Condition Assessment of Heritage Buildings via Photogrammetry: A Scoping Review from the Perspective of Decision Makers
Abstract
:1. Introduction
- Exhaustive studies have highlighted advantages and drawbacks of image-based and range-based survey techniques in relation to specific heritage applications [31,32], so that several authors propose the integration of photogrammetry and TLS techniques in hybrid approaches, given the heterogeneity of assets, in terms of extent, from entire archaeological sites to single architectural elements [33,34,35];
- A plurality of researchers have pointed out the spreading of image-based techniques for digital documentation purposes, as a starting point for more articulated processes of enrichment and analysis [36], with a view on the affordability of photogrammetry both at the urban and the building scales compared with different reverse engineering techniques [37,38].
- A great share of applications, including ground and aerial photogrammetry, addresses historical documentation, cultural dissemination, touristic fruition and geometrical survey [39,40] have a specific focus on archaeological sites in order to support speedy and efficient documentation of excavation activities for large and/or low accessible areas [41,42,43,44].
- It is focused on the employment of digital photogrammetry as a specific technique whose ease of use and affordability make it suitable for several phases and activities within the condition assessment and diagnosis of heritage buildings, rather than covering several reality-based (i.e., image-based and range-based) techniques for specific purposes (e.g., building modelling, multispectral detection, structural monitoring).
- It offers the perspective of decision makers, including diagnosticians and conservationists, thus focusing on preservation purposes and targets more than tools and procedures, by highlighting investigated construction materials and techniques, architectural components, performances, pathologies and inherent and surrounding conditions.
2. Materials and Methods
- What are the main findings in the state-of-the-art applications of photogrammetric models and methods for diagnostic purposes?
- Which shortcomings of traditional approaches for condition assessment do they overcome?
- What are the main limitations and perspectives in the field from the perspective of decision makers?
2.1. Literature Search and Selection
- The purpose of the paper. Several papers were excluded because photogrammetric models were used as a preliminary base toward informative parametric modelling through SCAN-to-BIM processes or future implementation of thematic analyses; they resulted from customized equipment development and remote sensing procedures to overcome hardware and software limitations for specific application fields or they addressed the documentation of structures and sites for touristic purposes and dissemination to the general public. On the contrary, all the studies about condition analysis, diagnostic data collection and correlation, assessment and monitoring of decay and pathologies, as well as simulation modelling were included.
- The type of physical asset. Some papers were excluded because they referred to modern buildings with negligible historical-architectural relevance to paintings and artworks with specific focus on artistic preservation issues regardless their integration within a structural system and to urban settlements and infrastructures whose scale of observation was not comparable to the building scale. On the contrary, beyond historic architectures and archaeological sites and structures, frescoes were also included because the assessment inherently included the condition of the underlying masonry support. Likewise, sculptures were included as they are similar in characteristics and dimensions to decorative architectural elements, and bridges because they are comparable in construction techniques and size to large and difficult to access buildings.
- The role of photogrammetry, by exclusion of those studies where photogrammetry was not directly exploited for the condition assessment, but rather as a secondary-complementary tool, within a wider diagnosis campaign and/or for integrating TLS data as main source of analysis.
2.2. Bibliometric Analysis
2.3. Content Analysis
3. Results
3.1. Decay Mapping
3.1.1. Manual and Visual Mapping
3.1.2. Semi-Automatized and Automatized Mapping
3.2. Structural Assessment
3.2.1. Control and Monitoring
3.2.2. Modelling and Simulation
3.3. Non-Destructive Diagnostic Investigation
3.3.1. Multispectral Imaging
3.3.2. Multisensory Data Collection
3.4. Multi-Source Documentation
3.4.1. Informative Records within Digital Host Environments
3.4.2. Digital Host Environments with Informative Records
4. Discussion
4.1. What Are the Main Findings in the State-of-the-Art Applications of Photogrammetry Models and Methods for Diagnostic Purposes?
4.2. Which Shortcomings of Traditional Approaches for Condition Assessment Do They Overcome?
4.3. Which Are the Main Limitations and Perspectives in the Field from the Perspective of Decision Makers?
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hemsley, J.; Cappellini, V.; Stanke, G. Digital Applications for Cultural and Heritage Institutions; Taylor and Francis Inc.: Abingdon, UK, 2017; ISBN 9781315257808. [Google Scholar]
- Ippolito, A.; Cigola, M. Handbook of Research on Emerging Technologies for Digital Preservation and Information Modeling; IGI Global: Hershey, PA, USA, 2016; ISBN 9781522506812. [Google Scholar]
- Borowiecki, K.J.; Forbes, N.; Fresa, A. Cultural Heritage in a Changing World; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 9783319295442. [Google Scholar]
- Kargas, A.; Loumos, G. Cultural Industry’s Strategic Development: Reaching International Audience by Using Virtual Reality and Augmented Reality Technologies. Heritage 2023, 6, 4640–4652. [Google Scholar] [CrossRef]
- Luhmann, T.; Robson, S.; Kyle, S.; Harley, I. Close Range Photogrammetry Principles, Techniques and Applications; Whittles Publishing: Dunbeath, UK, 2006; Volume 30, ISBN 9781849950572. [Google Scholar]
- Bedford, J. Photogrammetric Applications for Cultural Heritage. Guidance for Good Practice; Historic England: London, UK, 2017; pp. 1–128. [Google Scholar] [CrossRef]
- Elkhrachy, I. 3D Structure from 2D Dimensional Images Using Structure from Motion Algorithms. Sustainbility 2022, 14, 5399. [Google Scholar] [CrossRef]
- Kingsland, K. Comparative analysis of digital photogrammetry software for cultural heritage. Digit. Appl. Archaeol. Cult. Herit. 2020, 18, e00157. [Google Scholar] [CrossRef]
- Pepe, M.; Alfio, V.S.; Costantino, D. UAV Platforms and the SfM-MVS Approach in the 3D Surveys and Modelling: A Review in the Cultural Heritage Field. Appl. Sci. 2022, 12, 12886. [Google Scholar]
- Leon, I.; Pérez, J.J.; Senderos, M. Advanced Techniques for Fast and Accurate Heritage Digitisation in Multiple Case Studies. Sustainability 2020, 12, 6068. [Google Scholar] [CrossRef]
- Stylianidis, E.; Evangelidis, K.; Vital, R.; Dafiotis, P.; Sylaiou, S. 3D Documentation and Visualization of Cultural Heritage Buildings through the Application of Geospatial Technologies. Heritage 2022, 5, 2818–2832. [Google Scholar] [CrossRef]
- Danesh, M.M.; Rajabi, A. Importance of Digital Techniques of Documentation for the Conservation of Cultural Heritage. In Advances in Science, Technology and Innovation; Springer International Publishing: Cham, Switzerland, 2022; pp. 415–425. [Google Scholar]
- Yilmaz, H.M.; Yakar, M.; Gulec, S.A.; Dulgerler, O.N. Importance of digital close-range photogrammetry in documentation of cultural heritage. J. Cult. Herit. 2007, 8, 428–433. [Google Scholar] [CrossRef]
- Yastikli, N. Documentation of cultural heritage using digital photogrammetry and laser scanning. J. Cult. Herit. 2007, 8, 423–427. [Google Scholar] [CrossRef]
- Herman, G.V.; Caciora, T.; Ilies, D.C.; Ilies, A.; Deac, A.; Sturza, A.; Sonko, S.M.; Suba, N.S.; Nistor, S. 3D Modeling of the Cultural Heritage: Between Opportunity and Necessity. J. Appl. Eng. Sci. 2020, 10, 27–30. [Google Scholar] [CrossRef]
- Vital, R.; Sylaiou, S. Digital survey: How it can change the way we perceive and understand heritage sites. Digit. Appl. Archaeol. Cult. Herit. 2022, 24, e00212. [Google Scholar] [CrossRef]
- Laing, R. Built heritage modelling and visualisation: The potential to engage with issues of heritage value and wider participation. Dev. Built Environ. 2020, 4, 100017. [Google Scholar] [CrossRef]
- Grama, V.; Ilies, G.; Safarov, B.; Ilies, A.; Caciora, T.; Hodor, N.; Ilies, D.C.; Kieti, D.; Berdenov, Z.; Josan, I.; et al. Digital Technologies Role in the Preservation of Jewish Cultural Heritage: Case Study Heyman House, Oradea, Romania. Buildings 2022, 12, 1617. [Google Scholar] [CrossRef]
- Bozdoğan, Ö.; Yaman, A.; Yılmaz, H.M. An analysis on the corrosion of a cultural heritage. Int. J. Eng. Geosci. 2022, 7, 112–127. [Google Scholar] [CrossRef]
- Breton, T. EU Commission: On a Common European Data Space for Cultural Heritage; Official Journal of the European Union: Brussels, Belgium, 2021. [Google Scholar]
- Expert Group on Digital Cultural Heritage and Europeana. Basic Principles and Tips for 3D Digitisation of Tangible Cultural Heritage for Cultural Heritage Professionals and Institutions and Other Custodians of Cultural Heritage; Commission Européenne: Luxembourg, 2021; pp. 1–30.
- Yang, X.; Grussenmeyer, P.; Koehl, M.; Macher, H.; Murtiyoso, A.; Landes, T. Review of built heritage modelling: Integration of HBIM and other information techniques. J. Cult. Herit. 2020, 46, 350–360. [Google Scholar] [CrossRef]
- Mishra, M. Machine learning techniques for structural health monitoring of heritage buildings: A state-of-the-art review and case studies. J. Cult. Herit. 2021, 47, 227–245. [Google Scholar] [CrossRef]
- Aicardi, I.; Chiabrando, F.; Maria Lingua, A.; Noardo, F. Recent trends in cultural heritage 3D survey: The photogrammetric computer vision approach. J. Cult. Herit. 2018, 32, 257–266. [Google Scholar] [CrossRef]
- Adamopoulos, E.; Rinaudo, F. 3D interpretation and fusion of multidisciplinary data for heritage science: A review. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2019, 42, 17–24. [Google Scholar] [CrossRef]
- Adamopoulos, E.; Rinaudo, F. Close-range sensing and data fusion for built heritage inspection and monitoring—A review. Remote Sens. 2021, 13, 3936. [Google Scholar] [CrossRef]
- Sutherland, N.; Marsh, S.; Priestnall, G.; Bryan, P.; Mills, J. InfraRed Thermography and 3D-Data Fusion for Architectural Heritage: A Scoping Review. Remote Sens. 2023, 15, 2422. [Google Scholar] [CrossRef]
- Vileikis, O.; Khabibullaeyev, F. Application of digital heritage documentation for condition assessments and monitoring change in Uzbekistan. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 8, 179–186. [Google Scholar] [CrossRef]
- Rossi, M.; Bournas, D. Structural Health Monitoring and Management of Cultural Heritage Structures: A State-of-the-Art Review. Appl. Sci. 2023, 13, 6450. [Google Scholar] [CrossRef]
- Sánchez-Aparicio, L.J.; Blanco-García, F.L.D.; Mencías-Carrizosa, D.; Villanueva-Llauradó, P.; Aira-Zunzunegui, J.R.; Sanz-Arauz, D.; Pierdicca, R.; Pinilla-Melo, J.; Garcia-Gago, J. Detection of damage in heritage constructions based on 3D point clouds. A systematic review. J. Build. Eng. 2023, 77, 107440. [Google Scholar] [CrossRef]
- Di Angelo, L.; Di Stefano, P.; Fratocchi, L.; Marzola, A. An AHP-based method for choosing the best 3D scanner for cultural heritage applications. J. Cult. Herit. 2018, 34, 109–115. [Google Scholar] [CrossRef]
- Moyano, J.; Nieto-Julián, J.E.; Bienvenido-Huertas, D.; Marín-García, D. Validation of close-range photogrammetry for architectural and archaeological heritage: Analysis of point density and 3d mesh geometry. Remote Sens. 2020, 12, 3571. [Google Scholar] [CrossRef]
- El-Din Fawzy, H. 3D laser scanning and close-range photogrammetry for buildings documentation: A hybrid technique towards a better accuracy. Alexandria Eng. J. 2019, 58, 1191–1204. [Google Scholar] [CrossRef]
- Koutsoudis, A.; Vidmar, B.; Ioannakis, G.; Arnaoutoglou, F.; Pavlidis, G.; Chamzas, C. Multi-image 3D reconstruction data evaluation. J. Cult. Herit. 2014, 15, 73–79. [Google Scholar] [CrossRef]
- Alshawabkeh, Y.; Baik, A. Integration of photogrammetry and laser scanning for enhancing scan-to-HBIM modeling of Al Ula heritage site. Herit. Sci. 2023, 11, 147. [Google Scholar] [CrossRef]
- Sestras, P.; Roșca, S.; Ștefan, B.; Naș, S.; Buru, S.M.; Kovacs, L.; Spalević, V.; Sestras, A.F. Feasibility assessments using unmanned aerial vehicle technology in heritage buildings: Rehabilitation-restoration, spatial analysis and tourism potential analysis. Sensors 2020, 20, 2054. [Google Scholar] [CrossRef]
- Attenni, M.; Bartolomei, C.; Inglese, C.; Ippolito, A.; Morganti, C.; Predari, G. Low cost survey and heritage value. SCIRES-IT Sci. Res. Inf. Technol. 2018, 7, 115–132. [Google Scholar] [CrossRef]
- Chiarini, S.; Cremonesi, S.; Fregonese, L.; Fassi, F.; Taffurelli, L. A multi-range approach for Cultural Heritage survey: A case study in Mantua Unesco site. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2014, 40, 157–164. [Google Scholar] [CrossRef]
- Remondino, F. Heritage recording and 3D modeling with photogrammetry and 3D scanning. Remote Sens. 2011, 3, 1104–1138. [Google Scholar] [CrossRef]
- Valzano, V.; Negro, F.; Foschi, R. The Gallery of the Castromediano’s Castle. Three-dimensional reconstruction and virtual representation. SCIRES-IT Sci. Res. Inf. Technol. 2018, 7, 13–26. [Google Scholar] [CrossRef]
- Brandolini, F.; Cremaschi, M.; Zerboni, A.; Esposti, M.D.; Mariani, G.S.; Lischi, S. SfM-photogrammetry for fast recording of archaeological features in remote areas. Archeol. Calc. 2021, 31, 33–45. [Google Scholar] [CrossRef]
- Stanga, C.; Valente, R.; Previtali, M. An integrated approach based on traditional archaeological surveys, digital recording techniques & historical documentation for the assessment of threats related to the climate-sensitive territorial context. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2017, 42, 195–201. [Google Scholar] [CrossRef]
- Pierdicca, R. Mapping Chimu’s settlements for conservation purposes using UAV and close range photogrammetry. The virtual reconstruction of Palacio Tschudi, Chan Chan, Peru. Digit. Appl. Archaeol. Cult. Herit. 2018, 8, 27–34. [Google Scholar] [CrossRef]
- Torres-González, M.; Revuelta, E.C.; Calero-Castillo, A.I. Photogrammetric State of Degradation Assessment of Decorative Claddings: The Plasterwork of the Maidens’ Courtyard (the Royal Alcazar of Seville). Virtual Archaeol. Rev. 2023, 14, 110–123. [Google Scholar] [CrossRef]
- Munn, Z.; Peters, M.D.J.; Stern, C.; Tufanaru, C.; McArthur, A.; Aromataris, E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med. Res. Methodol. 2018, 18, 143. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Marc, W. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- ICOMOS. Principles for the analysis, conservation and Structural Restoration of Architectural Heritage. In Proceedings of the ICOMOS 14th General Assembly in Victoria Falls, Victoria Falls, Zimbabwe, 27–31 October 2003. [Google Scholar]
- Jiang, F.; Ma, L.; Broyd, T.; Chen, K. Digital twin and its implementations in the civil engineering sector. Autom. Constr. 2021, 130, 103838. [Google Scholar] [CrossRef]
- Lo Brutto, M.; Ebolese, D.; Dardanelli, G. 3D modelling of a historical building using close-range photogrammetry and remotely piloted aircraft system (RPAS). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2018, 42, 599–606. [Google Scholar] [CrossRef]
- Lerena, M.S.G.; López, L. Photogrammetry (SfM-MVS) survey of rural historical heritage in the Pampean region. The “Primera Estancia”, Magdalena, Buenos Aires, Argentina. Arqueologia 2021, 27, 169–181. [Google Scholar] [CrossRef]
- Morgenthal, G.; Hallermann, N. Quality Assessment of Unmanned Aerial Vehicle (UAV) Based Visual Inspection of Structures. Adv. Struct. Eng. 2014, 17, 289–302. [Google Scholar] [CrossRef]
- Percy, K.; Ouimet, C.; Ward, S.; Santana Quintero, M.; Cancino, C.; Wong, L.; Marcus, B.; Whittaker, S.; Boussalh, M. Documentation for emergency condition mapping of Decorated historic surfaces at the Caid Residence, the Kasbah of Taourirt (Ouarzazate, Morocco). ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 2, 229–234. [Google Scholar] [CrossRef]
- Sužiedelytė-Visockienė, J.; Bagdžiūnaitė, R.; Malys, N.; Maliene, V. Close-range photogrammetry enables documentation of environment-induced deformation of architectural heritage. Environ. Eng. Manag. J. 2015, 14, 1371–1381. [Google Scholar] [CrossRef]
- Nocerino, E.; Rieke-Zapp, D.H.; Trinkl, E.; Rosenbauer, R.; Farella, E.M.; Morabito, D.; Remondino, F. Mapping VIS and UVL imagery on 3D geometry for non-invasive, non-contact analysis of a vase. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2018, 42, 773–780. [Google Scholar] [CrossRef]
- Azzola, P.; Cardaci, A.; Versaci, A. Integrated 3D survey and diagnostic analysis for the building engineering: The former kindergarten san filippo neri in dalmine. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 51–56. [Google Scholar] [CrossRef]
- Lo Brutto, M.; Dardanelli, G.; Ebolese, D.; Milazzo, G.; Pipitone, C.; Sciortino, R. The main portal of the cathedral of monreale: First geometric analysis and interpretive assessment of architectural features. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 381–387. [Google Scholar] [CrossRef]
- Pepe, M.; Costantino, D. Uav photogrammetry and 3d modelling of complex architecture for maintenance purposes: The case study of the masonry bridge on the sele river, italy. Period. Polytech. Civ. Eng. 2021, 65, 191–203. [Google Scholar] [CrossRef]
- Nespeca, R.; De Luca, L. Analysis, thematic maps and data mining from point cloud to ontology for software development. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2016, 41, 347–354. [Google Scholar] [CrossRef]
- Adamopoulos, E.; Rinaudo, F. Combining Multiband Imaging, Photogrammetric Techniques, and FOSS GIS for Affordable Degradation Mapping of Stone Monuments.pdf. Buildings 2021, 11, 304. [Google Scholar] [CrossRef]
- Fernández-Lozano, J.; Gutiérrez-Alonso, G. The Alejico Carboniferous Forest: A 3D-Terrestrial and UAV-Assisted Photogrammetric Model for Geologic Heritage Preservation. Geoheritage 2017, 9, 163–173. [Google Scholar] [CrossRef]
- De Canio, G.; Mongelli, M.; Tatì, A.; Giocoli, A.; Roselli, I.; Rinaldis, D.; Hailemikael, S.; Borfecchia, F. Structural monitoring of the columns at the Cathedral of Orvieto. In Proceedings of the SHMII 2015—7th International Conference on Structural Health Monitoring of Intelligent Infrastructure; International Society for Structural Health Monitoring of Intelligent Infrastructure, Torino, Italy, 1–3 July 2015. [Google Scholar]
- Randazzo, L.; Collina, M.; Ricca, M.; Barbieri, L.; Bruno, F.; Arcudi, A.; La Russa, M.F. Damage indices and photogrammetry for decay assessment of stone-built cultural heritage: The case study of the san domenico church main entrance portal (South Calabria, Italy). Sustainbility 2020, 12, 5198. [Google Scholar] [CrossRef]
- Roussel, R.; Bagnéris, M.; De Luca, L.; Bomblet, P. A digital diagnosis for the « autumn » statue (marseille, france): Photogrammetry, digital cartography and construction of a thesaurus. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2019, 42, 1039–1046. [Google Scholar] [CrossRef]
- Pratali Maffei, S.; Canevese, E.; De Gottardo, T. The real in the virtual. The 3D model in the cultural heritage sector: The tip of the iceberg. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 615–621. [Google Scholar] [CrossRef]
- Baranwal, E.; Raghvendra, S.; Tiwari, P.S.; Pande, H. Health Monitoring and Assessment of the Cultural Monument through Unmanned Aerial Vehicle (UAV) Image Processing; Springer: Singapore, 2021; ISBN 9789811580246. [Google Scholar]
- Fino, M.D.; Galantucci, R.A.; Fatiguso, F. Remote diagnosis and control of heritage architecture by photorealistic digital environments and models. Scires-It 2019, 9, 1–16. [Google Scholar] [CrossRef]
- Alshawabkeh, Y.; El-Khalili, M. Detection and quantification of material displacements at historical structures using photogrammetry and laser scanning techniques. Mediterr. Archaeol. Archaeom. 2013, 13, 57–67. [Google Scholar]
- Bala’awi, F.; Alshawabkeh, Y.; Alawneh, F.; Al Masri, E. Damage assessment and digital 2D-3D documentation of Petra treasury. Mediterr. Archaeol. Archaeom. 2012, 12, 21–41. [Google Scholar]
- Guerra, M.G.; Galantucci, R.A. Standard quantification and measurement of damages through features characterization of surface imperfections on 3D models: An application on architectural heritages. Procedia CIRP 2020, 88, 515–520. [Google Scholar] [CrossRef]
- Galantucci, R.A.; Fatiguso, F. Advanced damage detection techniques in historical buildings using digital photogrammetry and 3D surface anlysis. J. Cult. Herit. 2019, 36, 51–62. [Google Scholar] [CrossRef]
- Galantucci, R.A.; Fatiguso, F.; Galantucci, L.M. A proposal for a new standard quantification of damages of cultural heritages, based on 3D scanning. SCIRES-IT-Sci. Res. Inf. Technol. 2018, 8, 121–138. [Google Scholar] [CrossRef]
- Lawonn, K.; Trostmann, E.; Preim, B.; Hildebrandt, K. Visualization and Extraction of Carvings for Heritage Conservation. IEEE Trans. Vis. Comput. Graph. 2017, 23, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Carrero-Pazos, M.; Vilas-Estévez, B.; Vázquez-Martínez, A. Digital imaging techniques for recording and analysing prehistoric rock art panels in Galicia (NW Iberia). Digit. Appl. Archaeol. Cult. Herit. 2018, 8, 35–45. [Google Scholar] [CrossRef]
- Danese, M.; Sileo, M.; Masini, N. Geophysical Methods and Spatial Information for the Analysis of Decaying Frescoes. Surv. Geophys. 2018, 39, 1149–1166. [Google Scholar] [CrossRef]
- Valero, E.; Bosché, F.; Forster, A. Automatic segmentation of 3D point clouds of rubble masonry walls, and its application to building surveying, repair and maintenance. Autom. Constr. 2018, 96, 29–39. [Google Scholar] [CrossRef]
- Valero, E.; Forster, A.; Bosché, F.; Hyslop, E.; Wilson, L.; Turmel, A. Automated defect detection and classification in ashlar masonry walls using machine learning. Autom. Constr. 2019, 106, 102846. [Google Scholar] [CrossRef]
- Del Pozo, S.; Herrero-Pascual, J.; Felipe-García, B.; Hernández-López, D.; Rodríguez-Gonzálvez, P.; González-Aguilera, D. Multispectral radiometric analysis of façades to detect pathologies from active and passive remote sensing. Remote Sens. 2016, 8, 80. [Google Scholar] [CrossRef]
- Malinverni, E.S.; Pierdicca, R.; Sturari, M.; Colosi, F.; Orazi, R. Documentation & detection of colour changes of bas relieves using close range photogrammetry. ISPRS Arch. 2017, 42, 203–210. [Google Scholar] [CrossRef]
- Grilli, E.; Dininno, D.; Petrucci, G.; Remondinoa, F. From 2D to 3D supervised segmentation and classification for cultural heritage applications. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2018, 42, 399–406. [Google Scholar] [CrossRef]
- Grilli, E.; Remondino, F. Classification of 3D Digital Heritage. Remote Sens. 2019, 11, 847. [Google Scholar] [CrossRef]
- Adamopoulos, E.; Rinaudo, F. Documenting the State of Preservation of Historical Stone Sculptures in Three Dimensions with Digital Tools; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; Volume 12663, ISBN 9783030687953. [Google Scholar]
- Gong, Y.; Zhang, F.; Jia, X.; Huang, X.; Li, D.; Mao, Z. Deep neural networks for quantitative damage evaluation of building losses using aerial oblique images: Case study on the great wall (china). Remote Sens. 2021, 13, 1321. [Google Scholar] [CrossRef]
- Idjaton, K.; Janvier, R.; Balawi, M.; Desquesnes, X.; Brunetaud, X.; Treuillet, S. Detection of limestone spalling in 3D survey images using deep learning. Autom. Constr. 2023, 152, 104919. [Google Scholar] [CrossRef]
- Galantucci, R.A.; Musicco, A.; Bruno, S.; Fatiguso, F. Automatic detection of dampness phenomena on architectural elements by point cloud segmentation. Rehabend 2020, 1141–1148. Available online: https://www.researchgate.net/publication/344559473_AUTOMATIC_DETECTION_OF_DAMPNESS_PHENOMENA_ON_ARCHITECTURAL_ELEMENTS_BY_POINT_CLOUD_SEGMENTATION (accessed on 23 October 2023).
- Musicco, A.; Galantucci, R.A.; Bruno, S.; Verdoscia, C.; Fatiguso, F. Automatic Point Cloud Segmentation for the Detection of Alterations on Historical Buildings Through an Unsupervised and Clustering-Based Machine Learning Approach. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 2, 129–136. [Google Scholar] [CrossRef]
- Tucci, G.; Bonora, V.; Fiorini, L.; Conti, A. The florence baptistery: 3-D Survey as a knowledge tool for historical and structural investigations. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2016, 41, 977–984. [Google Scholar] [CrossRef]
- Federman, A.; Shrestha, S.; Quintero, M.S.; Mezzino, D.; Gregg, J.; Kretz, S.; Ouimet, C. Unmanned Aerial Vehicles (UAV) Photogrammetry in the Conservation of Historic Places: Carleton Immersive Media Studio Case Studies. Drones 2018, 2, 18. [Google Scholar] [CrossRef]
- García-León, J.; García Martín, A.; Torres Picazo, M.; Fernández, J. 3D recording and modelling of mining heritage: The monserrat mine, sierra minera of cartagena-la unión, Southeast of Spain. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2017, 42, 325–330. [Google Scholar] [CrossRef]
- Markiewicz, J.; Zawieska, D.; Podlasiak, P. Comparing multi-source photogrammetric data during the examination of verticality in a Monumental tower. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2017, 42, 475–480. [Google Scholar] [CrossRef]
- Sammartano, G.; Spanò, A. High scale 3d modelling and orthophoto of curved masonries for a multipurpose representation, analysis and assessment. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2017, 42, 245–252. [Google Scholar] [CrossRef]
- Casula, G.; Fais, S.; Cuccuru, F.; Bianchi, M.G.; Ligas, P. Diagnostic Process of an Ancient Colonnade Using 3D High-Resolution Models with Non-Invasive Multi Techniques. Sensors 2023, 23, 3098. [Google Scholar] [CrossRef]
- Malinverni, E.S.; Pierdicca, R.; Di Stefano, F.; Sturari, M.; Mameli, M.; Frontoni, E.; Orazi, R.; Colosi, F. How to Extract Useful Information about the Decay of Bass Relieves in Archaeological Area. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 785–792. [Google Scholar] [CrossRef]
- Bevilacqua, M.G.; Caroti, G.; Martínez-Espejo Zaragoza, I.; Piemonte, A. Orientation of archive images on 3D digital models of painted vaults: An interesting tool for restorers. Appl. Geomat. 2018, 10, 385–398. [Google Scholar] [CrossRef]
- Kong, X.; Hucks, R.G. Preserving our heritage: A photogrammetry-based digital twin framework for monitoring deteriorations of historic structures. Autom. Constr. 2023, 152, 104928. [Google Scholar] [CrossRef]
- López-Martínez, T.; García-Bueno, A.; Medina-Flórez, V.J. New methodology for the assessment of cleaning treatments. Applications of photogrammetry for restoration. J. Cult. Herit. 2018, 30, 117–123. [Google Scholar] [CrossRef]
- Falcone, M.; Origlia, A.; Campi, M.; Di Martino, S. From Architectural Survey To Continuous Monitoring: Graph-Based Data Management for Cultural Heritage Conservation With Digital Twins. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 43, 47–53. [Google Scholar] [CrossRef]
- Jalón, M.L.; Chiachío, J.; Gil-Martín, L.M.; Hernández-Montes, E. Probabilistic identification of surface recession patterns in heritage buildings based on digital photogrammetry. J. Build. Eng. 2021, 34, 101922. [Google Scholar] [CrossRef]
- Menéndez, E.; Gil Martín, L.M.; Salem, Y.; Jalón, L.; Hernández-Montes, E.; Alonso, M.C. Bayesian assessment of surface recession patternsin brick buildings with critical factors identification. Bol. Soc. Esp. Ceram. Vidr. 2022, 61, 357–373. [Google Scholar] [CrossRef]
- Previtali, M.; Stanga, C.; Molnar, T.; Van Meerbeek, L.; Barazzetti, L. An integrated approach for threat assessment and damage identification on built heritage in climate-sensitive territories: The Albenga case study (San Clemente church). Appl. Geomat. 2018, 10, 485–499. [Google Scholar] [CrossRef]
- Haddad, N.A.; Akasheh, T.S.; Lerma, J.L.; Khresat, B.R. Towards a Risk Management and Conservation Plan for the Djin Blocks at the World Heritage Site of Petra, Jordan: The Case of Djin Block No. 9. Conserv. Manag. Archaeol. Sites 2015, 17, 175–191. [Google Scholar] [CrossRef]
- Gagliolo, S.; Fagandini, R.; Passoni, D.; Federici, B.; Ferrando, I.; Pagliari, D.; Pinto, L.; Sguerso, D. Parameter optimization for creating reliable photogrammetric models in emergency scenarios. Appl. Geomat. 2018, 10, 501–514. [Google Scholar] [CrossRef]
- Calantropio, A.; Chiabrando, F.; Sammartano, G.; Spanò, A.; Losè, L.T. UAV strategies validation and remote sensing data for damage assessment in post-disaster scenarios. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2018, 42, 121–128. [Google Scholar] [CrossRef]
- Croce, V.; Caroti, G.; Piemonte, A. Assessment of earthquake-induced damage level on buildings: Analysis of two different survey methods for a case study. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2019, 42, 351–358. [Google Scholar] [CrossRef]
- Baranwal, E.; Seth, P.; Pande, H.; Raghavendra, S.; Kushwaha, S.K.P. Application of Unmanned Aerial Vehicle (UAV) for Damage Assessment of a Cultural Heritage Monument; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; Volume 51, ISBN 9783030373931. [Google Scholar]
- Chiabrando, F.; Di Lolli, A.; Patrucco, G.; Spanò, A.; Sammartano, G.; Losè, L.T. Multitemporal 3D modelling for cultural heritage emergency during seismic events: Damage assesment of S. Agostino church in Amatrice (RI). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2017, 42, 69–76. [Google Scholar] [CrossRef]
- Guarnieri, A.; Milan, N.; Vettore, A. Monitoring of complex structure for structural control using terrestrial laser scanning (Tls) and photogrammetry. Int. J. Archit. Herit. 2013, 7, 54–67. [Google Scholar] [CrossRef]
- Aita, D.; Barsotti, R.; Bennati, S.; Caroti, G.; Piemonte, A. 3-Dimensional geometric survey and structural modelling of the dome of Pisa cathedral. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 39–46. [Google Scholar] [CrossRef]
- Aguilar, R.; Noel, M.F.; Ramos, L.F. Integration of reverse engineering and non-linear numerical analysis for the seismic assessment of historical adobe buildings. Autom. Constr. 2019, 98, 1–15. [Google Scholar] [CrossRef]
- Chácara, C.; Reátegui, R.; Oré, Á.; Suarez, P.; Aguilar, R. Integration of NDT, 3D parametric modelling, and nonlinear numerical analysis for the seismic assessment of a vaulted stone-masonry historical building. J. Build. Eng. 2023, 70, 106347. [Google Scholar] [CrossRef]
- Barrile, V.; Bilotta, G.; D’Amore, E.; Meduri, G.M.; Trovato, S. Structural modeling of a historic castle using close range photogrammetry. Int. J. Math. Comput. Simul. 2016, 10, 370–380. [Google Scholar]
- Valseca, J.A.; Rodriguez-Leon, M.T.; Garcia, P.P.; Vicente, E.V.; Cardiel, V.C. Dynamic identification for structural analysis of santa ana church in Seville. In Science and Digital Technology for Cultural Heritage-Interdisciplinary Approach to Diagnosis, Vulnerability, Risk Assessment and Graphic Information Models: Proceedings of the 4th International Congress Science and Technology for the Conservation of Cultural Heritage (TechnoHeritage 2019), Sevilla, Spain, 26–30 March 2019; CRC Press: Boca Raton, FL, USA, 2019; pp. 109–115. [Google Scholar] [CrossRef]
- Blyth, A.; Napolitano, R.; Glisic, B. Documentation, structural health monitoring and numerical modelling for damage assessment of the Morris Island Lighthouse. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2019, 377, 20190002. [Google Scholar] [CrossRef]
- Bassier, M.; Hardy, G.; Bejarano-Urrego, L.; Drougkas, A.; Verstrynge, E.; Balen, K.V.; Vergauwen, M. Semi-automated creation of accurate FE meshes of heritage masonry walls from point cloud data. In Proceedings of the International Conference on Structural Analysis of Historical Constructions (SAHC), Cusco, Peru, 11–13 September 2018; Volume 18, pp. 1–8. [Google Scholar]
- Roselli, I.; Malena, M.; Mongelli, M.; Cavalagli, N.; Gioffrè, M.; De Canio, G.; de Felice, G. Health assessment and ambient vibration testing of the “Ponte delle Torri” of Spoleto during the 2016–2017 Central Italy seismic sequence. J. Civ. Struct. Health Monit. 2018, 8, 199–216. [Google Scholar] [CrossRef]
- Micelli, F.; Cascardi, A.; Aiello, M.A. Seismic capacity estimation of a masonry bell-tower with verticality imperfection detected by a drone-assisted survey. Infrastructures 2020, 5, 72. [Google Scholar] [CrossRef]
- Chen, S.; Wang, S.; Li, C.; Hu, Q.; Yang, H. A seismic capacity evaluation approach for architectural heritage using finite element analysis of three-dimensional model: A case study of the limestone hall in the ming dynasty. Remote Sens. 2018, 10, 963. [Google Scholar] [CrossRef]
- Santagati, C.; Laurini, C.R.; Sanfilippo, G.; Bakirtzis, N.; Papacharalambous, D.; Hermon, S. Hbim for the surveying, analysis and restoration of the saint john the theologian cathedral in Nicosia (Cyprus). ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 1039–1046. [Google Scholar] [CrossRef]
- Mondello, A.; Garozzo, R.; Salemi, A.; Santagati, C. HBIM for the SEISMIC vulnerability assessment of traditional bell towers. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2019, 42, 791–798. [Google Scholar] [CrossRef]
- Palestini, C.; Basso, A.; Graziani, L. Integrated photogrammetric survey and bim modelling for the protection of school heritage, applications on a case study. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2018, 42, 821–828. [Google Scholar] [CrossRef]
- Sarıcaoğlu, T.; Saygı, G. Data-Driven Conservation Actions of Heritage Places Curated With Hbim. Virtual Archaeol. Rev. 2022, 13, 17–32. [Google Scholar] [CrossRef]
- Pavlovskis, M.; Migilinskas, D.; Antucheviciene, J.; Kutut, V. Ranking of heritage building conversion alternatives by applying BIM and MCDM: A case of Sapieha Palace in Vilnius. Symmetry 2019, 11, 973. [Google Scholar] [CrossRef]
- Bruno, S.; Musicco, A.; Fatiguso, F.; Dell’Osso, G.R. The Role of 4D Historic Building Information Modelling and Management in the Analysis of Constructive Evolution and Decay Condition within the Refurbishment Process. Int. J. Archit. Herit. 2021, 15, 1250–1266. [Google Scholar] [CrossRef]
- Tejedor, B.; Lucchi, E.; Bienvenido-Huertas, D.; Nardi, I. Non-destructive techniques (NDT) for the diagnosis of heritage buildings: Traditional procedures and futures perspectives. Energy Build. 2022, 263, 112029. [Google Scholar] [CrossRef]
- Gopinath, V.K.; Ramadoss, R. Review on structural health monitoring for restoration of heritage buildings. Mater. Today Proc. 2021, 43, 1534–1538. [Google Scholar] [CrossRef]
- Barbosa, M.T.G.; Rosse, V.J.; Laurindo, N.G. Thermography evaluation strategy proposal due moisture damage on building facades. J. Build. Eng. 2021, 43, 102555. [Google Scholar] [CrossRef]
- Pappalardo, G.; Mineo, S.; Caliò, D.; Bognandi, A. Evaluation of Natural Stone Weathering in Heritage Building by Infrared Thermography. Heritage 2022, 5, 2594–2614. [Google Scholar] [CrossRef]
- Cascardi, A.; Longo, F.; Perrone, D.; Lassandro, P.; Aiello, M.A. Thermography Investigation and Seismic Vulnerability Assessment of a Historical Vaulted Masonry Building. Heritage 2022, 5, 2041–2061. [Google Scholar] [CrossRef]
- Patrucco, G.; Giulio Tonolo, F.; Sammartano, G.; Spanò, A. Sfm-Based 3D Reconstruction of Heritage Assets Using Uav Thermal Images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2022, 43, 399–406. [Google Scholar] [CrossRef]
- Patrucco, G.; Cortese, G.; Giulio Tonolo, F.; Spanò, A. Thermal and optical data fusion supporting built heritage analyses. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2020, 43, 619–626. [Google Scholar] [CrossRef]
- Paziewska, J.; Rzonca, A. Integration of Thermal and RGB Data Obtained by Means of a Drone for Interdisciplinary Inventory. Energies 2022, 15, 4971. [Google Scholar] [CrossRef]
- Scaioni, M.; Rosina, E.; L’erario, A.; Dìaz-Vilariño, L. Integration of infrared thermography & photogrammetric surveying of built landscape. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2017, 42, 153–160. [Google Scholar] [CrossRef]
- Adamopoulos, E.; Volinia, M.; Girotto, M.; Rinaudo, F. Three-dimensional thermal mapping from IRT images for rapid architectural heritage NDT. Buildings 2020, 10, 187. [Google Scholar] [CrossRef]
- Adamopoulos, E.; Rinaudo, F. Enhancing image-based multiscale heritage recording with near-infrared data. ISPRS Int. J. Geo-Information 2020, 9, 269. [Google Scholar] [CrossRef]
- Themistocleous, K.; Evagorou, E.; Mettas, C.; Prodromou, M.; Hadjimitsis, D.G. The documentation of cultural heritage sites in Cyprus using integrated techniques: The case study of the Church of Agios Athanasios and Kyrillos. Proc. SPIE 2020, 11524, 115240a. [Google Scholar] [CrossRef]
- Erenoglu, R.C.; Akcay, O.; Erenoglu, O. An UAS-assisted multi-sensor approach for 3D modeling and reconstruction of cultural heritage site. J. Cult. Herit. 2017, 26, 79–90. [Google Scholar] [CrossRef]
- Tosunlar, M.B.; Beycan, A.D.O.; Korkanç, M. Non-destructive test investigations on the deterioration of roman mausoleum in Karadağ central anatolia, Turkey. Mediterr. Archaeol. Archaeom. 2020, 20, 199–219. [Google Scholar] [CrossRef]
- Buda, G.; Galizia, M.; Presti, A.L.; Privitera, F.; Randazzo, G.; Santagati, C.; Santagati, M. Interdisciplinary investigations aimed at the preservation of a funerary Roman monument named “Torre Rossa” in Fiumefreddo di Sicilia. In Proceedings of the SAHC 2012: Structural Analysis of Historical Constructions, Wrocław, Poland, 15–17 October 2012; pp. 2314–2322. [Google Scholar]
- Diz-Mellado, E.; Mascort-Albea, E.J.; Romero-Hernández, R.; Galán-Marín, C.; Rivera-Gómez, C.; Ruiz-Jaramillo, J.; Jaramillo-Morilla, A. Non-destructive testing and Finite Element Method integrated procedure for heritage diagnosis: The Seville Cathedral case study. J. Build. Eng. 2021, 37, 102134. [Google Scholar] [CrossRef]
- Matias, M.; Almeida, F.; Moura, R.; Barraca, N. High resolution NDT in the characterization of the inner structure and materials of heritage buildings walls and columns. Constr. Build. Mater. 2021, 267, 121726. [Google Scholar] [CrossRef]
- Martínez-Garrido, M.I.; Fort, R.; Gómez-Heras, M.; Valles-Iriso, J.; Varas-Muriel, M.J. A comprehensive study for moisture control in cultural heritage using non-destructive techniques. J. Appl. Geophys. 2018, 155, 36–52. [Google Scholar] [CrossRef]
- Cozzolino, M.; Di Meo, A.; Gentile, V. The contribution of indirect topographic surveys (photogrammetry and laser scanner) and GPR investigations in the study of the vulnerability of the Abbey of Santa Maria a Mare, Tremiti Islands (Italy). Ann. Geophys. 2019, 62, SE343. [Google Scholar] [CrossRef]
- Chiabrando, F.; Naretto, M.; Sammartano, G.; Sambuelli, L.; Spanò, A.; Losè, L.T. The 4dilan project (4th dimension in landscape and artifacts analyses). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2017, 42, 227–234. [Google Scholar] [CrossRef]
- Angelini, A.; Cozzolino, M.; Gabrielli, R.; Gentile, V.; Mauriello, P. Three-Dimensional Modeling and Non-Invasive Diagnosis of a Huge and Complex Heritage Building: The Patriarchal Basilica of Santa Maria Assunta in Aquileia (Udine, Italy). Remote Sens. 2023, 15, 2386. [Google Scholar] [CrossRef]
- Abate, D.; Faka, M.; Toumbas, K.; Bakirtzis, N.; Mitchell, W.; Colls, K.; Sturdy-Colls, C. Multi-Modal Digital Documentation and Visualization of the Unesco Painted Churches in Troodos (Cyprus). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2022, 46, 1–8. [Google Scholar] [CrossRef]
- Adamopoulos, E.; Colombero, C.; Comina, C.; Rinaudo, F.; Volinia, M.; Girotto, M.; Ardissono, L. Integrating multiband photogrammetry, scanning, and GPR for built heritage surveys: The façades of Castello del Valentino. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 8, 1–8. [Google Scholar] [CrossRef]
- Barrile, V.; Bernardo, E.; Fotia, A.; Bilotta, G. Integration of Laser Scanner, Ground-Penetrating Radar, 3D Models and Mixed Reality for Artistic, Archaeological and Cultural Heritage Dissemination. Heritage 2022, 5, 1529–1550. [Google Scholar] [CrossRef]
- Van Dongen, A.; Eeckhout, P.; Lo Buglio, D. Crossed experimentations of low-altitude surveys for the detection of buried structures. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 46, 505–512. [Google Scholar] [CrossRef]
- Benavente, D.; Martinez-Martinez, J.; Galiana-Merino, J.J.; Pla, C.; de Jongh, M.; Garcia-Martinez, N. Estimation of uniaxial compressive strength and intrinsic permeability from ultrasounds in sedimentary stones used as heritage building materials. J. Cult. Herit. 2022, 55, 346–355. [Google Scholar] [CrossRef]
- Santini, S.; Cogotti, M.; Baggio, C.; Sabbatini, V.; Sebastiani, C. Field testing for structural behavior of a stratified monumental complex over time: Palazzo Colonna-Barberini and Templum Fortunae Praeneste. Case Stud. Constr. Mater. 2023, 18, e02152. [Google Scholar] [CrossRef]
- Ortega, J.; Meersman, M.F.L.; Aparicio, S.; Liébana, J.C.; Martín, R.; Anaya, J.J.; González, M. An automated sonic tomography system for the inspection of historical masonry walls. Open Res. Eur. 2023, 3, 60. [Google Scholar] [CrossRef]
- Casula, G.; Fais, S.; Cuccuru, F.; Bianchi, M.G.; Ligas, P.; Sitzia, A. Decay detection in an ancient column with combined close-range photogrammetry (Crp) and ultrasonic tomography. Minerals 2021, 11, 1114. [Google Scholar] [CrossRef]
- Casula, G.; Cuccuru, F.; Bianchi, M.G.; Fais, S.; Ligas, P. High resolution 3-D modelling of cylinder shape bodies applied to ancient columns of a church. Adv. Geosci. 2020, 54, 119–127. [Google Scholar] [CrossRef]
- Bianchi, M.G.; Casula, G.; Cuccuru, F.; Fais, S.; Ligas, P.; Ferrara, C. Three-dimensional imaging from laser scanner, photogrammetric and acoustic non-destructive techniques in the characterization of stone building materials. Adv. Geosci. 2018, 45, 57–62. [Google Scholar] [CrossRef]
- Senos, M.J.; Almeida, F.; Moura, R.; Barraca, N. High-Resolution geophysics in the investigation of the inner structure of walls and columns of batalha abbey. In Proceedings of the 23rd European Meeting of Environmental and Engineering Geophysics, Malmo, Sweden, 3–7 September 2017. [Google Scholar]
- Akoglu, K.G.; Kotoula, E.; Simon, S. Combined use of ultrasonic pulse velocity (UPV) testing and digital technologies: A model for long-term condition monitoring memorials in historic Grove Street Cemetery, New Haven. J. Cult. Herit. 2020, 41, 84–95. [Google Scholar] [CrossRef]
- Muradov, M.; Kot, P.; Markiewicz, J.; Łapiński, S.; Tobiasz, A.; Onisk, K.; Shaw, A.; Hashim, K.; Zawieska, D.; Mohi-Ud-Din, G. Non-destructive system for in-wall moisture assessment of cultural heritage buildings. Meas. J. Int. Meas. Confed. 2022, 203. [Google Scholar] [CrossRef]
- Masciotta, M.G.; Roque, J.C.A.; Ramos, L.F.; Lourenço, P.B. A multidisciplinary approach to assess the health state of heritage structures: The case study of the Church of Monastery of Jerónimos in Lisbon. Constr. Build. Mater. 2016, 116, 169–187. [Google Scholar] [CrossRef]
- Delegou, E.T.; Mourgi, G.; Tsilimantou, E.; Ioannidis, C.; Moropoulou, A. A multidisciplinary approach for historic buildings diagnosis: The case study of the kaisariani monastery. Heritage 2019, 2, 1211–1232. [Google Scholar] [CrossRef]
- Trizio, I.; Savini, F.; Ruggieri, A.; Fabbrocino, G. Digital Environment for Remote Visual Inspection and Condition Assessment of Architectural Heritage BT—Civil Structural Health Monitoring; Rainieri, C., Fabbrocino, G., Caterino, N., Ceroni, F., Notarangelo, M.A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 869–888. [Google Scholar]
- De Fino, M.; Bruno, S.; Fatiguso, F. Dissemination, assessment and management of historic buildings by thematic virtual tours and 3D models. Virtual Archaeol. Rev. 2022, 13, 88–102. [Google Scholar] [CrossRef]
- Bruno, S.; Scioti, A.; Pierucci, A.; Rubino, R.; Di Noia, T.; Fatiguso, F. Verbum—Virtual enhanced reality for building modelling (virtual technical tour in digital twins for building conservation). J. Inf. Technol. Constr. 2022, 27, 20–47. [Google Scholar] [CrossRef]
- Costantino, D.; Angelini, M.G.; Alfio, V.S.; Claveri, M.; Settembrini, F. Implementation of a system WebGIS open-source for the protection and sustainable management of rural heritage. Appl. Geomat. 2020, 12, 41–54. [Google Scholar] [CrossRef]
- Sedano-Espejo, E.; MacKinlay, P.; Sanz-Arauz, D.; Sánchez-Aparicio, M.; Sánchez-Aparicio, L.J. Use of geographical information system approaches for the diagnosis of san isidoro ruins (Madrid, Spain). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, XLVI-M-1–2021, 677–684. [Google Scholar] [CrossRef]
- Tsilimantou, E.; Delegou, E.T.; Nikitakos, I.A.; Ioannidis, C.; Moropoulou, A. GIS and BIM as Integrated Digital Environments for Modeling and Monitoring of Historic Buildings. Appl. Sci. 2020, 10, 1078. [Google Scholar] [CrossRef]
- Coughenour, C.M.; Vincent, M.L.; de Kramer, M.; Senecal, S.; Fritsch, D.; Flores Gutirrez, M.; Lopez-Menchero Bendicho, V.M.; Ioannides, M. Embedding Knowledge in 3D Data Frameworks in Cultural Heritage. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 2, 47–52. [Google Scholar] [CrossRef]
- Carraro, F.; Marinello, A.; Morabito, D.; Bonetto, J. New Perspectives on the Sanctuary of Aesculapius in Nora (Sardinia): From Photogrammetry to Visualizing and Querying Tools. Open Archaeol. 2019, 5, 263–273. [Google Scholar] [CrossRef]
- Pedelì, C. An interdisciplinary conservation module for condition survey on cultural heritages with a 3D information system. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 40, 483–487. [Google Scholar] [CrossRef]
- Mandelli, A.; Achille, C.; Tommasi, C.; Fassi, F. Integration of 3D models and diagnostic analyses through a conservation-oriented information system. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 497–504. [Google Scholar] [CrossRef]
- Boutsi, A.-M.; Ioannidis, C.; Soile, S. An Integrated Approach to 3D Web Visualization of Cultural Heritage Heterogeneous Datasets. Remote Sens. 2019, 11, 2508. [Google Scholar] [CrossRef]
- Ioannidis, C.; Verykokou, S.; Soile, S.; Boutsi, A.-M. A multi-purpose cultural heritage data platform for 4D visualization and interactive information services. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 583–590. [Google Scholar] [CrossRef]
- Boutsi, A.-M.; Tallis, I.; Pastos, I.; Verykokou, S.; Ioannidis, C. 5DMETEORA framework: Management and web publishing of cultural heritage data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, X-M-1–2023, 33–40. [Google Scholar] [CrossRef]
- Abergel, V.; Manuel, A.; Pamart, A.; Cao, I.; De Luca, L. Aïoli: A reality-based 3D annotation cloud platform for the collaborative documentation of cultural heritage artefacts. Digit. Appl. Archaeol. Cult. Herit. 2023, 30, e00285. [Google Scholar] [CrossRef]
- Roussel, R.; De Luca, L. An approach to build a complete digital report of the notre dame cathedral after the fire, using the aioli platform. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 1359–1365. [Google Scholar] [CrossRef]
- Croce, V.; Manuel, A.; Caroti, G.; Piemonte, A.; De Luca, L.; Véron, P. Semi-automatic classification of digital heritage on the Aïoli open source 2D/3D annotation platform via machine learning and deep learning. J. Cult. Herit. 2023, 62, 187–197. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria | |
---|---|---|
Purpose of the paper | Condition analysis Data collection and correlation Assessment/monitoring of decay/pathologies Simulation modelling | Geometric survey Validation of novel hardware/software tools Parametric modelling Touristic dissemination |
Type of physical asset | Historic buildings Archaeological structures and sites Frescoes and Sculptures Bridges | Modern buildings Urban settlement Infrastructures Paintings |
Role of photogrammetry | Key role for condition assessment | Secondary role For condition assessment |
Cluster (Colour) | Thematic Keywords | General Keywords |
---|---|---|
1 (Red) | damage detection; earthquakes; risk assessment; walls; finite element method; seismology; structural analysis; structural health monitoring; classification; damage assessments; diagnostic analysis; image segmentation; machine learning; religious buildings; seismic assessment; artificial intelligence; classification (of information); deep learning; learning systems; modal analysis; towers | surveys; unmanned aerial vehicles (uav); antennas; close range photogrammetry; architectural heritage; uav photogrammetry; architecture; historical buildings |
2 (Green) | non-destructive examination; geological surveys; ground penetrating radar systems; ground penetrating radar; monitoring; geophysical prospecting; geophysics; tomography; 3D model; construction material; data fusion; decay; decision making; gpr; hbim; non-destructive testing; non-destructive methods; non-destructive testing; state of conservation; thermography (imaging); weathering | photogrammetry; italy; heritage buildings; heritage conservation; three-dimensional modelling; built heritage; 3d model |
3 (Blue) | deterioration; image reconstruction; restoration; architectural design; information management; data visualization; digital documentation; virtual reality; visualization; 3d visualization; data acquisition; data handling; digital twin; maintenance; maps; open-source software; open systems; scientific community; semantics | cultural heritage; cultural heritages; historic preservation; three-dimensional computer graphics; remote sensing; point clouds |
4 (Yellow) | masonry materials; data integration | structure from motion; 3d modelling; surveying instruments; 3d reconstruction; surveying; terrestrial laser scanners; uav; buildings; close-range photogrammetry; multi-view stereo; 3d point cloud; digital cultural heritage; heritage masonry; software; stereo image processing; terrestrial laser scanner |
5 (Purple) | mapping; surface analysis; documentation archaeology; decay mapping; optical radar condition assessment; condition assessments | laser applications; laser scanning; terrestrial laser scanning; conservation; digital photogrammetry; scanning; 3d modelling; archaeology; history |
Topic | Sub-Topic | Number of Papers 1 | Keywords Cluster | Diagnosis Phases |
---|---|---|---|---|
Decay mapping | Manual and visual mapping; | 16 | 5 | Direct observation |
Semi-automatized and automatized mapping | 21 | |||
Structural assessment | Monitoring and control; | 20 | 1 | Monitoring; Structural Analysis |
Modelling and simulation | 17 | |||
Non-destructive investigation | Multi-spectral imaging; | 10 | 2 | Material and Structural Tests |
Multi-sensory data collection | 19 | |||
Multi-source documentation | Informative records within digital host environments; | 8 | 3 | Historical and archaeological research, material and structural tests, reporting |
Digital host environments with informative records | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Fino, M.; Galantucci, R.A.; Fatiguso, F. Condition Assessment of Heritage Buildings via Photogrammetry: A Scoping Review from the Perspective of Decision Makers. Heritage 2023, 6, 7031-7066. https://doi.org/10.3390/heritage6110367
De Fino M, Galantucci RA, Fatiguso F. Condition Assessment of Heritage Buildings via Photogrammetry: A Scoping Review from the Perspective of Decision Makers. Heritage. 2023; 6(11):7031-7066. https://doi.org/10.3390/heritage6110367
Chicago/Turabian StyleDe Fino, Mariella, Rosella Alessia Galantucci, and Fabio Fatiguso. 2023. "Condition Assessment of Heritage Buildings via Photogrammetry: A Scoping Review from the Perspective of Decision Makers" Heritage 6, no. 11: 7031-7066. https://doi.org/10.3390/heritage6110367
APA StyleDe Fino, M., Galantucci, R. A., & Fatiguso, F. (2023). Condition Assessment of Heritage Buildings via Photogrammetry: A Scoping Review from the Perspective of Decision Makers. Heritage, 6(11), 7031-7066. https://doi.org/10.3390/heritage6110367