Pluvial Flood Risk Assessment in Urban Areas: A Case Study for the Archaeological Site of the Roman Agora, Athens
Abstract
:1. Introduction
2. Study Area
3. Methods
3.1. Rainfall Modelling
- ▪
- For an initial interval , the entire rainfall amount corresponding to this interval is completely converted into a deficit (initial deficit), giving no excess rainfall at all. Consequently, after time , the maximum effective rain depth cannot exceed the potential quantity , where is the total rainfall depth during the event.
- ▪
- The additional deficit, beyond the initial , during a heavy rainfall cannot exceed a maximum value , which is called potential maximum retention. The initial deficit is
- ▪
- At each time , the ratios of the excess rainfall depth and the deficit minus the initial deficit (), to the corresponding potential quantities ( and , respectively), are equal. Based on the above assumptions, the following empirical relationship for the estimation of the excess rainfall is derived:
3.2. Hydraulic Model: Direct Rainfall Modelling
3.3. Scenario Database and ARCHYTAS Platform
4. Results
4.1. Design Rainfall Hyetographs
4.2. Flood Maps
4.3. Risk Assessment Using the ARCHYTAS Platform
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Camuffo, D.; Del Monte, M.; Ongaro, A. The pH of the atmospheric precipitation in Venice, related to both the dynamics of precipitation events and the weathering of monuments. Sci. Total Environ. 1984, 40, 125–139. [Google Scholar] [CrossRef]
- Arnold, A.; Zehnder, K. Salt weathering on monuments. In The Conservation of Monuments in the Mediterranean Basin: The Influence of Coastal Environment and Salt Spray on Limestone and Marble, Proceedings of the 1st International Symposium, Bari, Italy, 7–10 June 1989; La Conservazione Dei Monumenti Nel Bacino Mediterraneo: Influenza Dell Ambiente Costiero e Dello Spray Marino Sulla Pietra Calcareo e Sul Marmo; Atti Del 1 Simposio Internazionale: Bari, Italy, 1990; pp. 31–58. [Google Scholar]
- Ortega-Calvo, J.J.; Ariño, X.; Hernandez-Marine, M.; Saiz-Jimenez, C. Factors affecting the weathering and colonization of monuments by phototrophic microorganisms. Sci. Total Environ. 1995, 167, 329–341. [Google Scholar] [CrossRef]
- Al-Weshah, R.; El-Khoury, F. Flood risk mitigation using watershed management tools: Petra area (Jordan). In Risk-Based Decision Making in Water Resources IX; ASCE: Reston, VA, USA, 2001; pp. 164–172. [Google Scholar]
- Fitzner, B.; Heinrichs, K.; La Bouchardiere, D. Weathering damage on Pharaonic sandstone monuments in Luxor-Egypt. Build. Environ. 2003, 38, 1089–1103. [Google Scholar] [CrossRef]
- Lanza, S.G. Flood hazard threat on cultural heritage in the town of Genoa (Italy). J. Cult. Herit. 2003, 4, 159–167. [Google Scholar] [CrossRef]
- Heinrichs, K. Diagnosis of weathering damage on rock-cut monuments in Petra, Jordan. Environ. Geol. 2008, 56, 643–675. [Google Scholar] [CrossRef]
- Camuffo, D. Microclimate for Cultural Heritage: Measurement, Risk Assessment, Conservation, Restoration, and Maintenance of Indoor and Outdoor Monuments; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Hatır, M.E. Determining the weathering classification of stone cultural heritage via the analytic hierarchy process and fuzzy inference system. J. Cult. Herit. 2020, 44, 120–134. [Google Scholar] [CrossRef]
- Reiche, P. Graphic representation of chemical weathering. J. Sediment. Res. 1943, 13, 58–68. [Google Scholar]
- Camuffo, D. Physical weathering of stones. Sci. Total Environ. 1995, 167, 1–14. [Google Scholar] [CrossRef]
- Wang, J.-J. Flood risk maps to cultural heritage: Measures and process. J. Cult. Herit. 2015, 16, 210–220. [Google Scholar] [CrossRef]
- Gandini, A.; Egusquiza, A.; Garmendia, L.; San-José, J.-T. Vulnerability assessment of cultural heritage sites towards flooding events. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; p. 012028. [Google Scholar]
- Galloway, G.E.; Seminara, G.; Blöschl, G.; García, M.H.; Montanari, A.; Solari, L. Reducing the Flood Risk of Art Cities: The Case of Florence. J. Hydraul. Eng. 2020, 146, 02520001. [Google Scholar] [CrossRef]
- Dimitriadis, P.; Tegos, A.; Oikonomou, A.; Pagana, V.; Koukouvinos, A.; Mamassis, N.; Koutsoyiannis, D.; Efstratiadis, A. Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping. J. Hydrol. 2016, 534, 478–492. [Google Scholar] [CrossRef]
- Mignot, E.; Paquier, A.; Haider, S. Modeling floods in dense urban areas using 2D shallow water equations. J. Hydrol. 2006, 327, 186–199. [Google Scholar] [CrossRef]
- Yu, D.; Lane, S.N. Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment, part 1: Mesh resolution effects. Hydrol. Process. Int. J. 2006, 20, 1541–1565. [Google Scholar] [CrossRef]
- Bellos, V.; Kourtis, I.M.; Moreno-Rodenas, A.; Tsihrintzis, V.A. Quantifying roughness coefficient uncertainty in urban flooding simulations through a simplified methodology. Water 2017, 9, 944. [Google Scholar] [CrossRef]
- Soares-Frazão, S.; Lhomme, J.; Guinot, V.; Zech, Y. Two-dimensional shallow-water model with porosity for urban flood modelling. J. Hydraul. Res. 2008, 46, 45–64. [Google Scholar] [CrossRef]
- David, A.; Schmalz, B. A Systematic Analysis of the Interaction between Rain-on-Grid-Simulations and Spatial Resolution in 2D Hydrodynamic Modeling. Water 2021, 13, 2346. [Google Scholar] [CrossRef]
- Vamvatsikos, D.; Fragiadakis, M.; Georgopoulos, I.O.; Koumousis, V.K.; Koutsoyiannis, D.; Manetas, A.; Melissianos, V.E.; Papadopoulos, C.; Papanikolopoulos, K.E.; Toumpakari, E.E. The ARCHYTAS Intelligent Decision-Support System for the Protection of Monumental Structures. In Protection of Historical Constructions: Proceedings of the PROHITECH, Athens, Greece, 25–27 October 2021; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; Volume 4, pp. 1246–1255. [Google Scholar]
- Ministry of Culture, Archaeological Bulletin; Publishing: Hellenic Organization of Cultural Resources Development: Athens, Greece, 2000; Volume 55.
- Ministry of Culture, Archaeological Bulletin; Publishing: Hellenic Organization of Cultural Resources Development: Athens, Greece, 1985; Volume 40.
- Iliopoulou, T.; Koutsoyiannis, D. A parsimonious approach for regional design rainfall estimation: The case study of Athens. In Proceedings of the 7th IAHR Europe Congress, Athens, Greece, 7–9 September 2022. [Google Scholar]
- Koutsoyiannis, D.; Xanthopoulos, T. Technical Hydrology, 3rd ed.; National Technical University: Athens, Greece, 1999; 418p. [Google Scholar]
- Koutsoyiannis, D. A stochastic disaggregation method for design storm and flood synthesis. J. Hydrol. 1994, 156, 193–225. [Google Scholar] [CrossRef]
- Sutcliffe, J.V. Methods of Flood Estimation, A Guide to Flood Studies Report; Report No 49; Institute of Hydrology: Wallingford, UK, 1978. [Google Scholar]
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; McGraw-Hill: New York, NY, USA, 1988; 572p. [Google Scholar]
- US Soil Conservation Service. National Engineering Handbook; Section 4; Hydrology, U.S. Department of Agriculture, U.S. Government Printing Office: Washington, DC, USA, 1972. [Google Scholar]
- United States Department of Agriculture. Urban Hydrology for Small Watersheds (PDF). Technical Release 55 (TR-55) (Second ed.). Natural Resources Conservation Service, Conservation Engineering Division. 1986. Available online: https://www.nrc.gov/docs/ML1421/ML14219A437.pdf (accessed on 19 November 2023).
- Hydrologic Engineering Center. HEC-RAS 2D Modeling User’s Manual; U.S. Army Corps of Engineers: Davis, CA, USA, 2021. [Google Scholar]
- Courant, R.; Friedrichs, K.; Lewy, H. On the partial difference equations of mathematical physics. IBM J. Res. Dev. 1967, 11, 215–234, (republication in Math. Ann. 1928, 100, 32–74). [Google Scholar] [CrossRef]
- Chow, V.T. Open Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
- Henonin, J.; Russo, B.; Mark, O.; Gourbesville, P. Real-time urban flood forecasting and modelling–a state of the art. J. Hydroinformatics 2013, 15, 717–736. [Google Scholar] [CrossRef]
- Teng, J.; Jakeman, A.J.; Vaze, J.; Croke, B.F.; Dutta, D.; Kim, S. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environ. Model. Softw. 2017, 90, 201–216. [Google Scholar] [CrossRef]
- Tegos, A.; Ziogas, A.; Bellos, V.; Tzimas, A. Forensic hydrology: A complete reconstruction of an extreme flood event in data-scarce area. Hydrology 2022, 9, 93. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iliopoulou, T.; Dimitriadis, P.; Koutsoyiannis, D. Pluvial Flood Risk Assessment in Urban Areas: A Case Study for the Archaeological Site of the Roman Agora, Athens. Heritage 2023, 6, 7230-7243. https://doi.org/10.3390/heritage6110379
Iliopoulou T, Dimitriadis P, Koutsoyiannis D. Pluvial Flood Risk Assessment in Urban Areas: A Case Study for the Archaeological Site of the Roman Agora, Athens. Heritage. 2023; 6(11):7230-7243. https://doi.org/10.3390/heritage6110379
Chicago/Turabian StyleIliopoulou, Theano, Panayiotis Dimitriadis, and Demetris Koutsoyiannis. 2023. "Pluvial Flood Risk Assessment in Urban Areas: A Case Study for the Archaeological Site of the Roman Agora, Athens" Heritage 6, no. 11: 7230-7243. https://doi.org/10.3390/heritage6110379
APA StyleIliopoulou, T., Dimitriadis, P., & Koutsoyiannis, D. (2023). Pluvial Flood Risk Assessment in Urban Areas: A Case Study for the Archaeological Site of the Roman Agora, Athens. Heritage, 6(11), 7230-7243. https://doi.org/10.3390/heritage6110379