Painted Wood Climate Risk Analysis by the HERIe Model of Building Protection and Conservation Heating Scenarios in Norwegian Medieval Stone Churches
Abstract
:1. Introduction
2. Locations and Objects
3. Methods
3.1. Climate Measurements
3.2. Evaluation of Indoor Climate Adjustments in the Churches Using Conservation Guidelines
3.3. Mold and the High RH Limit
3.4. Climate and Object Scenarios
3.5. The HERIe Modeling of Mechanical Damage Risk to Painted Wooden Panels
3.6. Energy Consumption Calculation by Heating Degree Days
4. Results
4.1. Conformity to Guidelines
4.2. Mechanical Damage Risk to Painted Wooden Panels
4.3. Conservation Heating
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
CEN Standard and ASHRAE Classes | Short Term (Hour, Day) | Seasonal | Outer Fixed Limits, Low–High | |||
---|---|---|---|---|---|---|
RH (%) | T (°C) | RH (%) | T (°C) | RH (%) | T (°C) | |
CEN 15757 | 7th and 93rd percentile of annual fluctuations from the monthly moving mean but maximum ±10% | n.a. | n.a. | n.a. | n.a. | n.a. |
AA | ±5 | ±2 | no | ±5 | 35–65 | 10–25 |
A1 | ±5 | ±2 | ±10 | −10–+5 | 35–65 | 10–25 |
A2 | ±10 | ±2 | no | −10–+5 | 35–65 | 10–25 |
B | ±10 | ±5 | ±=10 | −20–+10 | 30–70 | n.a.–30 |
C | n.a. | n.a. | n.a. | n.a. | 25–75 * | n.a.–40 |
D | n.a. | n.a. | n.a. | n.a. | −75 * | n.a. |
References
- Olstad, T.M.; Stein, M. Saving art by saving energy. Niku Temah. 1996, 2, 1–20. [Google Scholar]
- Michalsk, S. Agent of Deterioration: Incorrect Relative Humidity. 2021. Available online: https://www.canada.ca/en/conservation-institute/services/agents-deterioration/humidity.html (accessed on 5 November 2022).
- Łukomski, M. Painted wood. What makes the paint crack? J. Cult. Herit. 2013, 13S, S90–S93. [Google Scholar] [CrossRef]
- Bratasz, L. Allowable microclimatic variations for painted wood. Stud. Conserv. 2013, 58, 65–79. [Google Scholar] [CrossRef]
- Michalski, S. The ideal climate, risk management, the ASHRAE chapter, proofed fluctuations, and towards a full risk analysis model. Expert. Roundtable Sustain. Clim. Manag. Strateg. 2007, 1–19. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f00555145ab24e771bb117f43e37d84f9a325992 (accessed on 14 March 2023).
- Sesana, E.; Bertolin, C.; Gagnon, A.S.; Hughes, J.J. Mitigating Climate Change in the Cultural Built Heritage Sector. Climate 2019, 7, 90. [Google Scholar] [CrossRef] [Green Version]
- Hanssen-Bauer, I.; Førland, E.J.; Haddeland, I.; Hisdal, H.; Mayer, S.; Nesje, A.; Nilsen, J.E.Ø.; Sandven, S.; Sandø, A.B.; Sorteberg, A.; et al. (Eds.) Climate in Norway 2100—A knowledge base for climate adaptation. NCCS Rep. 2017, 1, 2017. [Google Scholar]
- Lisø, K.R.; Hygen, H.O.; Kvande, T.; Thue, J.V. Decay potential in wood structures using climate data. Build. Res. Inf. 2006, 34, 546–551. [Google Scholar] [CrossRef]
- Grøntoft, T. Observed Recent Change in Climate and Potential for Decay of Norwegian Wood Structures. Climate 2019, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Sabbioni, C.; Brimblecombe, P.; Cassar, M. (Eds.) The Atlas of Climate Change Impact on European Cultural Heritage: Scientific Analysis and Management Strategies, Anthem Environmental Studies; Anthem Press: London, UK, 2010. [Google Scholar]
- Ellewsen, K.M. Rapport Klimadata Kinn Kirke September 2011–September 2012. Internal report—The Norwegian Directorate for Cultural Heritage, Oslo, Norway, 2014. Non-Published Report. Available on request from The Norwegian Directorate for Cultural Heritage. (In Norwegian). Available online: https://www.riksantikvaren.no/en/ (accessed on 14 March 2023).
- Olstad, T.M.; Jernæs, N.K.; Mengshoel, K.; Smestad, T.R.; Vestvik, I.; Spaarschuh, C.; Wedvik, B.; Kaun, S. Ringsaker kirkes gamle herlighet. Undersøkelser og dokumentasjon av alterskapet i A97 Ringsaker kirke, Innlandet. NIKU commissioned report 5/2020. Norwegian Institute for Cultural Heritage Research, Oslo, Norway, 2020. Available on request from The Norwegian Institute for Cultural Heritage Research. (In Norwegian). Available online: https://www.niku.no/en/ (accessed on 14 March 2023).
- Olstad, T.M.; Berg, D.; Smestad, T.R.; Spaarschuh, C.; Vestvik, I.; Wedvik, B. Ringsaker Kirkes Alterskap. Konserveringsprosjekt 2020. NIKU Oppdragsrapport 3/2021. 2021. Available online: https://ra.brage.unit.no/ra-xmlui/handle/11250/2753430 (accessed on 14 March 2023). (In Norwegian).
- Solstad, J.; Kirke, K. Behandling av Altertavle, Epitafium og Helgenfigurer NIKU Rapport Kunst og Inventar nr 12/2006. 2006. Available online: https://ra.brage.unit.no/ra-xmlui/bitstream/handle/11250/176684/Kirkekunst_Kinn_NIKURapportKunst_12_2006.pdf?sequence=1 (accessed on 14 March 2023). (In Norwegian).
- Smestad, T.R. Tilstandsundersøkelse og metodeutvikling, altertavle og epitafiet i Kinn kirke. NIKU Commissioned Report 149/2020. Norwegian Institute for Cultural Heritage Research, Oslo, Norway, 2020. Available on request from The Norwegian Institute for Cultural Heritage Research. (In Norwegian). Available online: https://www.niku.no/en/ (accessed on 14 March 2023).
- HERIE2.0. Quantitative Assessment of Risks to Heritage Assets. 2020. Available online: https://HERIE.pl/ (accessed on 14 March 2023).
- Taylor, J.; Łukomski, M.; Bratasz, Ł. Increasing evidence-based decision-making for loan agreements. In Transcending Boundaries: Integrated Approaches to Conservation, Proceedings of the ICOM-CC 19th Triennial Conference Preprints, Beijing, China, 17–21 May 2021; Bridgland, J., Ed.; International Council of Museums: Paris, France, 2021; Available online: https://www.icom-cc-publications-online.org/4355/Increasing-evidence-based-decision-making-for-loan-agreements (accessed on 8 February 2023).
- Bratasz, L.; Akoglu, K.G.; Kékicheff, P. Fracture saturation in paintings makes them less vulnerable to environmental variations in museums. Herit. Sci. 2020, 8, 11. [Google Scholar] [CrossRef]
- EN 16883: 2017; Conservation of Cultural Heritage—Guidelines for Improving the Energy Performance of Historic Buildings. European Committee for Standardization: Brussels, Belgium, 2017.
- Richards, J.; Brimblecombe, P. The transfer of heritage modelling from research to practice. Herit. Sci. 2022, 10, 17. [Google Scholar] [CrossRef]
- Wikipedia. 2022. Available online: https://en.wikipedia.org/wiki/Climate_of_Norway (accessed on 29 August 2022).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Daly, A.; Olstad, T.M. Fragile fragments—A new provenance for the late medieval triptych in Kinn Church, Norway. MoK Medd. Om Konserv. 2022, 1, 49–67. Available online: https://niku.brage.unit.no/niku-xmlui/handle/11250/3048386 (accessed on 14 March 2023).
- Olstad, T.M.; Haugen, A. Kirker og oppvarming—Hva skjer? MoK Medd. Om Konserv. 2012, 1, 21–29. Available online: https://mok.scholasticahq.com/api/v1/articles/36366-kirker-og-oppvarming-hva-skjer.pdf (accessed on 14 March 2023). (In Norwegian).
- Hoem, S.; Marthinsen, E.; Haugen, A.M. Kinn Kyrkje, Flora Kommune, Tilstandsanalyse NS-3424 Nivå 2. NS-EN 16096. Forsvarsbygg. 2016. Available online: https://www.mercell.com/m/file/GetFile.ashx?id=81680337&version=0 (accessed on 14 March 2023). (In Norwegian).
- Hoem, S.; Marthinsen, E.; Haugen, A.M. Faktaark Tilstandsanalyse Kinn Kyrkje. Forsvarsbygg 2018. Available online: https://www.forsvarsbygg.no/no/radgivingstjenester/vern-av-kulturminner/referanseprosjekter/tilstandsanalyser/tilstandsanalyse-kinn-kyrkje-i-flora-kommune/ (accessed on 14 March 2023). (In Norwegian).
- Olstad, T.M. Alterskapet i Ringsaker Kirke—Et Uendret Klenodium? Ringsaker Kike–Landets Sognekirke; Hauglid, K., Stige, M., Bø, R.M., Eds.; Instituttet for Sammenlignende Kulturforskning. Ringsaker Kirkes Venner. Novus forlag: Oslo, Norway, 2021; pp. 257–281. (In Norwegian) [Google Scholar]
- Ellewsen, K.M. Notat—Klimamålinger i Kinn Kirke 2011−2012. Saksnummer: 07/02104. Internal Short Report (“Note”)—The Norwegian Directorate for Cultural Heritage. Oslo, Norway, 2014. Non-Published Report. Available on Request from The Norwegian Directorate for Cultural Heritage. Available online: https://www.riksantikvaren.no/en/ (accessed on 14 March 2023). (In Norwegian).
- Norsk Klimaservicesenter. 2021. Available online: https://seklima.met.no/ (accessed on 14 March 2023).
- CEN/TC 346: EN 15757; Conservation of Cultural Property—Specifications for Temperature and Relative Humidity to Limit Climate-Induced Mechanical Damaging Organic Hygroscopic Materials. European Committee for Standardization: Brussels, Belgium, 2010.
- ASHRAE. Museums, Galleries, Archives and Libraries. In ASHRAE Handbook: Heating, Ventilating, and Air-Conditioning Applic., SI Edition; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.: Peachtree Corners, GA, USA, 2019; pp. 1–46. [Google Scholar]
- Martens, M.H.J. Climate Risk Assessment in Museums: Degradation Risks Determined from Temperature and Relative Humidity Data. Ph.D. Thesis, Eindhoven University of Technology, North Brabant, The Netherlands, 2012. Available online: https://pure.tue.nl/ws/files/3542048/729797.pdf (accessed on 14 March 2023).
- Huijbregts, Z.; Kramer, R.P.; Martens, M.H.J.; van Schijndel, A.W.M.; Schellen, H.L. A proposed method to assess the damage risk of future climate change to museum objects in historic buildings. Build. Environ. 2012, 55, 43–56. [Google Scholar] [CrossRef]
- Broström, T.; Vyhlídal, T.; Simeunovic, G.; Larsen, P.K.; Zítek, P. Evaluation of different approaches of microclimate control in cultural heritage buildings. Clim. Collect. Stand. Uncertain 2013, 7, 105–106. Available online: https://www.climateforculture.eu/index.php?inhalt=download&file=pages/user/downloads/publications/Climate_for_Collections.pdf (accessed on 14 March 2023).
- Blades, N.; Rice, K. Conservation heating and energy efficiency at the national trust: Theory and practice. In Developments in Climate Control of Historic Buildings; Kilian, R., Vyhlídal, T., Broström, T., Eds.; Linderhof Palace: Stuttgart, Germany, 2010; Available online: https://www.climateforculture.eu/index.php?inhalt=download&file=pages/user/downloads/publications/2010_DevelopmentsClimateControl.pdf (accessed on 14 March 2023).
- Blades, N.; Poupard, S.; Barber, L. Analysing the energy consumption of conservation heating systems at the National Trust. J. Inst. Conserv. 2011, 34, 16–27. [Google Scholar] [CrossRef]
- EN 15759-1:2011; Conservation of Cultural Property—Indoor Climate—Part 1: Guidelines for Heating Churches, Chapels, and Other Places of Worship. European Committee for Standardization: Brussels, Belgium, 2011.
- Schellen, H.L.; Neuhaus, E. Conservation heating in a historical building: Results from an experimental and simulation study. In Developments in Climate Control of Historic Buildings; Kilian, R., Vyhlídal, T., Broström, T., Eds.; Fraunhofer IRB Verlag: Stuttgart, Germany, 2011. [Google Scholar]
- Pöyry Management Consulting AS. Evaluering av Modeller for Klimajustering av Energibruk. Norges Vassdrags-og Energidirektorat, Report no. 7 2014. Available online: https://publikasjoner.nve.no/rapport/2014/rapport2014_07.pdf (accessed on 14 March 2023). (In Norwegian).
- Grøntoft, T.; Svenningsen, G. Windborne Sea Salt Aerosol Fluxes and Deposition Inland from Ocean Shorelines—Measurements and Modelling of Climate Change Effects. In Climate Change and Cultural Heritage, Proceedings of the Ravello International Workshop, 14–16 May 2009, and Strasbourg European Master-Doctorate Course, 7–11 September 2009, Ravello, Italy and Strasbourg, France; Lefèvre, R.-A., Sabbioni, C., Eds.; Edipuglia: Bari, Italy, 2010. [Google Scholar]
- Grøntoft, T. Beregning av Korrosjonsklasse fra Miljø-Parametere i Fitjar Lokasjon (59°56’11.5"N 5°19’58.4"Ø). NILU Rapport 12/2022. 2022. Available online: https://nilu.brage.unit.no/nilu-xmlui/handle/11250/2996943 (accessed on 14 March 2023). (In Norwegian).
- Higashijima, K.; Hori, C.; Igarashi, K.; Enomae, T.; Isogai, A. First aid for flood-damaged paper using saltwater: The inhibiting effect of saltwater on mold growth. Stud. Conserv. 2012, 57, 164–171. [Google Scholar] [CrossRef]
- Kirker, G.; Glaeser, J. Salt damage to wood “fuzzy wood” often confused with fungal decay. Pile Driv. 2011, Q3, 85–86. [Google Scholar]
- Blanchette, R.; Held, B.; Farrell, R. Defibration of wood in the expedition huts of Antarctica: An unusual deterioration process occurring in the polar environment. Polar Rec. 2002, 38, 313–322. [Google Scholar] [CrossRef]
- Klüppel, A.; Mai, C. Effect of seawater wetting on the weathering of wood. Eur. J. Wood Wood Prod. 2018, 76, 1029–1035. [Google Scholar] [CrossRef]
- Sedlbauer, K. Prediction of Mould Fungus Formation on the Surface of and Inside Building Components; Fraunhofer Institute for Building Physics: Stuttgart, Germany, 2001. [Google Scholar]
- Camuffo, D. Microclimate for cultural heritage. In Measurement, Risk Assessment, Conservation, Restoration, and Maintenance of Indoor and Outdoor Monuments, 3rd ed.; Elsevier: Amsterdam, The Netherlands; Oxford, UK; Cambridge, MA, USA, 2019. [Google Scholar]
- Camuffo, D.; Della Valle, A.; Becherini, F. The European Standard EN 15757 Concerning Specifications for Relative Humidity: Suggested Improvements for Its Revision. Atmosphere 2022, 13, 1344. [Google Scholar] [CrossRef]
- Michalski, S. Relative humidity: A discussion of correct/incorrect values. In Proceedings of the ICOM-CC 10th Triennial Meeting Preprints, Washington, DC, USA, 22–27 August 1993; Bridgland, J., Ed.; International Council of Museums: Paris, France, 1993; pp. 624–629. [Google Scholar]
- García-Diego, F.-J.; Verticchio, E.; Beltrán, P.; Siani, A.M. Assessment of the Minimum Sampling Frequency to Avoid Measurement Redundancy in Microclimate Field Surveys in Museum Buildings. Sensors 2016, 16, 1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamalabadi, M.Y.A.; Zabari, N.; Bratasz, L. Three-dimensional numerical and experimental study of fracture saturation in panel paintings. Wood Sci. Technol. 2021, 55, 1555–1576. [Google Scholar] [CrossRef]
Scenario | Kinn | Ringsaker | HERIe Risk Relevance |
---|---|---|---|
Recorded RH and T | RHmax = 96%, Tmax= 20 °C RHav = 79%, Tav = 9 °C | RHmax = 77%, Tmax= 21 °C RHav = 49%, Tav = 17 °C | Low relevance for original objects with proofed fluctuations Unknown relevance as a proxy for original objects that have recently undergone conservation treatments |
Modified RH and T | RH reduction by building measures, RHmax limit(%)-RHav(%): 85–74; 80–69; 75–65; 70–61 and 65–56, Tav = 9 °C | Conservation heating to RHmax–RHav: ~65–63 % and Tmin = 10 °C (Tav = 13 °C) | Kinn: Low relevance for original objects if reductions in RH stay within proofed fluctuations Ringsaker: High relevance for original objects as the change in RH from proofed fluctuations Unknown relevance as a proxy for original objects that have recently undergone conservation treatments |
Removal to conservation studio (RH = 50%, T = 20 °C) | From recorded and reduced RH (scenarios 1 and 2) in January and July | From recorded and adjusted RH (scenarios 1 and 2: Tav = 13 °C) in January and July | High relevance for original objects when moved outside proofed RH fluctuations to a conservation studio Moderate relevance for original objects when returning to the proofed climate from a conservation studio Unknown relevance as a proxy for original objects that have recently undergone conservation treatments |
HERIe modeling conditions | |||
Damage | Mechanical | ||
Paint Material | Painting on wood | ||
Wood species | Oak. Kinn: also lime and pine | ||
Direction of cut | Tangential, radial | ||
Panel thickness (mm) | 40 (Kinn), 20 (Ringsaker) | ||
Gesso | Stiff | ||
Water vapor transport | Through one side | ||
Long-term mean RH and T values | Scenario 2: From uploaded data Scenario 3: Set to the recorded or adjusted annual average scenario values, but set up to the available modeling RH maximum = 70% |
CEN Standard and ASHRAE Classes | Kinn | Ringsaker | ||
---|---|---|---|---|
Temp 1 | RH | Temp 2 | RH | |
CEN 15757 3 | n.a. | 98; 100 | n.a. | 98; 100 |
AA | 44 | 0; 52 | 100 | 32; 56 |
A1 | 44 | 0; 79 | 100 | 75; 61 |
A2 | 44 | 0; 90 | 100 | 70; 65 |
B 3 | 100 | 14; 99 | 100 | 96; 100 |
C | 100 | 36; 100 | 100 | 100; 100 |
D | 100 | 36; 100 | 100 | 100; 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grøntoft, T.; Stoveland, L.P. Painted Wood Climate Risk Analysis by the HERIe Model of Building Protection and Conservation Heating Scenarios in Norwegian Medieval Stone Churches. Heritage 2023, 6, 3089-3112. https://doi.org/10.3390/heritage6030165
Grøntoft T, Stoveland LP. Painted Wood Climate Risk Analysis by the HERIe Model of Building Protection and Conservation Heating Scenarios in Norwegian Medieval Stone Churches. Heritage. 2023; 6(3):3089-3112. https://doi.org/10.3390/heritage6030165
Chicago/Turabian StyleGrøntoft, Terje, and Lena P. Stoveland. 2023. "Painted Wood Climate Risk Analysis by the HERIe Model of Building Protection and Conservation Heating Scenarios in Norwegian Medieval Stone Churches" Heritage 6, no. 3: 3089-3112. https://doi.org/10.3390/heritage6030165
APA StyleGrøntoft, T., & Stoveland, L. P. (2023). Painted Wood Climate Risk Analysis by the HERIe Model of Building Protection and Conservation Heating Scenarios in Norwegian Medieval Stone Churches. Heritage, 6(3), 3089-3112. https://doi.org/10.3390/heritage6030165