Environmental Decay of Ignimbrite Patrimonial Monuments in the Dry, Urban, and Non-Industrial Atmosphere of Morelia (México)
Abstract
:1. Introduction
1.1. General Decay Due to Natural Weathering
1.2. General Decay Due to Anthropogenic Source
1.3. Biological Decay
2. Materials and Methods
2.1. Monuments under Study
2.2. Environmental and Climatic Conditions in Morelia
2.3. Methodology
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sengun, N.; Demirdag, S.; Akbay, D.; Ugur, İ.; Altindag, R.; Akbulut, A. Investigation of the relationships between capillary water absorption coefficients and other rock properties of some natural stones. In Proceedings of the V Global Stone Congress, Antalya, Turkey, 22–25 October 2014. [Google Scholar]
- İnce, İ. Relationship Between Capillary Water Absorption Value, Capillary Water Absorption Speed, and Capillary Rise Height in Pyroclastic Rocks. Mining Metall. Explor. 2021, 38, 841–853. [Google Scholar] [CrossRef]
- Alves, C.; Figueiredo, C.; Sanjurjo-Sánchez, J. Rock features and alteration of stone materials used for the built environment: A review of recent publications on ageing tests. Geoscience 2020, 10, 91. [Google Scholar] [CrossRef] [Green Version]
- Sardella, A.; Palazzi, E.; von Hardenberg, J.; Del Grande, C.; De Nuntiis, P.; Sabbioni, C.; Bonazza, A. Risk Mapping for the Sustainable Protection of Cultural Heritage in Extreme Changing Environments. Atmosphere 2020, 11, 700. [Google Scholar] [CrossRef]
- Sitzia, F. Climate Change and Cultural Heritage: From Small- to Large-Scale Effects—The Case Study of Nora (Sardinia, Italy). Heritage 2022, 5, 3495–3514. [Google Scholar] [CrossRef]
- Striani, R.; Cappai, M.; Casnedi, L.; Esposito Corcione, C.; Pia, G. Coating’s influence on wind erosion of porous stones used in the Cultural Heritage of Southern Italy: Surface characterisation and resistance. Case Stud. Constr. Mater. 2022, 17, e01501. [Google Scholar] [CrossRef]
- Richards, J.; Zhao, G.; Zhang, H.; Viles, H. A controlled field experiment to investigate the deterioration of earthen heritage by wind and rain. Herit. Sci. 2019, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Grau-Bové, J.; Mazzei, L.; Strlic, M.; Cassar, M. Fluid simulations in heritage science. Herit. Sci. 2019, 7, 1–12. [Google Scholar] [CrossRef]
- Olenkov, V.; Puzyrev, P. Study of Wind Effects on Unique Buildings. IOP Conf. Ser. Mater. Sci. Eng. 2017, 262. [Google Scholar] [CrossRef]
- Wang, X.; Meng, J.; Zhu, T.; Zhang, J. Prediction of Wind Erosion over a Heritage Site: A Case Study of Yongling Mausoleum, China. Built Herit. 2019, 3, 41–57. [Google Scholar] [CrossRef]
- Germinario, L.; Coletti, C.; Girardi, G.; Maritan, L.; Praticelli, N.; Sassi, R.; Solstad, J.; Mazzoli, C. Microclimate and Weathering in Cultural Heritage: Design of a Monitoring Apparatus for Field Exposure Tests. Heritage 2022, 5, 3211–3219. [Google Scholar] [CrossRef]
- Michette, M.; Viles, H.; Vlachou, C.; Angus, I. Do environmental conditions determine whether salt driven decay leads to powdering or flaking in historic Reigate Stone masonry at the Tower of London? Eng. Geol. 2022, 303, 106641. [Google Scholar] [CrossRef]
- López-González, L.; Gomez-Heras, M.; Otero-Ortiz de Cosca, R.; Garcia-Morales, S.; Fort, R. Coupling electrical resistivity methods and GIS to evaluate the effect of historic building features on wetting dynamics during wind-driven rain spells. J. Cult. Herit. 2022, 58, 209–218. [Google Scholar] [CrossRef]
- Celik, M.Y.; Kacmaz, A.U. The investigation of static and dynamic capillary by water absorption in porous building stones under normal and salty water conditions. Environ. Earth Sci. 2016, 75. [Google Scholar] [CrossRef]
- Al-Naddaf, M. A new automatic method for continuous measurement of the capillary water absorption of building materials. Constr. Build. Mater. 2018, 160, 639–643. [Google Scholar] [CrossRef]
- Tomašić, I.; Lukić, D.; Peček, N.; Kršinić, A. Dynamics of capillary water absorption in natural stone. Bull. Eng. Geol. Environ. 2011, 70, 673–680. [Google Scholar] [CrossRef]
- Karagiannis, N.; Karoglou, M.; Bakolas, A.; Krokida, M.; Moropoulou, A. Drying kinetics of building materials capillary moisture. Constr. Build. Mater. 2017, 137, 441–449. [Google Scholar] [CrossRef]
- Ruedrich, J.; Siegesmund, S. Salt and ice crystallisation in porous sandstones. Environ. Geol. 2007, 52, 225–249. [Google Scholar] [CrossRef]
- Lezzerini, M.; Tomei, A.; Gallello, G.; Aquino, A.; Pagnotta, S. The Crystallization Effect of Sodium Sulfate on Some Italian Marbles, Calcarenites and Sandstones. Heritage 2022, 5, 1449–1461. [Google Scholar] [CrossRef]
- Cowell, D.; Apsimon, H. Estimating the cost of damage to buildings by acidifying atmospheric pollution in Europe. Atmos. Environ. 1996, 30, 2959–2968. [Google Scholar] [CrossRef]
- Leygraf, C.; Wallinder, I.O.; Tidblad, J.; Graedel, T. Atmospheric Corrosion, 2nd ed.; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Newby, P.T.; Mansfield, T.A.; Hamilton, R.S. Sources and economic implications of building soiling in urban areas. Sci. Total Environ. 1991, 100, 347–365. [Google Scholar] [CrossRef]
- Rabl, A. Air pollution and buildings: An estimation of damage costs in France. Environ. Impact Assess. Rev. 1999, 19, 361–385. [Google Scholar] [CrossRef]
- Watt, J.; Tidblad, J.; Hamilton, R.; Kucera, V. The Effects of Air Pollution on Cultural Heritage; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Bonazza, A.; Sabbioni, C.; Ghedini, N. Quantitative data on carbon fractions in interpretation of black crusts and soiling on European built heritage. Atmos. Environ. 2005, 39, 2607–2618. [Google Scholar] [CrossRef]
- Barca, D.; Comite, V.; Belfiore, C.M.; Bonazza, A.; La Russa, M.F.; Ruffolo, S.A.; Crisci, G.M.; Pezzino, A.; Sabbioni, C. Impact of air pollution in deterioration of carbonate building materials in Italian urban environments. Appl. Geochem. 2014, 48, 122–131. [Google Scholar] [CrossRef]
- Liu, D.; Guo, X.; Xiao, B. What causes growth of global greenhouse gas emissions? Evidence from 40 countries. Sci. Total Environ. 2019, 661, 750–766. [Google Scholar] [CrossRef]
- Patrón, D.; Lyamani, H.; Titos, G.; Casquero-Vera, J.A.; Cardell, C.; Močnik, G.; Alados-Arboledas, L.; Olmo, F.J. Monumental heritage exposure to urban black carbon pollution. Atmos. Environ. 2017, 170, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Spezzano, P. Mapping the susceptibility of UNESCO World Cultural Heritage sites in Europe to ambient (outdoor) air pollution. Sci. Total Environ. 2021, 754, 142345. [Google Scholar] [CrossRef]
- Alonso, E.; Martínez, L. The role of environmental sulfur on degradation of ignimbrites of the Cathedral in Morelia, Mexico. Build. Environ. 2003, 38, 861–867. [Google Scholar] [CrossRef]
- Monforti, F.; Bellasio, R.; Bianconi, R.; Clai, G.; Zanini, G. An evaluation of particle deposition fluxes to cultural heritage sites in Florence, Italy. Sci. Total Environ. 2004, 334–335, 61–72. [Google Scholar] [CrossRef]
- Nava, S.; Becherini, F.; Bernardi, A.; Bonazza, A.; Chiari, M.; García-Orellana, I.; Lucarelli, F.; Ludwig, N.; Migliori, A.; Sabbioni, C.; et al. An integrated approach to assess air pollution threats to cultural heritage in a semi-confined environment: The case study of Michelozzo’s Courtyard in Florence (Italy). Sci. Total Environ. 2010, 408, 1403–1413. [Google Scholar] [CrossRef]
- Watt, J.; Jarrett, D.; Hamilton, R. Dose-response functions for the soiling of heritage materials due to air pollution exposure. Sci. Total Environ. 2008, 400, 415–424. [Google Scholar] [CrossRef]
- Fermo, P.; Comite, V.; Ciantelli, C.; Sardella, A.; Bonazza, A. A multi-analytical approach to study the chemical composition of total suspended particulate matter (TSP) to assess the impact on urban monumental heritage in Florence. Sci. Total Environ. 2020, 740, 140055. [Google Scholar] [CrossRef]
- Spennemann, D.H.R.; Pike, M.; Watson, M.J. Effects of acid pigeon excreta on building conservation. Int. J. Build. Pathol. Adapt. 2017, 35, 2–15. [Google Scholar] [CrossRef]
- Prieto, B.; Vázquez-Nion, D.; Fuentes, E.; Durán-Román, A.G. Response of subaerial biofilms growing on stone-built cultural heritage to changing water regime and CO2 conditions. Int. Biodeterior. Biodegrad. 2020, 148, 104882. [Google Scholar] [CrossRef]
- Varas-Muriel, M.J.; Fort, R.; Martínez-Garrido, M.I.; Zornoza-Indart, A.; López-Arce, P. Fluctuations in the indoor environment in Spanish rural churches and their effects on heritage conservation: Hygro-thermal and CO2 conditions monitoring. Build. Environ. 2014, 82, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Scheerer, S.; Ortega-Morales, O.; Gaylarde, C. Chapter 5 Microbial Deterioration of Stone Monuments-An Updated Overview. Adv. Appl. Microbiol. 2009, 66, 97–139. [Google Scholar] [CrossRef]
- Farooq, M. Mycobial Deterioration of Stone Monuments of Dharmarajika, Taxila. J. Microbiol. Exp. 2015, 2, 29–33. [Google Scholar] [CrossRef] [Green Version]
- Vlasov, D.Y.; Frank-Kamenetskaya, O.V.; Manurtdinova, V.V.; Zelenskaya, M.S. Decay of the Monuments; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Gaylarde, C.C. Influence of environment on microbial colonization of historic stone buildings with emphasis on cyanobacteria. Heritage 2020, 3, 1469–1482. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, M.; Wu, F.; Gu, J.; Li, J.; He, D.; Guo, Q.; Cui, H.; Zhang, Q.; Feng, H. Diversity and Composition of Culturable Microorganisms and Their Biodeterioration Potentials in the Sandstone of Beishiku. Microorganisms 2023, 11, 429. [Google Scholar] [CrossRef]
- López-Moreno, A.; Sepúlveda-Sánchez, J.D.; Mercedes Alonso Guzmán, E.M.; Le Borgne, S. Calcium carbonate precipitation by heterotrophic bacteria isolated from biofilms formed on deteriorated ignimbrite stones: Influence of calcium on EPS production and biofilm formation by these isolates. Biofouling 2014, 30, 547–560. [Google Scholar] [CrossRef]
- García Sáez, M. Biología y Patrimonio Cultural: Estudio de la comunidad de plantas que colonizaban la fachada de la Iglesia de San Pablo (Valladolid). Ge-Conservacion 2015, 2015, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Cozzolino, A.; Adamo, P.; Bonanomi, G.; Motti, R. The Role of Lichens, Mosses, and Vascular Plants in the Biodeterioration of Historic Buildings: A Review. Plants 2022, 11, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Lisci, M.; Monte, M.; Pacini, E. Lichens and higher plants on stone: A review. Int. Biodeterior. Biodegrad. 2003, 51, 1–17. [Google Scholar] [CrossRef]
- Adamo, P.; Violante, P. Weathering of rocks and neogenesis of minerals associated with lichen activity. Appl. Clay Sci. 2000, 16, 229–256. [Google Scholar] [CrossRef]
- Chen, X.; Bai, F.; Huang, J.; Lu, Y.; Wu, Y.; Yu, J.; Bai, S. The Organisms on Rock Cultural Heritages: Growth and Weathering. Geoheritage 2021, 13, 56. [Google Scholar] [CrossRef]
- Shirzadian, S.; Uniyal, P.L. Biodeteriorative impacts on bridges over Zayand-e-Rood river (Iran): Role of mosses and their control measures. J. Sci. Ind. Res. 2008, 67, 377–380. [Google Scholar]
- Jang, K.; Viles, H. Moisture Interactions Between Mosses and Their Underlying Stone Substrates. Stud. Conserv. 2022, 67, 532–544. [Google Scholar] [CrossRef]
- Florian, M.-L. Plant Biology for Cultural Heritage: Biodeterioration and Conservation. Stud. Conserv. 2009, 54, 191. [Google Scholar] [CrossRef]
- Shrestha, S.; Khanal, L.; Pandey, N.; Kyes, R.C. Conservation of Heritage Sites in Kathmandu, Nepal: Assessing the Corrosion Threat from Pigeon Excreta on Metal Monuments. Conservation 2022, 2, 233–243. [Google Scholar] [CrossRef]
- Skandrani, Z.; Lepetz, S.; Prévot-Julliard, A.C. Nuisance species: Beyond the ecological perspective. Ecol. Process. 2014, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Spennemann, D.H.R.; Watson, M.J. Dietary habits of urban pigeons (Columba livia) and implications of excreta pH—A review. Eur. J. Ecol. 2017, 3, 27–41. [Google Scholar] [CrossRef] [Green Version]
- Spennemann, D.H.; Pike, M.; Watson, M.J. Behaviour of Pigeon Excreta on Masonry Surfaces. Restor. Build. Monum. 2018, 23, 15–28. [Google Scholar] [CrossRef]
- Lettieri, M.; Masieri, M.; Frigione, M. Durability to simulated bird guano of nano-filled oleo/hydrophobic coatings for the protection of stone materials. Prog. Org. Coat. 2020, 148, 105900. [Google Scholar] [CrossRef]
- Ben Chobba, M.; Weththimuni, M.L.; Messaoud, M.; Bouaziz, J.; Salhi, R.; De Leo, F.; Urzì, C.; Licchelli, M. Silver-Doped TiO2-PDMS Nanocomposite as a Possible Coating for the Preservation of Serena Stone: Searching for Optimal Application Conditions. Heritage 2022, 5, 3411–3426. [Google Scholar] [CrossRef]
- Tesser, E.; Conventi, A.; Majerle, F. Characterization of Barium Hydroxide Used as Consolidating Agent for Monumental Surfaces in Venice. Heritage 2022, 5, 3280–3297. [Google Scholar] [CrossRef]
- Diz-Mellado, E.; Mascort-Albea, E.J.; Romero-Hernández, R.; Galán-Marín, C.; Rivera-Gómez, C.; Ruiz-Jaramillo, J.; Jaramillo-Morilla, A. Non-destructive testing and Finite Element Method integrated procedure for heritage diagnosis: The Seville Cathedral case study. J. Build. Eng. 2021, 37, 102134. [Google Scholar] [CrossRef]
- Tejedor, B.; Lucchi, E.; Bienvenido-Huertas, D.; Nardi, I. Non-destructive techniques (NDT) for the diagnosis of heritage buildings: Traditional procedures and futures perspectives. Energy Build. 2022, 263, 112029. [Google Scholar] [CrossRef]
- Napolitano, R.; Hess, M.; Glisic, B. Integrating Non-Destructive Testing, Laser Scanning, and Numerical Modeling for Damage Assessment: The Room of the Elements. Heritage 2019, 2, 151–168. [Google Scholar] [CrossRef] [Green Version]
- Pappalardo, G.; Mineo, S.; Caliò, D.; Bognandi, A. Evaluation of Natural Stone Weathering in Heritage Building by Infrared Thermography. Heritage 2022, 5, 2594–2614. [Google Scholar] [CrossRef]
- Spathis, P.K.; Mavrommati, M.; Gkrava, E.; Tsiridis, V.; Evgenidis, S.P.; Karapanagiotis, I.; Melfos, V.; Karapantsios, T.D. Characterization of Natural Stone from the Archaeological Site of Pella, Macedonia, Northern Greece. Heritage 2021, 4, 4665–4677. [Google Scholar] [CrossRef]
- Hiriart Prado, C. El centro histórico de Morelia; un espacio en pugna. La gestión en pro del patrimonio. In Michoacán: Arquitectura y Urbanismo, Temas Selectos; UMSNH: Morelia, Mexico, 1999; p. 116. [Google Scholar]
- Conaculta. Morelia, Ciudad Patrimonio Mundial. Available online: https://www.cultura.gob.mx/turismocultural/destino_mes/morelia/index.html (accessed on 25 January 2023).
- Organización de las Ciudades del Patrimonio Mundial (OVPM). Centro Histórico de Morelia. Available online: https://www.ovpm.org/es/ciudad/morelia-mexico/ (accessed on 8 March 2023).
- Mercado López, E. Ideología, Legislación y Patrimonio Cultural; Secretaría de Cultura de Michoacán: Morelia, Mexico, 2013; ISBN 978-607-8201-44-0. [Google Scholar]
- Rodríguez García, J.L. Patrimonio y Turismo Cultural en Morelia; UAM: Madrid, Spain, 2001. [Google Scholar]
- Hiriart Pardo, C.A. El centro histórico de Morelia (México): Acciones transversales y estrategicas para su conservación integral y gestión turística frente a la crisis de inseguridad. In Personas y Comunidades: Actas del Segundo Congreso Internacional de Buenas Prácticas en Patrimonio Mundial; Universidad Complutense de Madrid, Servicio de Publicaciones: Madrid, Spain, 2015; pp. 986–1008. [Google Scholar]
- Martínez-Martínez, J.; Pola, A.; García-Sánchez, L.; Reyes Agustin, G.; Osorio Ocampo, L.S.; Macías Vázquez, J.L.; Robles-Camacho, J. Building stones used in the architectural heritage of Morelia (México): Quarries location, rock durability and stone compatibility in the monument. Environ. Earth Sci. 2018, 77, 167. [Google Scholar] [CrossRef]
- SIC. México Catedrales. Available online: https://sic.gob.mx/ficha.php?table=catedral&table_id=46 (accessed on 25 January 2023).
- Colegio de San Nicolás de Hidalgo. Patrimonio Mundial, Ciudades Mexicanas. Available online: https://www.ciudadespatrimonio.mx/colegio-de-san-nicolas-de-hidalgo/ (accessed on 25 January 2023).
- Del Carmen Arguello Hernández, S. Minerales Accesorios Presentes en Ignimbritas, como Resultado de la Meteorización. Ph.D. Thesis, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico, 2010. [Google Scholar]
- SIC. México Museo Regional Michoacano. Available online: https://sic.cultura.gob.mx/ficha.php?table=museo&table_id=1040 (accessed on 25 January 2023).
- México es Cultura Templo de Nuestra Señora del Carmen. Available online: https://www.mexicoescultura.com/recinto/68504/templo-de-nuestra-senora-del-carmen.html (accessed on 25 January 2023).
- CLIMA. Clima en Morelia. Available online: https://thewebsitio.es.tl/CLIMA.htm (accessed on 15 December 2022).
- National Institute of Ecology and Climate Change. National Air Quality Report; National Institute of Ecology and Climate Change: Mexico City, Mexico, 2020. [Google Scholar]
- Semarnat Norma Oficial Mexicana. NOM-041-SEMARNAT-2006, Que Establece los Límites Máximos Permisibles de Emisión de Gases Contaminantes Provenientes del Escape de los Vehículos Automotores en Circulación que Usan Gasolina como Combustible. 2015. Available online: https://www.dof.gob.mx/normasOficiales/1880/SEMARNA/SEMARNA.htm (accessed on 9 March 2023).
- Semarnat. Inventarios Nacionales de Emisiones de Contaminantes Criterio. Available online: https://www.gob.mx/semarnat/documentos/documentos-del-inventario-nacional-de-emisiones (accessed on 15 December 2022).
- ASTM C97/C97M-18; Standard Test Methods for Absorption and Bulk Specific Gravity of Dimension Stone. ASTM: West Conshohocken, PA, USA, 2018.
- ASTM C170/C170M-17; Standard Test Method for Compressive Strength of Dimension Stone. ASTM: West Conshohocken, PA, USA, 2017.
- ASTM D5873-14; Standard Test Method for Determination of Rock Hardness by Rebound Hammer Method. ASTM: West Conshohocken, PA, USA, 2014.
- Wang, M.; Wan, W. A new empirical formula for evaluating uniaxial compressive strength using the Schmidt hammer test. Int. J. Rock Mech. Min. Sci. 2019, 123, 104094. [Google Scholar] [CrossRef]
- Celik, S.B.; Cobanoğlu, İ. Comparative investigation of Shore, Schmidt, and Leeb hardness tests in the characterization of rock materials. Environ. Earth Sci. 2019, 78, 554. [Google Scholar] [CrossRef]
- Lai Gauri, K.; Holdren, G.C. Pollutant effects on stone monuments. Environ. Sci. Technol. 1981, 15, 386–390. [Google Scholar] [CrossRef] [PubMed]
Test | Ignimbrite Quarry or Historical Monument | |
---|---|---|
Identification and classification properties | X-Ray diffraction (XRD) | * Cointzio and Jamaica. ** CAT, CAP, and SAN |
Scanning electron microscopy (SEM) | ** CAT and SAN | |
X-ray fluorescence (XRF) | * Cointzio, Jamaica, and Tejocote. ** CAT, CAP, and SAN | |
Apparent density, % water absorption, specific gravity | * Cointzio, Jamaica, and Tejocote. ** CAT, CAP, SAN, and CC | |
Mechanical properties | Uniaxial compressive strength (UCS) of stone cubes | * Cointzio, Jamaica, and Tejocote. ** CAT, CAP, SAN, and CC |
Estimation of UCS with a Schmidt hammer | ** CAT, CAP, SAN, CC, and MR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Ruiz, R.; Alonso-Guzman, E.M.; Martinez-Molina, W.; Chavez-Garcia, H.L.; Arreola-Sanchez, M.; Borrego-Perez, J.A.; Navarrete-Seras, M.A.; Velazquez-Perez, J.A.; Morales-Rosales, L.A. Environmental Decay of Ignimbrite Patrimonial Monuments in the Dry, Urban, and Non-Industrial Atmosphere of Morelia (México). Heritage 2023, 6, 3137-3158. https://doi.org/10.3390/heritage6030167
Ruiz-Ruiz R, Alonso-Guzman EM, Martinez-Molina W, Chavez-Garcia HL, Arreola-Sanchez M, Borrego-Perez JA, Navarrete-Seras MA, Velazquez-Perez JA, Morales-Rosales LA. Environmental Decay of Ignimbrite Patrimonial Monuments in the Dry, Urban, and Non-Industrial Atmosphere of Morelia (México). Heritage. 2023; 6(3):3137-3158. https://doi.org/10.3390/heritage6030167
Chicago/Turabian StyleRuiz-Ruiz, Rosalia, Elia Mercedes Alonso-Guzman, Wilfrido Martinez-Molina, Hugo Luis Chavez-Garcia, Mauricio Arreola-Sanchez, Jorge Alberto Borrego-Perez, Marco Antonio Navarrete-Seras, Judith Alejandra Velazquez-Perez, and Luis Alberto Morales-Rosales. 2023. "Environmental Decay of Ignimbrite Patrimonial Monuments in the Dry, Urban, and Non-Industrial Atmosphere of Morelia (México)" Heritage 6, no. 3: 3137-3158. https://doi.org/10.3390/heritage6030167
APA StyleRuiz-Ruiz, R., Alonso-Guzman, E. M., Martinez-Molina, W., Chavez-Garcia, H. L., Arreola-Sanchez, M., Borrego-Perez, J. A., Navarrete-Seras, M. A., Velazquez-Perez, J. A., & Morales-Rosales, L. A. (2023). Environmental Decay of Ignimbrite Patrimonial Monuments in the Dry, Urban, and Non-Industrial Atmosphere of Morelia (México). Heritage, 6(3), 3137-3158. https://doi.org/10.3390/heritage6030167