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Abstract: The loss of archaeological heritage continues today, because of both natural disasters and
human-made actions. Alarmingly, a significant amount of the destruction is perpetrated by looters
and illegal excavations. This problem is not a new one. However, it has increased exponentially
in recent years, especially in countries which witnessed internal turmoil (i.e., the Arab Spring) but
also throughout Europe. Local authorities struggle to provide adequate controls because of a lack of
human resources, budget constraints or technological know-how. This paper describes a multimodal
documentation and monitoring workflow applied to an archaeological site for which, due to the
sensitivity of the topic, no specific details can be publicly disclosed. The techniques used include
UAV aerial surveys, image-based modelling, change detection, relief visualization and GIS mapping.
Thanks to the analysis of the multitemporal datasets, it was possible to assess the extension and
spatial progression of illegal excavation over a two-year period.

Keywords: change detection; relief visualization; digital-elevation models; looting; cultural
property protection

1. Introduction

The impact of crimes committed against cultural property has been captured in the
1954 Hague Convention for the Protection of Cultural Property in the Event of Armed
Conflict [1]. Since then, several legislative mechanisms have been introduced, such as the
UNESCO Convention on the Means of Prohibiting and Preventing the Illicit Import, Export
and Transfer of Ownership of Cultural Property (1970) [2]; the UN Convention against
Transnational Organised Crime (2000) [3]; the UNESCO Convention on the Protection of
the Underwater Cultural Heritage (2001) [4]; and the Council of Europe Convention on
Offences relating to Cultural Property (2017) [5].

However, regardless of this solid international framework, cultural-property crimes
continue to harm cultural heritage on a global scale, and support organized crime groups
through their unlawful revenues [6–8]. Political and security failures in countries rich in
archaeological and heritage sites offer perfect conditions for these illicit actions. Addition-
ally, the remote locations, and modern communication technologies further facilitate the
illegal business, making it practically borderless [9]. In addition, the COVID-19 pandemic
contributed to exacerbate the already fragile situation.

The Eastern Mediterranean and Middle East (EMME) region is extremely rich in
archaeological heritage. Cyprus specifically is home to over 12,000 years of human history,
and artefacts from all the ancient civilisations of the region can be found on the island.
Yet it is also particularly affected by transnational crimes associated with this, such as the
trafficking of cultural goods.

Cyprus has experienced extensive archaeological looting, both in the area where
the Republic of Cyprus applies its authority and in the occupied area which has been
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under Turkish occupation since 1974. Despite the efforts of local authorities and the
growing interest in protecting cultural heritage from plunder, the international community
is struggling to find effective measures to prevent this type of crime. In Cyprus, local
authorities have limited access to new tools, regardless of the extraordinary high-tech
transformation happening in many sectors of the society, in terms of new equipment,
algorithms and expertise.

Unmanned aerial systems (UAS) represent reliable means of allowing archaeolo-
gists to perform fast and large-scale data collection for monitoring purposes. These sys-
tems are nowadays largely used in archaeological-site reconnaissance, including looting
scenarios [10,11], coupled with photogrammetric reconstruction and change detection. The
latter has been successfully applied in many domains, including (but not limited to), civil en-
gineering [12], remote sensing [13], video surveillance [14], autonomous driving systems [15],
medical applications [16], cultural heritage [17] and risk-and-disaster management [18].

This paper focuses on the application of change detection algorithms using high-
resolution imagery produced through photogrammetric techniques for the multitemporal
monitoring of looted archaeological sites.

Research benefited from the the collaboration between the Cyprus Institute, the De-
partment of Antiquities of Cyprus, and the Cyprus Police, which was formalized through
a Memorandum of Understanding that is presently in effect. The primary objective of
this partnership concerns the use and application of digital technologies (both aerial and
terrestrial) for safeguarding archaeological sites and monuments that have been impacted
by looting activities.

The paper’s case study concerns an undisclosed site that has suffered from looting
attempts. Due to the sensitivity of the topic, its location and name are omitted in this
paper’s discussion. Hereinafter, the authors will refer to it as: Arch_site_01.

2. State of the Art

Illegal archaeological excavations mainly affect sites that are (i) difficult to patrol due
to geographical remoteness, (ii) that have been deemed unsafe, due to political instability
in the country where are they located, or (iii) are simply too large for surveillance, given
available resources.

Space-born sensors are frequently used to systematically document illegal archaeologi-
cal excavations, thanks to their large footprint, relatively fast revisiting time, and resolution.

Satellite imagery, and especially very-high-resolution (VHR) datasets, represent an
effective tool for assessing the magnitude of damage, and can be used to validate against
ground-based walk-over surveys, and reveal destructive excavations, earthmoving, and
construction [19]. This particularly applies in locations outside of cities and in remote sites
where an efficient patrol is usually difficult or where archaeological areas are not fenced off
and protected.

Contreras analyzed the looted sites in Peru’s Viru’ Valley using the open-source
software Google Earth. Although named as a powerful tool, problems related to coverage,
suitable ground resolution and surface visibility, were observed [20].

Having been granted access to a large archive of satellite imagery, Casana [21] analyzed
and assessed the conservation conditions of archaeological sites in Syria. This study
highlighted the immense capabilities of identifying illegal archaeological excavations and
destruction. The damage was studied in near real-time for many sites spread throughout
the region.

The studies described by Tapete et al. [22,23] focus on the analysis and monitoring
of cultural landscapes, using COSMO-SkyMed data. The COnstellation of small Satellites
for Mediterranean basin Observation (COSMO-SkyMed) offers very high ground resolu-
tion, and an average revisit time per site area of one day, making it extremely useful for
archaeological-site monitoring.

Tapete and Cigna [24] assessed the potential of the synthetic-aperture-radar (SAR)
sensor to monitor looted sites, mainly because of the spatial resolution of SAR images.
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The authors primarily used the new TerraSAR-X beam mode, Staring Spotlight (ST) radar-
backscattering-change detection.

These studies show how satellite imagery can pinpoint looting activities and help in
linking the ongoing looting to broader matters, such as social, environmental, economic, or
political changes [25].

Agapiou [26] investigated the potentials of open-access satellite images for detecting
large-scale looted areas over the archaeological site of Apamea in Syria, during the period
January 2011 to April 2012. A multi-temporal analysis of multispectral Landsat 7 ETM+
images was performed, analyzing pseudo-color temporal composites, multi-temporal
spectral profiles, correlation between the spectral bands, and the application of principal
component analysis (PCA).

The increasing accessibility to VHR images from optical satellites has also boosted the
scientific community’s interest in exploring new image-processing methods for the identifi-
cation and assessment of ground anomalies related to archaeological looting. Researchers
active in the remote-sensing domain are therefore developing new automated procedures
to quantify looting. In this context, remote sensing has been used to answer several ques-
tions regarding (i) the identification of illegal archaeological excavations and their location;
(ii) the evidence concerning looting incidents; and especially (iii) the monitoring and
assessing of the extension of the damage and its frequency.

The current extraordinary availability of remote-sensing data poses, however, severe
limitations in terms of processing and interpretation capabilities, due to the large volume
and continuous expansion.

Lauricella et al. [27] present a semi-automatic detection method for reliable and ac-
curate multitemporal site monitoring. The authors propose a process customized to deal
with site monitoring which is largely dependent upon lengthy and error-prone manual
evaluations of satellite images.

Bowen [28] used change-detection algorithms (changes in a region of interest occurring
over time) to identify illegal looting pits. The main aim of the study was to detect new
illegal excavations and not previous ones, or new typologies of other classes of ground
anomalies. The authors proposed a novel categorization scheme, which was tested on a
large satellite image of the pyramid area in Egypt, where looting of tombs was ongoing.

Lasaponara and Masini [29] propose an automated methodology they refer to as
a methodology for Archaeological Looting Feature Extraction Approach (ALFEA). The
ALFEA workflow is structured in three stages: image improvement using spatial autocorre-
lation, unsupervised classification, and segmentation. Case studies were located in Syria
and in Peru, using a set of Google Earth images.

Danese et al. [30] investigated the use of LiDAR data to characterize the looting
phenomenon in archaeology, exploiting a multi-scalar approach based on the geomorphon
model [31]. The latter is commonly used in geomorphological research for the automatic
classification of land features.

While the multidisciplinary research community composed of surveyors, archaeolo-
gists and remote-sensing experts acknowledged the benefits of the identification of illegal
archaeological excavations through satellite imagery, the high cost of high-resolution data,
usually acquired through commercial sensors, essentially prevents their extensive use by
the research community.

Equally, unmanned aerial systems (UASs) and image-based modelling techniques
nowadays represent viable and reliable tools for producing high-resolution aerial im-
agery (digital elevation models and orthophotos) with resolution in millimeters, allowing
the identification of small features such as pits and holes caused by illegal excavations.
Although not comparable with the extension of satellite-image footprints, today digital
photogrammetry is considered a feasible and flexible solution for archaeological surveys,
and can deliver range-based comparable data when specific parameters are met [32].
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3. Material and Methods

The area where Arch_site_01 is located shows a long history of occupation. It features
numerous burial sites, which have preserved a rich diversity of archaeological material
spanning the Late Bronze Age through to the early Christian periods.

The richness of its archaeological remains, the remote location of the site, and the
difficulties in patrolling the area on a regular basis contributed to the spread of illegal
archaeological excavations and destruction.

During the COVID-19 pandemic, the site integrity was increasingly compromised, due
to the reduction of regular surveillance and the reallocation of law enforcement agencies’
human resources. Today, the site is not fenced off, and it is used for agricultural purposes,
hence being ploughed regularly.

Three aerial-survey campaigns were realized on January 2020, May 2020, and October
2022, to monitor the progression of the illegal archaeological excavations.

The digital methodology proposed in this study consists of four steps: (i) an aerial pho-
togrammetric survey, (ii) orthophoto and digital-elevation-model production,
(iii) unsupervised, multitemporal change detection, (iv) relief visualization (RV),
(v) geographic-information-system (GIS) mapping, and (vi) data interpretation (Figure 1,
Table 1).
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Figure 1. Multimodal documentation and monitoring workflow (image courtesy of the authors).

Table 1. Change-detection and relief-visualization tasks:

Change Detection Relief Visualization

pinpoint features which might have been
accidentally omitted during a visual analysis

compare the two methods evaluating the
capabilities,

assess the looting phenomenon over time
clearly identifying new and old illegal
excavations.

cross reference change detection and Relief
Visualization methods to identify new ground
anomalies which might have been ignored by
the change detection method due to the regular
cultivation process which occurs in the area
using heavy plowing machinery

Recently excavated pits are clearly visible, due to the RGB color variations between
the surface and the recently excavated soil.

3.1. Image-Based-Modelling Data Collection and Data Production

In order to create high-resolution orthoimages and digital-elevation models (DEMs)
of the area of interest, an aerial image-based survey was performed, using a custom-made
UAV platform equipped with a state-of-the art RGB sensor. The surveyed plot has an
extension of 36.400 m2, and its terrain is flat.
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The UAV flight was designed in order to reach a forward- and lateral-image overlap
of ~80%, and an average ground sample distance (GSD) of ~1.5 cm.

The aerial survey was coupled with a topographic network exploiting a Differential
Global Positioning System (DGPS). All the generated models were referenced in the Cyprus
Geodetic Reference System 93 (CGRS93).

For this purpose, two different types of ground control points (GCPs), fixed and
temporary, were made on the ground:

- Four concrete blocks featuring a painted metal plate installed before the first data-
collection campaign, in January 2020 (Figure 2, left);

- Several A3 laminated targets, surveyed during each of the three seasons to avoid
any geometric deformation which might occur during the photogrammetric process
(Figure 2, right).
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Figure 2. Permanent Ground Control Point (left) and A3 laminated targets (right), (images courtesy
of the authors).

The use of the four fixed concrete blocks buried in the ground was for two reasons:
they served as permanent topographical points for future data acquisition, and they were
used as cornerstones to place the three orthophotos in the same physical space during the
change-detection analysis.

Accordingly, to crop the orthophotos and the digital-elevation model to the same
extent, a shape file was created, using the fixed points (Figure 3).
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Figure 3. Shape file used to crop the orthophotos (False North), (image courtesy of the authors).

Each dataset was composed of an average of 900 RAW images.
The data were firstly pre-processed to improve the radiometric values (white balance,

histogram stretching, etc.). Afterwards, the standard photogrammetric process, consisting
of image-correspondence detection, bundle adjustment and dense image matching using
the first-level image pyramid, was performed.

Three orthophotos and three DEMs digitally blended to avoid the visibility of seam
lines between images were created and used for further analysis (Figure 4).
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3.2. Unsupervised Change Detection

Various procedures have been developed in remote sensing, with the final goal of
detecting differences appearing on the Earth surface over time. One of those techniques is
known as change detection. It can be tackled in a supervised or unsupervised way.

Unsupervised change detection is usually selected when there is no availability of
training samples or a limited knowledge of the ground features.

In this study, the multivariate-alteration-detection (MAD) algorithm available in the
Orfeo Tool Box was selected. It was initially compared with principal component analysis
(PCA), which has shown its robustness in remote sensing, [33]. PCA is a statistical procedure
developed to transform a set of correlated variables into a new set of uncorrelated variables.
The principal direction of the data in the space is considered the weighting factor. Whereas
PCA allows one to reduce the size and redundancy of the original data, the multivariate
alteration detection uses the maximum autocorrelation to eliminate factors associated
with the possibility that a dominating element in the image affects the PCA components.
Additionally, MAD is invariant for linear transformations of the data, making it unaffected
by its application to raw digital numbers (DNs) or transformed images [34].

Multivariate alteration detection, developed by Nielsen et al. [35], is a mathematical
analysis technique, largely used in image linear transformation. It aims to improve the
simple image-differentiating procedures which are possible using canonical-correlation
analysis (CCA). The main principle is to achieve a high degree of similarity (i.e., correlation)
between images, before their difference is computed. The latter is performed by using CCA
to find two sets of linear combinations of the original variables, where the first two linear
combinations (called canonical variates) are the ones presenting the weightiest correlation
(called first canonical correlation).

Several iterations are then computed to achieve the higher-order canonical correla-
tions/variates, under the condition that they are orthogonal (i.e., uncorrelated) to the previ-
ous ones. If N is the maximum number of bands in first- and second-input images, the dif-
ferences between the corresponding pairs of variates (called MAD variates or components),
constitute N change maps, which are usually combined in a single multi-band image.

Since MAD analysis lacks semantic interpretation, the adoption of a two-step proce-
dure is preferred to support the understanding of changes highlighted by MAD. Accord-
ingly, the maximum-autocorrelation-factor (MAF) transformation to the MAD components
can be applied [36]. MAF transforming aims to separate the noise component of the data by
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computing a new set of variates from the original ones. Low-order components represent
maximal spatial autocorrelation (signal). The highest-order variates correspond to minimal
spatial autocorrelation (noise). Therefore, the first MAF-MAD component will identify
areas with maximum changes, while the noise is expected to be isolated in the lower order
MAF-MAD components. The use of the MAD technique, and its combination with MAF, is
popular in the remote-sensing domain [37,38].

Arch_Site_01 Change Detection

The Orfeo ToolBox (OTB) remote-sensing image-processing library [39] was used to
process the generated orthophotos. A standard procedure for the comparison of multi-
temporal images of the same area includes a preliminary image co-registration refinement.
This task computes a 2D disparity map between two images corresponding to the same
scene. It is mainly used when small mis-registration between images has to be computed
and corrected. Although the orthophotos were cropped evenly, using the process described
above, through fixed GCPs, the decision to perform this additional step was due to the
small ground movements which might have occurred over the three years. It should be
reiterated that besides being a site of archaeological interest, it is today used for cultiva-
tion, and plowing occurs at regular intervals. The co-registration algorithm performs an
iterative computation to reduce discrepancies between images until a best match between
local patches is obtained. The final output image contains X and Y offsets, as well as
sub-pixel-accuracy metric value.

The multitemporal change detection is then performed by using the MAD algorithm.
A MAD map is then produced, comprising three bands that represent the variates (change
maps) organized by increasing correlation.

Finally, the MAF transform is applied to the MAD variates. The first MAF-MAD
component (i.e., lowest order) is primarily analyzed to identify the changes which have
occurred (Figure 5).
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Figure 5. Lowest-order MAF-MAD-component analysis. Western (top) and Eastern (bottom), (images
courtesy of the authors).

The following change-detection analyses were performed, comparing different periods
of observation (Table 2):

Table 2. Epoch-change-detection comparison.

Epochs

January 2020–May 2020
January 2020–October 2022

May 2020–October 2022

The applied procedure highlighted several macroscopic and microscopic ground anoma-
lies scattered over the field. All the features were then confirmed through walk-over surveys,
leading to positive (looting) and negative (plant removal/growth; earth-moving) results.

In spite of MAD/MAF providing a high degree of details, their interpretation requires
being carefully validated. A comparison with RGB orthophotos was hence conducted for
initial validation.

The temporal progression of the illegal excavations was then mapped in a GIS envi-
ronment (Section 3.4) for a spatio-temporal assessment.

3.3. Digital-Elevation-Models Analysis

For a precise analysis and interpretation of the Arch_site_01 terrain’s features, and to
possibly identify anomalies which were not classified during the change-detection analysis,
a method using the Relief Visualization Toolbox (RVT) was followed [40].

The Relief Visualization Toolbox (RVT) allows users to perform a set of operations
which were successfully used for archaeological-feature identifications: (i) Hill-Shading [41],
(ii) Local Relief Model [42], (iii) Positive and Negative Openness [43], (iv) Local Domi-
nance [44], and Sky View Factor [45].

The digital-elevation models (DEMs) of the three seasons were processed to assess the
performance of the several visualization algorithms.

As described in [30], in the case of Arch_site_01, the most successful tool for highlight-
ing looting pits was the Sky View Factor, with Positive Openness, providing similar results
(Figure 6).
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3.4. GIS Analysis

After the identification of ground anomalies which were possibly related to looting and
illegal archaeological excavations, each feature was mapped using geographic information
system (GIS) with the final goal of assessing the spatial location and temporal sequence of
the recorded incidents (Figure 7).
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Figure 7. Three-monitoring-seasons GIS Map (False North), (image courtesy of the authors).

At the beginning of the monitoring period (January 2020), around 60 ground anomalies
(looting pits) were recorded in the area. Forty-one pits were located in the western side and
appeared not to have been excavated recently. Nineteen features instead were located in
the area of the plateau, possibly indicating more recent events. Although is not possible to
assess without any reasonable doubt the temporal sequence of the illegal excavations, the
ground anomalies seem to suggest a movement from west to east (Figure 8).
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Figure 8. Season-one (January 2020) GIS Map (False North), (image courtesy of the authors).

The second aerial-survey campaign was completed after five months (May 2020), with
the final goal of assessing conditions on the ground in the short term. The change-detection
and visualization analysis highlighted six tentative features which were then investigated
on the ground. Out of six, one anomaly was connected to looting activities. It was located
in the field adjacent to the main plateau, an area where pillage was identified during the
previous campaign (Figure 9).
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Figure 9. Season-two (May 2020) GIS Map (False North), (image courtesy of the authors).

The third survey campaign was performed in October 2022, featuring a twenty-nine-month
pit area from the previous one. After the application of the described methodology, sixteen
new features mapped, all of them related to illegal excavations. The majority of the pits are
located in the center of the field (thirteen), although it is possible to observe that the terrain
has been moved in the eastern part where a significant deep hole is visible (Figure 10).
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Figure 10. Season-three (October 2022) GIS Map (False North), (image courtesy of the authors).

Figure 11 shows a buffer analysis for the purposed visualization. A buffer area was
computed for all the features included in each specific season layer, using a fixed distance.
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4. Results and Discussion

This paper presented a multimodal data-collection and data-processing approach,
developed for the identification of illegal archaeological excavations and the assessment of
the spatio-temporal dynamics of the crime of looting.

The implemented workflow allows users to visualize different categories of data, allow-
ing one to uncover patterns, understand trends, monitor changes, and eventually counter
events, to facilitate a more efficient decision-making process (e.g., the location of camera
traps in a location where new incidents may occur, according to the documented scenario).

Aerial images and digital-elevation models were analyzed using a manual and semi-
automatic approach, with the ultimate goal being to identify ground anomalies, potentially
related to illegal archaeological excavations. Several features were recognized and classified
as looting incidents over the three monitoring seasons.

For each season, an initial assessment was performed by visually analyzing RGB
orthophotos. Thanks to the high-resolution data, small features (i.e., tools which were used
to possibly perform the illegal excavations, and panels used to cover the pits) were clearly
recognizable, and subsequently mapped.
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The applied multitemporal-change-detection approach was realized by mutually
comparing the RGB orthophotos with the MAD/MAF output, to study the looting activities
in time and space and possibly identify any possible path.

Besides pinpointing new illegal excavations, the change-detection analysis highlighted
the erasing effect of plowing activities on the evidence of past-looting activity. Shallow pits
and small ground anomalies, connected most probably to shoveling and not performed
with excavators, and which were clearly visible in specific seasons, were indeed obliterated,
due to the effect of soil handling linked to agriculture practices.

With the ultimate goal of confirming and possibly identifying ground anomalies not
recorded before, several visualization algorithms were applied to the digital-elevation
models generated using the Relief Visualization Toolbox (RVT).

According to the shape of the pits (not large, and morphologically consistent), the most
promising algorithm among those applied for looting identification, were those behind the
Sky View Factor and, to some extent, the Positive Openness programs.

The relief-visualization study was confirmed by aerial-imagery analysis and a walkover
survey. Besides confirming the results, it was also possible to pinpoint additional features.

In order to gather all the information collected in a single database, and to be able to
classify, visualize, and examine different layers of data by creating maps, all the ground
anomalies recorded were input into a GIS system. The possibility of enabling and disabling
layers allowed the initial assessment of the amount of destruction, the path followed by
looters and the temporal sequence over three seasons (two years).

5. Conclusions

Despite the fact that satellite observations or low-altitude aerial imagery does not rep-
resent a preventive measure to tackle illegal archaeological excavations, the identification
of new looted areas, probably unknown to local stakeholders, or the documentation of
their progress over time is considered a critical step towards the increase in awareness of
potential illegal trafficking and tentative surveillance measures.

The increasing availability of open and freely available high-resolution sensors (space
or airborne) is allowing the scientific community and the authorities to assess the problem
more efficiently.

However, although the growing availability of semi-automatic and automatic-features-
extraction algorithms, the archaeological-protection domain needs further tools to stop
these illegal activities before any sort of destruction occurs.
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