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Abstract: Char-bending is a term used in marine archaeology literature to describe the process
of shaping long hull components (planks, wales, stringers) by bending them over open fire, from
Antiquity, up to modern times. Experiments were done on planks of two wood species with different
cross-sections. The planks were heated over open fire while monitoring the internal temperature and
charred layer thickness on the side of the plank facing the heat source. The results show that in order
to reach the temperature inside the wood required for it to become pliable, the formation of a charred
layer, an undesirable by-product, is unavoidable. It is explained why char-bending, in almost all
cases, occurs on the concave side of the plank.
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1. Introduction

Wood-bending techniques have been known and practiced for at least 4600 years in
the production of components of ships, furniture, casks, chariots, and various tools [1]. The
idea behind bending wood components to a specific curve is based on several arguments:
to keep the grain aligned with the shape of the timber to maintain its strength as much
as possible, to reduce the force needed to bend the wood, to prevent fracture of the wood
when the curvature of the bend is too sharp, and to prevent spring-back of the timber after
bending. Thermo-hydro-mechanical (THM) treatment for preparing a timber, such as a
plank, for bending involves heating it in the presence of water for the time needed to allow
the heat and moisture to penetrate throughout to make it pliable enough to achieve the
correct shape. This process is still used in industry in the production of boats, furniture,
and casks [1].

Among the methods of preparing wood for bending are: heating over open fire,
steaming, soaking in water, and boiling in water. This work concentrates on heating over
open fire. A feature of this process is charring of the face exposed to heat. Aspects of this
method that were checked are: whether the charring is on the convex or concave side of the
plank; the temperature gradient within the wood as a function of time, and the thickness of
the charred layer as a function of time. Evidence of charred wood found in shipwrecks was
examined and analyzed to discount other possible reasons for the charring.

1.1. Ancient Written Evidence

The earliest known written evidence is believed to be a contemporary description of
char-bending from the 1st century BCE by Valerius Flaccus [2]. Claesson Rålamb described
the process used by Vikings in the 11th century as heating planks over a bonfire while
applying a downward bending moment (Figure 1).
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Figure 1. Heating of ships’ planks over open fire by Vikings, ca 1600 [3]. 

1.2. Shipwreck Evidence 
Many observations of charring in shipwrecks are related to a bending process. The 

earliest is from the 4th century BCE—in the Kyrenia shipwreck [4]. Most of the evidence 
is dated to the medieval era, and was found on the eastern shores of the Mediterranean 
and in the Yenikapı site, Istanbul (Table 1). 

Table 1. Charred planks interpreted as evidence for preparing for bending over open fire. 
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Dor 2001/1 6th c. CE Strake Concave inner face Extremities 2.3 Char-bending [9] 
Dor 2006 7th c. CE Strake, wale Concave inner face Extremities 3.2, 16.1 Char-bending [10] 
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1.2. Shipwreck Evidence

Many observations of charring in shipwrecks are related to a bending process. The
earliest is from the 4th century BCE—in the Kyrenia shipwreck [4]. Most of the evidence is
dated to the medieval era, and was found on the eastern shores of the Mediterranean and
in the Yenikapı site, Istanbul (Table 1).
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Kyrenia 4th c. BCE Wales Concave inner face

Few 30-cm-long
sections. All
other places
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6.1, 8 Char-bending [4]

Expanded log boat 1st c. BCE – Concave inner face – – – [5]

Grado 2nd c. CE Garboard Concave inner face Extremities 5 Char-bending [6]

Dramont E 5th c. CE Garboard Concave inner face Extremities 4.8–5 Char-bending [7]

Dor D 6th c. CE Strake Concave inner face Extremities 3 Char-bending [8]

Dor 2001/1 6th c. CE Strake Concave inner face Extremities 2.3 Char-bending [9]

Dor 2006 7th c. CE Strake, wale Concave inner face Extremities 3.2, 16.1 Char-bending [10]

Tantura A 6th c. CE Strakes Concave inner face Extremities 2.5 Char-bending [11]

Tantura E 7th–9th c. CE Strakes Concave inner face Extremities 1.9–2.9 Char-bending,
killing T. navalis [12]

Tantura E 7th–9th c. CE Stringers Concave inner face Extremities 4–7.6 Char-bending,
Killing T. navalis [12]

Tantura F 7th–8th c. CE Strakes Concave inner face Extremities 2.7 Char-bending [13]

MMB 7th–8th c. CE Stringer Convex outer face Extremities 10 Char-bending [14]

MMB 7th–8th c. CE Strakes Concave inner face Extremities 3.1–4.2 Char-bending [14]

YK 11 7th c. CE Strakes Concave inner face Extremities 1.8–2.5 Char-bending [15]

YK 14 9th c. CE Strakes Concave inner face Extremities 0.8–3.6 Char-bending [16]

YK 14 9th c. CE Garboard Concave inner face Extremities 1.1–4.4 Char-bending [16]

YK 14 9th c. CE Wale Concave inner face Extremities 3.6–7.2 Char-bending [16]

YK 17 8th c. CE Wale Concave inner face Whole length 14 Char-bending [17]

YK 3 10th–11th c. CE Wale Concave inner face – 10 Char-bending [18]

Drogheda Boat 16th c. CE Strakes Concave inner face All over 2.2 Char-bending,
killing T. navalis [19]

B&W I 16th–17th c. CE Strakes Concave inner face Extremities 4.5 Char-bending [20]

Akko 1 19th c. CE Garboard Concave inner face Extremities 4.5 – [21]
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1.3. Modern Evidence (20th–21st Centuries)

Preparing vessel components for bending is practiced nowadays in small shipyards
in Japan, Bangladesh, South China, East Africa shores, Greece, and many other places
(Figure 2). It was recorded by scholars during the 20th and 21st centuries. Greenhill
mentioned using the char-bending technique in fishing boat building in Japan in the 20th
century, but gave no details [22]. In Bangladesh, char-bending was practised in building
fishing boats [23]. In the same area, char-bending is practiced in the production of dug-out
canoes to push out the sides of the boat [24]. Richards describes the process of bending
planks over open fire in Western Sarawak, Malaysia, and South China, where heating
is done over open fire while applying a bending moment to the plank [25]. A similar
process in a small shipbuilding yard in the Swahili Coast, East Africa is described by De
Leeuwe [26].

Heritage 2023, 6 1756 
 

 

YK 17 8th c. CE Wale Concave inner face Whole length 14 Char-bending [17] 

YK 3 
10th–11th 

c. CE Wale Concave inner face – 10 Char-bending [18] 

Drogheda 
Boat 

16th c. CE Strakes Concave inner face All over 2.2 
Char-bending, 

killing T. 
navalis 

[19] 

B&W I 16th–17th 
c. CE Strakes Concave inner face Extremities 4.5 Char-bending [20] 

Akko 1 19th c. CE Garboard Concave inner face Extremities 4.5 – [21] 

1.3. Modern Evidence (20th–21st Centuries) 
Preparing vessel components for bending is practiced nowadays in small shipyards 

in Japan, Bangladesh, South China, East Africa shores, Greece, and many other places 
(Figure 2). It was recorded by scholars during the 20th and 21st centuries. Greenhill men-
tioned using the char-bending technique in fishing boat building in Japan in the 20th cen-
tury, but gave no details [22]. In Bangladesh, char-bending was practised in building fish-
ing boats [23]. In the same area, char-bending is practiced in the production of dug-out 
canoes to push out the sides of the boat [24]. Richards describes the process of bending 
planks over open fire in Western Sarawak, Malaysia, and South China, where heating is 
done over open fire while applying a bending moment to the plank [25]. A similar process 
in a small shipbuilding yard in the Swahili Coast, East Africa is described by De Leeuwe 
[26]. 

 
Figure 2. Heating of planks over open fire in small boatyard in Vietnam (Photo: M. Yarkowich). 
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that the temperature and moisture content are uniform throughout the plank. 

We know that the mechanical properties of wood change with temperature and with 
moisture. The temperature should be above a certain value throughout the volume of the 
plank under consideration. We carried out experiments to better understand the depend-
ency of the temperature inside the wood on the time of exposure to the heat, the wood 

Figure 2. Heating of planks over open fire in small boatyard in Vietnam (Photo: M. Yarkowich).

2. Materials and Methods

The THM process of preparing planks for bending is based on the influence of heat
and moisture on the wood to make it pliable [1], and for it to be applicable it is required
that the temperature and moisture content are uniform throughout the plank.

We know that the mechanical properties of wood change with temperature and with
moisture. The temperature should be above a certain value throughout the volume of
the plank under consideration. We carried out experiments to better understand the
dependency of the temperature inside the wood on the time of exposure to the heat, the
wood condition (green, seasoned or wet-seasoned) and the thickness of the charred layer;
several series of experiments were carried out.

It may be noted that there is some confusion in the definition of ‘seasoned wood’: in
some places it is defined as drying in a kiln at 100 ◦C [1]; in others it is described as ‘air-dried
wood’ [27]. In this work, ‘seasoned wood’ means ‘air-dried wood’, and ‘wet-seasoned
wood’ means ‘air-dried wood’ soaked in water until saturated.

The method of heating over open fire in Antiquity was based on a bonfire over which
the wood was heated (Figures 1 and 2). Since a bonfire is not a reliable heat source and its
distance from the heated object is difficult to control, it was replaced in our experiments by
a commercial barbeque device, operated by LPG (liquefied petroleum gas)—a mixture of
propane and butane. The timbers were laid on it, and the distance from the heat source and
the flame height were kept constant (Figure 3). After several trial experiments, including
direct fire (Figure 3(1)), a perforated plate between the flame and the wood (Figure 3(2)),
and a solid plate between the flame and the wood, it was decided that the optimal set-up
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to minimize charring was to lay the wood flat on a 3 mm thick steel plate placed over the
flames to spread the heat evenly (Figure 3(4)).
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Figure 3. Commercial grill system used for heating the planks. (1) Burners are exposed. (2) Perforated
sheet metal covers the flames. (3) Solid 3 mm sheet metal covers the flames. (4) Wooden plank is laid
on the solid sheet metal (photo: M. Bram).

3. Methodology

Two series of experiments were carried out: one on timbers of Turkish pine (Pinus
brutia), of 5 × 5 cm cross-section, and the other on cypress (Cupressus sempervirens L.) of
14 × 14 cm cross-section.

1. Three sets of timbers were cut from P. brutia. The first set was of green wood, the
second of seasoned wood, and the third of wet-seasoned wood. The temperature in
the wood was measured with thermocouples located inside holes positioned 0.5 and
3 cm from the side facing the heat source.

2. Two sets of timbers were cut from a trunk of C. sempervirens. One was seasoned
and the other was wet-seasoned. The temperature in the wood was measured with
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thermocouples located inside holes positioned 0.5, 3.5, 6.5 and 9.5 cm inside the wood
on the side facing the heat source.

The thermocouples, Type K, gauge 20, were connected to a model EXRTECH 42150
recorder and the temperatures were recorded every 5 to 10 min.

The thickness of the charred layer created on the side facing the heat source was
recorded in parallel as a function of time.

4. Results

Series 1:
In the green P. brutia wood charring began when the average temperature reached

35 ◦C (Figure 4).
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Figure 4. Heating of green P. brutia; temperature rise and thickness of charred layer as functions of 
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Figure 4. Heating of green P. brutia; temperature rise and thickness of charred layer as functions of
time. The experiment was stopped due to ignition of the wood.

In the seasoned P. brutia wood charring began when the average temperature reached
60 ◦C (Figure 5).
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In the wet-seasoned P. brutia wood charring began when the average temperature
reached 45 ◦C (Figure 6).
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Figure 6. Heating of wet-seasoned P. brutia (fully saturated); temperature rise and thickness of
charred layer as functions of time.

Series 2:
In the seasoned C. sempervirens wood charring began when the average temperature

reached 40 ◦C (Figure 7).
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Figure 7. Heating of seasoned C. sempervirens; temperature rise and thickness of charred layer as
functions of time.

In the wet-seasoned C. sempervirens wood charring began when the average tempera-
ture reached 23 ◦C (Figure 8).
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Figure 8. Heating of wet-seasoned C. sempervirens; temperature rise and thickness of charred layer 
as functions of time. 
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Figure 8. Heating of wet-seasoned C. sempervirens; temperature rise and thickness of charred layer as
functions of time.

In all the experiments it was shown that charring began long before the temperature
inside the wood reached the desired temperature, about 100 ◦C.

Note: The uneven increases in temperature and charred layer thickness in Figures 4–8
are due to averaging of the measured data.

The Special and Unique Case (So Far) of the Charred Stringer from the Ma‘agan Mikhael B Wreck

The Ma‘agan Mikhael B (MMB) wreck is a merchant ship about 20 m long, dated to
the 7–9th century CE, found off the shore of Kibbutz Ma‘agan Michael, some 35 km south
of Haifa in Israel [28]. This ship has about 10 stringers that run along the ship, from stern
to bow. One of them, HL-12, had a cross-section of a half log, and was originally 5 m long.
It was bent along its length with its flat face of the cross-section facing the convex side of
the bent beam and nailed to the frames of the ship (Cohen and Cvikel) [14]. A piece 2 m
long was retrieved and examined in the laboratory. The unique feature of this stringer was
the charring. In all cases of charred wood found in wrecks (Table 1), as well as evidence
recorded in small shipyards in the Levant and the Far East from the 20th and 21st centuries,
the charring appears on the concave side of the wood. In this stringer, the charring appears
on the convex side (Figure 9).
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This blackened area of the stringer was believed to be charring, but was also suspected
to be a fungus culture grown on the wood due to its stay of about 14 centuries under water.
Six samples were prepared and checked under a scanning electron microscope (Jeol EDS
system), and the relative amount of carbon (C), expressed as percentage of the total (Atom
count) elements in the sample. This procedure was based on the understanding that the
relative amount of carbon in charred wood would be higher than that in the same non-
charred wood, due to burning and evaporation of other elements by heat. Black samples
taken from the wreck were also checked for the existence of fungus.

Samples:
Sample no. 1: Black piece 1 cm thick.
Sample no. 2: Black piece 0.1 cm thick.
Sample no. 3: Non-black piece 0.1 cm thick.
Sample no. 4: Charred piece 1 cm thick of C. sempervirens—positive control group.
Sample no. 5: Non-charred piece 0.1 cm thick of C. sempervirens—negative control group.
Sample no. 6: Non-charred piece 1 cm thick of C. sempervirens—negative control group.
The results showed that the concentration of carbon in the black material taken from

the MMB wreck was similar to the charred positive control group (Figure 10). There was
no evidence of fungus in the samples.
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Figure 10. Carbon concentration in samples from the MMB stringer and reference groups, showing
thickness of the samples.

Until now, we have had no knowledge whether the other stringers from the MMB
wreck were charred, and if they were, on which face of the cross-section the charring
appears. We offer two explanations of the ‘wrong’ location of charring on the HL-12
stringer from MMB wreck: The first is that it was a mistake of the shipwright. The second
is based on the heat transfer in a beam with the same half-log cross-section as the HL-12
stringer. A typical cross-section of a half-log shows that the distance of the mass centre
from the flat face is less than that from the round face (Figure 11) [29]. Understanding that
the heat from the fire had to reach the mass centre of the half-log, the shipwright chose by
intuition to locate the fire facing the flat side of the half-log cross-section.
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Figure 11. Distances of the concave and convex faces of a half-log to the neutral line [29]. 
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5. Discussion

We are not sure that there was always charring when a timber was heated over open
fire, especially in thin planks, where heat can penetrate the wood before it is charred. It
might happen that the wood was charred during the heating, but the charred layer was cut
away. We argue that the expression ‘char-bending’ is wrong, a more accurate term would
be: ‘preparing for bending by heating over open fire’.

A charred layer in a shipwreck can be interpreted in several ways:

• Char-bending
• Prevention or extermination of T. navalis infestation
• Accidental fire in the ship
• Thickness reduction.
• Proximity to heat source in the ship—the galley stove.

In this work we examined only the planks, wales or stringers from shipwrecks that
have charred layers in the bent areas of the ship (Table 1). The location of the charring,
only on the bent area, disproves the explanation of preventing or exterminating shipworm
(Teredo navalis), which would be expected to be over the whole length of the plank, especially
those immersed in bilge water, or on the outer side of the ship below the waterline. Actually,
there is no evidence for charring of the planks on the side facing the water, where T. navalis
attacks. The argument of the existence of T. navalis in the bilge water can be refuted by
the fact that in most of the cases charring is close to the bow or stern, which are not the
lowest parts of the ship, and where no bilge water is expected. These are also the areas
in which the planks and stringers require sharper curvature. The argument which refutes
the option of fire in the ship is based on the fact that the charring is only on the planks,
not on nearby components, such as frames, futtocks, ceiling planks, stanchions, etc. The
argument of thickness reduction (as in the technique practised in dug-out canoes) is refuted
by the fact that it would have left no traces of charring, since the charred layer would be
removed in the process. The galley fire should not have left any traces on the ships’ wooden
components, since the stove was usually surrounded by bricks.

The relation between the effects of heat and moisture content on the mechanical
properties of wood was researched by [1,30], and can be summarized as follows. Three
components of the wood were considered: cellulose, hemi-cellulose and lignin, and the
dependence of each component on moisture was established [31]. The glass transition
temperature (Tg) is defined as the temperature at which the wood components become
pliable; i.e., below Tg the material is mostly brittle, and above it the material behaves mostly
elasto-plastically. The relation between the Tg and the moisture content of the wood shows
that the Tg goes down as the moisture content rises. In the lignin the Tg is a clear-cut point
(Figure 12), while in the hemi-cellulose and the cellulose it is within a range of moisture
content (Figures 13 and 14).
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Figure 13. Tg as function of moisture content and temperature in hemi-cellulose [32] (authors). 

Figure 13. Tg as function of moisture content and temperature in hemi-cellulose [32] (authors).



Heritage 2023, 6 1764
Heritage 2023, 6 1765 
 

 

 
Figure 14. Tg as function of moisture content and temperature in cellulose [32] (authors). 

The result of these dependencies shows that the wood’s mechanical properties, MOE 
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In a letter dated to 1663, the writer says that a quantity of wood, destined for ship-
building, was actually seasoned (dried-out), since it was cut four years earlier. However, 
since wood for shipbuilding should be in the ‘green’ condition when heated over open 
fire for bending, this specific batch of wood was unacceptable [33]. 

The results of the experiments of heating wood over open fire showed that the side 
of the wood facing the heat source becomes charred long before the temperature inside 
the wood reaches the desired range of 80–100 °C, (Figures 4–8). Thus, it can be stated that 
charring is an undesired side effect of heating over open fire. This statement is backed by 
several sources, such as Richards’ description of the process of bending planks over an 
open fire in Western Sarawak, Malaysia, where he emphasizes that the heating is done 
without charring the plank [25]. 

Desmond, in his description of various methods of preparing planks for bending, 
says that heating over open fire is good only for ‘small scantling’ timbers [34]. Our inter-
pretation is that he meant that large beams would have been charred in the process. 

Valerius Flaccus described the process of preparing wood for bending over open fire 
as: “being softened into pliancy over a slow flame…” [2] which can be interpreted as 
avoiding charring in the process of heating. Shipwrights would have preferred to avoid 
the charred layer, since charred wood loses its mechanical properties, and the wood that 
takes the load is thinner. 
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The result of these dependencies shows that the wood’s mechanical properties, MOE
(Modulus of Elasticity) and MOR (Modulus of Rupture), decrease when the moisture
content rises, i.e., the wood becomes softer and more elastic. Thus, the practice of preparing
wood for bending would rely on having the moisture content as high as possible, which
reduces the Tg, and the temperature as high as possible, to keep the wood temperature
above the Tg. This principle is applied in steaming, boiling in water, and heating green or
wet-seasoned wood over an open fire.

In a letter dated to 1663, the writer says that a quantity of wood, destined for ship-
building, was actually seasoned (dried-out), since it was cut four years earlier. However,
since wood for shipbuilding should be in the ‘green’ condition when heated over open fire
for bending, this specific batch of wood was unacceptable [33].

The results of the experiments of heating wood over open fire showed that the side
of the wood facing the heat source becomes charred long before the temperature inside
the wood reaches the desired range of 80–100 ◦C, (Figures 4–8). Thus, it can be stated that
charring is an undesired side effect of heating over open fire. This statement is backed by
several sources, such as Richards’ description of the process of bending planks over an
open fire in Western Sarawak, Malaysia, where he emphasizes that the heating is done
without charring the plank [25].

Desmond, in his description of various methods of preparing planks for bending, says
that heating over open fire is good only for ‘small scantling’ timbers [34]. Our interpretation
is that he meant that large beams would have been charred in the process.

Valerius Flaccus described the process of preparing wood for bending over open fire
as: “being softened into pliancy over a slow flame. . . ” [2] which can be interpreted as
avoiding charring in the process of heating. Shipwrights would have preferred to avoid
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the charred layer, since charred wood loses its mechanical properties, and the wood that
takes the load is thinner.

Why Does Charring Occur on the Concave Side of Planks, Wales, or Stringers?

In almost all cases of charred wood in shipwrecks which are related to bending, the
charring is on the concave side of the wood. The following are possible explanations for
this observation:

(a) Reducing the water content on this side, to prevent possible cracking during bending,
due to excess water pressure [31].

(b) Charred layer on wood is cracked (Figure 15) and cannot carry any load. If the cracked
area is subjected to tension, as on the convex side of a bent beam, such cracks could be
sites of stress concentration, causing a crack that might extend into the wood under
the charred layer

(c) The heat source evaporates the water on the side it faces, causing the plank to bend.
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Figure 15. Charred P. brutia with crack (Photo: M. Cohen). 
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b. When heating a plank over an open fire the side facing the heat source usually con-
tracts (due to evaporation). Therefore, as a preparation for bending, it was almost 
always done by exposing to the fire the side that at the end of the process would be 
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6. Conclusions

a. Of all the various methods for preparation of wooden planks for bending, the one
involving soaking in water and heating over open fire was probably the most widely
used by shipwrights. Wherever such a preparation was deemed necessary for ship
building, the charring of the planks was an unwanted side effect only, because it
almost always leads to a reduced thickness and thus reduced strength and also to
the cracking of the planks and thus to damaging the ship. Ideally, the shipwrights
would have preferred to avoid it altogether, although in some cases, such as bending
relatively thick planks, charring is unavoidable. To prevent that from happening,
another preparation method would have to be used.

b. When heating a plank over an open fire the side facing the heat source usually
contracts (due to evaporation). Therefore, as a preparation for bending, it was almost
always done by exposing to the fire the side that at the end of the process would be
the concave face of the plank (generally—the inner side of the hull).
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