Landslides 2006, 3, 149–158. [Google Scholar] [CrossRef]
- Frodella, W.; Elashvili, M.; Spizzichino, D.; Gigli, G.; Nadaraia, A.; Kirkitadze, G.; Adikashvili, L.; Margottini, C.; Antidze, N.; Casagli, N. Applying Close Range Non-Destructive Techniques for the Detection of Conservation Problems in Rock-Carved Cultural Heritage Sites. Remote Sens. 2021, 13, 1040. [Google Scholar] [CrossRef]
- Grunert, J.; Hess, S. The Upper Middle Rhine Valley as a Risk Area. Nat. Hazards 2010, 55, 577–597. [Google Scholar] [CrossRef]
- Melelli, L.; Cencetti, C.; Cecconi, M.; Faralli, L.; Vecchietti, A.; Pane, V. The Hermitage of Cerbaiolo (Tuscany, Italy): Stability Conditions and Geomorphological Characterization. Environ. Earth Sci. 2016, 75, 322. [Google Scholar] [CrossRef]
- Rohn, J.; Ehret, D.; Moser, M.; Czurda, K. Prehistoric and Recent Mass Movements of the World Cultural Heritage Site Hallstatt, Austria. Environ. Geol. 2005, 47, 702–714. [Google Scholar] [CrossRef]
- Fanti, R.; Gigli, G.; Lombardi, L.; Tapete, D.; Canuti, P. Terrestrial Laser Scanning for Rockfall Stability Analysis in the Cultural Heritage Site of Pitigliano (Italy). Landslides 2013, 10, 409–420. [Google Scholar] [CrossRef]
- Kyriou, A.; Nikolakopoulos, K.; Koukouvelas, I. Synergistic Use of UAV and TLS Data for Precise Rockfall Monitoring over a Hanging Monastery. In Proceedings of the Earth Resources and Environmental Remote Sensing/GIS Applications XIII, Berlin, Germany, 5–7 September 2022; Schulz, K., Michel, U., Nikolakopoulos, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; Volume 12268. [Google Scholar]
- Lazzari, M.; Gioia, D. UAV Images and Historical Aerial-Photos for Geomorphological Analysis and Hillslope Evolution of the Uggiano Medieval Archaeological Site (Basilicata, Southern Italy). Geomat. Nat. Hazards Risk 2017, 8, 104–119. [Google Scholar] [CrossRef]
- Benedetti, G.; Bernardi, M.; Bonaga, G.; Borgatti, L.; Continelli, F.; Ghirotti, M.; Guerra, C.; Landuzzi, A.; Lucente, C.C.; Marchi, G. San Leo: Centuries of Coexistence with Landslides. In Proceedings of the Landslide Science and Practice: Risk Assessment, Management and Mitigation; Springer: Berlin/Heidelberg, Germany, 2013; Volume 6, pp. 529–537. [Google Scholar]
- Faccini, F.; Piccazzo, M.; Robbiano, A. Environmental Geological Maps of San Fruttuoso Bay (Portofino Park, Italy). J. Maps 2008, 4, 431–443. [Google Scholar] [CrossRef]
- Gizzi, F.T.; Bentivenga, M.; Lasaponara, R.; Danese, M.; Potenza, M.R.; Sileo, M.; Masini, N. Natural Hazards, Human Factors, and “Ghost Towns”: A Multi-Level Approach. Geoheritage 2019, 11, 1533–1565. [Google Scholar] [CrossRef]
- Fanti, R. Slope Instability of San Miniato Hill (Florence, Italy): Possible Deformation Patterns. Landslides 2006, 3, 323–330. [Google Scholar] [CrossRef]
- Gigli, G.; Frodella, W.; Mugnai, F.; Tapete, D.; Cigna, F.; Fanti, R.; Intrieri, E.; Lombardi, L. Instability Mechanisms Affecting Cultural Heritage Sites in the Maltese Archipelago. Nat. Hazards Earth Syst. Sci. 2012, 12, 1883–1903. [Google Scholar] [CrossRef]
- Mateos, R.M.; Ezquerro, P.; Azañón, J.M.; Gelabert, B.; Herrera, G.; Fernández-Merodo, J.A.; Spizzichino, D.; Sarro, R.; García-Moreno, I.; Béjar-Pizarro, M. Coastal Lateral Spreading in the World Heritage Site of the Tramuntana Range (Majorca, Spain). The Use of PSInSAR Monitoring to Identify Vulnerability. Landslides 2018, 15, 797–809. [Google Scholar] [CrossRef]
- Reale, D.; Noviello, C.; Verde, S.; Cascini, L.; Terracciano, G.; Arena, L. A Multi-Disciplinary Approach for the Damage Analysis of Cultural Heritage: The Case Study of the St. Gerlando Cathedral in Agrigento. Remote Sens. Environ. 2019, 235, 111464. [Google Scholar] [CrossRef]
- Mileto, C.; Vegas, F.; Cristini, V.; García-Soriano, L. The research project “Earthen architecture in the Iberian peninsula: Study of natural, social and anthropic risks and strategies to improve resilience (RISK-TERRA)”. Objectives and first methodology. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIV-M-1–2020, 871–876. [Google Scholar] [CrossRef]
- Vamvatsikos, D.; Chatzidaki, A. The HAPI Sensor-Aware Framework for Infrastructure Risk and Resilience Assessment. In Proceedings of the International Conference on Natural Hazards and Infrastructure, Athens, Greece, 5–7 July 2022. [Google Scholar]
- Crozier, M.J. Multiple-Occurrence Regional Landslide Events in New Zealand: Hazard Management Issues. Landslides 2005, 2, 247–256. [Google Scholar] [CrossRef]
- Delmonaco, G.; Margottini, C.; Spizzichino, D. Weathering Processes, Structural Degradation and Slope-Structure Stability of Rock-Hewn Churches of Lalibela (Ethiopia). Geol. Soc. Eng. Geol. Spec. Publ. 2010, 23, 131–147. [Google Scholar] [CrossRef]
- Margottini, C.; Bobrowsky, P.; Gigli, G.; Ruther, H.; Spizzichino, D.; Vlcko, J. Rupestrian World Heritage Sites: Instability Investigation and Sustainable Mitigation. In Advancing Culture of Living with Landslides; Sassa, K., Mikoš, M., Yin, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 23–50. ISBN 978-3-319-53500-5. [Google Scholar]
- Margottini, C.; Gigli, G.; Ruther, H.; Spizzichino, D. Advances in Geotechnical Investigations and Monitoring in Rupestrian Settlements Inscribed in the UNESCO’s World Heritage List. In Proceedings of the Fourth Italian Workshop on Landslides, Naples, Italy, 23–25 November 2015; Picarelli, L., Greco, R., Urciuoli, G., Eds.; Volume 16, pp. 35–51. [Google Scholar]
- Margottini, C.; Gigli, G.; Ruther, H.; Spizzichino, D. Advances in Sustainable Conservation Practices in Rupestrian Settlements Inscribed in the UNESCO’s World Heritage List. In Proceedings of the Fourth Italian Workshop on Landslides, Naples, Italy, 23–25 November 2015; Picarelli, L., Greco, R., Urciuoli, G., Eds.; Volume 16, pp. 52–60. [Google Scholar]
- Lazzari, M.; Lazzari, S. Geological and Geomorphological Hazard in Historical and Archaeological Sites of the Mediterranean Area: Knowledge, Forecasting and Mitigation. Disaster Adv. 2012, 5, 63–71. [Google Scholar]
- Ciampalini, A.; Frodella, W.; Margottini, C.; Casagli, N. Rapid Assessment of Geo-Hydrological Hazards in Antananarivo (Madagascar) Historical Centre for Damage Prevention. Geomat. Nat. Hazards Risk 2019, 10, 1102–1124. [Google Scholar] [CrossRef]
- Casagli, N.; Fanti, R.; Nocentini, M.; Righini, G. Assessing the Capabilities of VHR Satellite Data for Debris Flow Mapping in the Machu Picchu Area (C101-1). In Proceedings of the LandSlides: Risk Analysis and Sustainable Disaster Management; Sassa, K., Fukuoka, H., Wang, F., Wang, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 61–70. [Google Scholar]
- Klimes, J. Landslide Temporal Analysis and Susceptibility Assessment as Bases for Landslide Mitigation, Machu Picchu, Peru. Environ. Earth Sci. 2013, 70, 913–925. [Google Scholar] [CrossRef]
- Rodriguez-Pascua, M.A.; Benavente Escobar, C.; Rosell Guevara, L.; Grutzner, C.; Audin, L.; Walker, R.; Garcia, B.; Aguirre, E. Did Earthquakes Strike Machu Picchu? J. Seismol. 2020, 24, 883–895. [Google Scholar] [CrossRef]
- Spizzichino, D.; Margottini, C.; Puzzilli, L.M. Landslide Risk Assessment and Management in the Archaeological Site of Machu Picchu (Peru). In Proceedings of the Geotechnical Engineering for the Preservation of Monuments and Historic Sites; Bilotta, E., Flora, A., Lirer, S., Viggiani, C., Eds.; Taylor & Francis Group: Abingdon, UK, 2013; pp. 697–707. [Google Scholar]
- Sassa, K.; Fukuoka, H.; Carreno, R. Landslide Investigation and Capacity Building in the Machu Picchu—Aguas Calientes Area (IPL C101-1). In Landslides—Disaster Risk Reduction; Sassa, K., Canuti, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; p. 229. [Google Scholar]
Approach-Based Category | Methods and/or Tools Used |
---|---|
Survey and monitoring using geomatic techniques | Detailed mapping and monitoring of exposed cultural heritage by means of UAV-DP, TLS surveys, SAR interferometry, and related techniques 1 |
Model-based | Statistical-, physically-based, and semiquantitative modeling for the assessment of landslide susceptibility, hazard, vulnerability, and risk |
Index-based | Indexes elaborated by expert-weighting of variables related to landslide susceptibility, hazard and risk, and exposure of cultural heritage sites |
Geomorphological | Empirical slope instability mapping, regional and detailed geomorphological mapping, extensive field campaigns |
Engineering geological | Geophysical methods, geotechnical monitoring and characterization, geotechnical mapping |
Multidisciplinary | Combined use of two or more of the approach-based categories and/or other methods (questionnaires, dendrochronology, etc.) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonini, J.E.; Vieira, B.C.; Corrêa, A.C.d.B.; Soldati, M. Landslides and Cultural Heritage—A Review. Heritage 2023, 6, 6648-6668. https://doi.org/10.3390/heritage6100348
Bonini JE, Vieira BC, Corrêa ACdB, Soldati M. Landslides and Cultural Heritage—A Review. Heritage. 2023; 6(10):6648-6668. https://doi.org/10.3390/heritage6100348
Chicago/Turabian StyleBonini, José Eduardo, Bianca Carvalho Vieira, Antonio Carlos de Barros Corrêa, and Mauro Soldati. 2023. "Landslides and Cultural Heritage—A Review" Heritage 6, no. 10: 6648-6668. https://doi.org/10.3390/heritage6100348
APA StyleBonini, J. E., Vieira, B. C., Corrêa, A. C. d. B., & Soldati, M. (2023). Landslides and Cultural Heritage—A Review. Heritage, 6(10), 6648-6668. https://doi.org/10.3390/heritage6100348