Digital Tools for Data Acquisition and Heritage Management in Archaeology and Their Impact on Archaeological Practices
Abstract
:1. Introduction
2. Documentation of Cultural Heritage Sites and Artefacts. Development of Digital Tools over the Past 15 Years
2.1. Digital Photogrammetry and Laser Scanning
2.2. Machine Learning and Artificial Intelligence
2.3. GIS
2.4. Data Storage
2.5. GPR
2.6. VR/AR Technologies
2.7. HBIM
3. Utilizing Digitally Derived Documentation Data to Address Archaeological Inquiries
- (a)
- The collapse of the upper part of the wall, constructed from architectural elements of the entablature of the Old Temple of Athena;
- (b)
- A notable outward lean (7 cm) of the remaining lower section (beneath the collapsed crown);
- (c)
- An approximate one-degree rotation;
- (d)
- Systematic cracking of the wall’s outward face.
New Fields Developing within Archaeology. Excavation Recording Systems
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moullou, D.; Mavromati, D. Topographic and photogrammetric recording of the Acropolis of Athens. In Proceedings of the XXI International CIPA Symposium, Athens, Greece, 1–6 October 2007; pp. 515–520. Available online: https://www.isprs.org/proceedings/xxxvi/5-c53/papers/FP103.pdf (accessed on 7 November 2023).
- Patias, P.; Sylaiou, S.; Sechidis, L.; Spartalis, I.; Grussenmeyer, P.; Landes, T.; Alby, E. A proposed low-cost system for 3D archaeological documentation, The e-volution of Information Technology in Cultural Heritage. Where Hi-Tech Touches the Past: Risks and Challenges for the 21st Century. In Proceedings of the 37th CIPA International Workshop on e-Documentation and Standardisation in Cultural Heritage, 7th VAST International Symposium on Virtual Reality, Archaeology and Cultural Heritage, 4th Eurographics Workshop on Graphics and Cultural Heritage, 1st Euro-Med Conference on IT in Cultural Heritage, Nicosia, Cyprus, 30 October–4 November 2006; pp. 129–134. [Google Scholar]
- Jensen, O.W. (Ed.) Histories of Archaeological Practices: Reflections on Methods, Strategies and Social Organization in Past Fieldwork; The National Historical Museum: Stockholm, Sweden, 2012. [Google Scholar]
- Svensson, P.; Goldberg, D.T. (Eds.) Between Humanities and the Digital; The MIT Press: Cambridge, MA, USA; London, UK, 2015. [Google Scholar] [CrossRef]
- Adel Haddad, N. From Hand Survey to 3D Laser Scanning: A Discussion for Non-Technical Users of Heritage Documentation. Conserv. Manag. Archaeol. Sites 2013, 15, 213–226. [Google Scholar] [CrossRef]
- Vacca, G.; Deidda, M.; Dessi, A.; Marras, M. Laser scanner survey to cultural heritage conservation and restoration. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39, 589–594. [Google Scholar] [CrossRef]
- Hassani, F. Documentation of Cultural Heritage techniques, potentials and constraints. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 207–214. [Google Scholar] [CrossRef]
- Chiabrando, F.; Donadio, E.; Rinaudo, F. SfM for orthophoto generation: A winning approach for cultural heritage knowledge. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 91–98. Available online: https://isprs-archives.copernicus.org/articles/XL-5-W7/91/2015/isprsarchives-XL-5-W7-91-2015.pdf (accessed on 7 November 2023). [CrossRef]
- Rahaman, H.; Champion, E. To 3D or not 3D: Choosing a photogrammetry workflow for cultural heritage groups. Heritage 2019, 2, 1835–1851. [Google Scholar] [CrossRef]
- Themistocleous, K. The Use of UAVs for Cultural Heritage and Archaeology. In Remote Sensing for Archaeology and Cultural Landscapes; Springer Remote Sensing/Photogrammetry; Springer: Berlin/Heidelberg, Germany, 2019; pp. 241–269. [Google Scholar] [CrossRef]
- Lewińska, P. Use of 3D Inferred Imagining for Detection of Changes in Geology in Longwall-Type Excavation Front. Remote Sens. 2023, 15, 2884. [Google Scholar] [CrossRef]
- Lanteri, L.; Agresti, G.; Pelosi, C. A New Practical Approach for 3D Documentation in Ultraviolet Fluorescence and Infrared Reflectography of Polychromatic Sculptures as Fundamental Step in Restoration. Heritage 2019, 2, 207–215. [Google Scholar] [CrossRef]
- Wallace, C. Retrospective Photogrammetry in Greek Archaeology. Stud. Digit. Herit. 2017, 1, 607–626. [Google Scholar] [CrossRef]
- Rodríguez Miranda, Á.; Valle Melón, J.M. Recovering Old Stereoscopic Negatives and Producing Digital 3d Models of Former Appearances of Historic Buildings. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 601–608. [Google Scholar] [CrossRef]
- Panagiotopoulou, A.; Wallace, C.A.B.; Ragia, L.; Moullou, D. Change Detection between Retrospective and Contemporary 3D Models of the Omega House at the Athenian Agora. Heritage 2023, 6, 1645–1679. [Google Scholar] [CrossRef]
- Jo, Y.H.; Hong, S. Three-Dimensional Digital Documentation of Cultural Heritage Site Based on the Convergence of Terrestrial Laser Scanning and Unmanned Aerial Vehicle Photogrammetry. ISPRS Int. J. Geo-Inf. 2019, 8, 53. [Google Scholar] [CrossRef]
- Remondino, F.; Campana, S. 3D Recording and Modelling in Archaeology and Cultural Heritage—Theory and Best Practices; BAR International Series: Oxford, UK, 2014. [Google Scholar]
- Globalsurvey. Available online: https://globalsurvey.co.nz/surveying-gis-news/the-vital-role-of-laser-scanning-in-heritage-conservation (accessed on 7 November 2023).
- Parfenov, V.; Igoshin, S.; Masaylo, D.; Orlov, A.; Kuliashou, D. Use of 3D Laser Scanning and Additive Technologies for Reconstruction of Damaged and Destroyed Cultural Heritage Objects. Quantum Beam Sci. 2022, 6, 11. [Google Scholar] [CrossRef]
- Stylianidis, E.; Evangelidis, K.; Vital, R.; Dafiotis, P.; Sylaiou, S. 3D Documentation and Visualization of Cultural Heritage Buildings through the Application of Geospatial Technologies. Heritage 2022, 5, 2818–2832. [Google Scholar] [CrossRef]
- Parfenov, V.A. Non-Contact Replication of Marble Sculptures Using Laser Technology. In Sculpture of XVIII-XIX Centuries in Out-Door Environment; St. Petersburg’s Museum of Urban Sculpture Publishing House: St. Petersburg, Russia, 2010; pp. 66–69. [Google Scholar]
- Vozikis, G.; Haring, A.; Vozikis, E.; Kraus, K. Laser scanning: A new method for recording and documentation in archaeology. In WSA1.4 Laser Scanning: A New Method for Recording and Documentation in Archaeology; FIG Working Week: Athens, Greece, 2004. [Google Scholar]
- Kai, C.; Kai, Z.; Da, Z.; Chi, Z. The Boundary Extraction and Hole Restoration Method of Point Cloud Data of 3D Laser Scanner for Mine. In Proceedings of the IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE), Dalian, China, 27–29 September 2020; pp. 528–531. [Google Scholar] [CrossRef]
- Levoy, M.; Pulli, K.; Curless, B.; Rusinkiewicz, S.; Koller, D.; Pereira, L.; Ginzton, M.; Anderson, S.; Davis, J.; Ginsberg, J.; et al. The digital Michelangelo project: 3D scanning of large statues. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, LA, USA, 23–28 July 2000; pp. 131–144. [Google Scholar] [CrossRef]
- Elseberg, J.; Borrmann, D.; Nüchter, A. One billion points in the cloud—An octree for efficient processing of 3D laser scans. ISPRS J. Photogramm. Remote Sens. 2013, 76, 76–88. [Google Scholar] [CrossRef]
- Chalmovianský, P.; Jüttler, B. Filling Holes in Point Clouds. In Mathematics of Surfaces. Lecture Notes in Computer Science; Wilson, M.J., Martin, R.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2768. [Google Scholar] [CrossRef]
- Gonizzi Barsanti, S.; Remondino, F.; Visintini, D. 3D Surveying and Modeling of Archaeological Sites—Some Critical Issues. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 25, 145–150. [Google Scholar] [CrossRef]
- Barsanti Gonizzi, S.; Remondino, F.; Visintini, D. Photogrammetry and Laser Scanning for Archaeological Site 3D Modeling—Some Critical Issues. In Proceedings of the 2nd Workshop on ‘The New Technologies for Aquileia’, Aquileia, Italy, 25 June 2012; Roberto, V., Fozzati, L., Eds.; Volume 1, pp. 1–10. [Google Scholar]
- Macháček, P. Problems of 3D Scanning and Scanned Data Processing. Problems of 3D Scanning and Scanned Data Processing (nd): N. 2016, Pag. Web, 1. Available online: https://stc.fs.cvut.cz/pdf/MachacekPavel-307440.pdf (accessed on 7 November 2023).
- Kęsik, J.; Miłosz, M.; Montusiewicz, J. Problems of acquisition and postprocessing of 3D scans of large architectural objects. MATEC Web Conf. 2019, 252, 03001. [Google Scholar] [CrossRef]
- Tsakiri, M.; Ioannidis, C.; Carty, A. Laser scanning issues for the geometrical recording of a complex statue. In Optical 3D Measurement Techniques VI; Ed. Eidgenössische Technische Hochschule Zürich Institut für Geodäsie und Photogrammetrie: Zurich, Switzerland, 2003; pp. 214–222. [Google Scholar]
- Casciola, G.; Lazzaro, D.; Montefusco, L.B.; Morigi, S. Fast surface reconstruction and hole filling using positive definite radial basis functions. Numer. Algorithms 2005, 39, 289–305. [Google Scholar] [CrossRef]
- Davis, J.; Marschner, S.R.; Garr, M.; Levoy, M. Filling holes in complex surfaces using volumetric diffusion. In Proceedings of the 1st International Symposium on 3D Data Processing Visualization and Transmission, Padua, Italy, 19–21 June 2002; pp. 428–441. [Google Scholar] [CrossRef]
- Rüther, H.; Bhurtha, R.; Held, C.; Schröder, R.; Wessels, S. Laser Scanning in heritage documentation. Photogramm. Eng. Remote Sens. 2012, 78, 309–316. [Google Scholar] [CrossRef]
- Patias, P. Cultural heritage documentation. In Application of 3D Measurement from Images; Fryer, J., Mitchell, H., Chandler, J., Eds.; Whittles: Dunbeath, UK, 2007; Volume 59, pp. 225–257. [Google Scholar]
- Murtiyoso, A.; Grussenmeyer, P.; Suwardhi, D.; Awalludin, R. Multi-scale and multi-sensor 3D documentation of heritage complexes in urban areas. ISPRS Int. J. Geo-Inf. 2018, 7, 483. [Google Scholar] [CrossRef]
- Doneus, M.; Verhoeven, G.; Fera, M.; Briese, C.; Kucera, M.; Neubauer, W. From deposit to point cloud: A study of low-cost computer vision approaches for the straightforward documentation of archaeological excavations. Geoinform. FCE CTU 2011, 6, 81–88. [Google Scholar] [CrossRef]
- Tsingas, V. Acropolis of Athens: Recording, Modeling and Visualising a Major Archaeological Site. Int. J. Herit. Digit. Era 2012, 1, 169–190. [Google Scholar] [CrossRef]
- Dellepiane, M.; Callieri, M.; Corsini, M.; Scopigno, R. Using Digital 3D Models for Study and Restoration of Cultural Heritage Artifacts. In Digital Imaging for Cultural Heritage Preservation: Analysis, Restoration, and Reconstruction of Ancient Artworks, 1st ed.; Stanco, F., Battiato, S., Gallo, G., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 37–39. [Google Scholar]
- Moullou, D. The project “Development of Geographical Information Systems on the Acropolis of Athens” managing scientific questions of documentation. Acropolis Restor. News 2010, 10, 12–15. [Google Scholar]
- Egglezos, D.; Moullou, D. Preservation of the circuit wall of the Acropolis: Past and future. Acropolis Restor. News 2008, 8, 22–25. [Google Scholar]
- Patias, P.; Sylaiou, S.; Georgiadis, C.; Georgoula, O.; Kaimaris, D.; Stylianidis, S. 3D Mapping of Cultural Heritage: The case study of the cave of Polyphemus Cyclope. In Proceedings of the VSMM Conference on Virtual Systems and Multimedia Dedicated to Cultural Heritage, Nicosia, Cyprus, 20–25 October 2008; pp. 108–113. [Google Scholar]
- Bickler, S.H. Machine Learning Arrives in Archaeology. Adv. Archaeol. Pract. 2021, 9, 186–191. [Google Scholar] [CrossRef]
- Brandsen, A.; Verberne, S.; Wansleeben, M.; Lambers, K. Creating a Dataset for Named Entity Recognition in the Archaeology Domain. In LREC 2020 Marseille: Twelfth International Conference on Language Resources and Evaluation: Conference Proceedings; Calzolari, N., Béchet, F., Blache, P., Choukri, K., Cieri, C., Declerck, T., Goggi, S., Isahara, H., Maegaard, B., Mariani, J., et al., Eds.; European Language Resources Association: Paris, France, 2020; pp. 4573–4577. [Google Scholar]
- Felicetti, A. Teaching Archaeology to Machines: Extracting Semantic Knowledge from Free Text Excavation Reports. ERCIM News 2017, 111, 9–10. Available online: https://ercim-news.ercim.eu/en111/special/teaching-archaeology-to-machines-extracting-semantic-knowledge-from-free-text-excavation-reports (accessed on 7 April 2021).
- Ramazzotti, M.; Buscema, M.; Massini, G.; Della Torre, F. Encoding and Simulating the Past. A Machine Learning Approach to the Archaeological Information. In Proceedings of the 2018 Metrology for Archaeology and Cultural Heritage (MetroArchaeo), Cassino, Italy, 22–24 October 2018; pp. 39–44. [Google Scholar] [CrossRef]
- Bacharidis, K.; Sarri, F.; Ragia, L. 3D Building Façade Reconstruction Using Deep Learning. ISPRS Int. J. Geo-Inf. 2020, 9, 322. [Google Scholar] [CrossRef]
- Tsigkas, G.; Sfikas, G.; Pasialis, A.; Vlachopoulos, A.; Nikou, C. Markerless Detection of Ancient Rock Carvings in the Wild. Pattern Recognit. Lett. 2020, 135, 337–345. [Google Scholar] [CrossRef]
- Prasomphan, S.; Jung, J.E. Mobile Application for Archaeological Site Image Content Retrieval and Automated Generating Image Descriptions with Neural Network. Mobile Netw. Appl. 2017, 22, 642–649. [Google Scholar] [CrossRef]
- Argyrou, A.; Agapiou, A.; Papakonstantinou, A.; Alexakis, D.D. Comparison of Machine Learning Pixel-Based Classifiers for Detecting Archaeological Ceramics. Drones 2023, 7, 578. [Google Scholar] [CrossRef]
- Orengo, H.A.; Garcia-Molsosa, A. A brave new world for archaeological survey: Automated machine learning-based potsherd detection using high-resolution drone imagery. J. Archaeol. Sci. 2019, 112, 105013. [Google Scholar] [CrossRef]
- Character, L.; Ortiz, A., Jr.; Beach, T.; Luzzadder-Beach, S. Archaeologic Machine Learning for Shipwreck Detection Using Lidar and Sonar. Remote Sens. 2021, 13, 1759. [Google Scholar] [CrossRef]
- Fiorucci, M.; Khoroshiltseva, M.; Pontil, M.; Traviglia, A.; Del Bue, A.; James, S. Machine Learning for Cultural Heritage: A Survey. Pattern Recognit. Lett. 2020, 133, 102–108. [Google Scholar] [CrossRef]
- Fiorucci, M.; Verschoof-van der Vaart, W.B.; Soleni, P.; Le Saux, B.; Traviglia, A. Deep Learning for Archaeological Object Detection on LiDAR: New Evaluation Measures and Insights. Remote Sens. 2022, 14, 1694. [Google Scholar] [CrossRef]
- Sharafi, S.; Fouladvand, S.; Simpson, I.; Barcelo Alvarez, J.A. Application of pattern recognition in detection of buried archaeological sites based on analysing environmental variables, Khorramabad Plain, West Iran. J. Archaeol. Sci. Rep. 2016, 8, 206–215. [Google Scholar] [CrossRef]
- Bonhage, A.; Mahmoud, E.; Raab, T.; Breuß, M.; Raab, A.; Schneider, A. A Modified Mask Region-Based Convolutional Neural Network Approach for the Automated Detection of Archaeological Sites on High-Resolution Light Detection and Ranging-Derived Digital Elevation Models in the North German Lowland. Archaeol. Prospect. 2021, 28, 177–186. [Google Scholar] [CrossRef]
- Caspari, G.; Crespo, P. Convolutional Neural Networks for Archaeological Site Detection–Finding “Princely” Tombs. J. Archaeol. Sci. 2019, 110, 104998. [Google Scholar] [CrossRef]
- Oonk, S.; Spijker, J. A supervised machine-learning approach towards geochemical predictive modelling in archaeology. J. Archaeol. Sci. 2015, 59, 80–88. [Google Scholar] [CrossRef]
- Elliot, T.; Morse, R.; Smythe, D.; Norris, A. Evaluating machine learning techniques for archaeological lithic sourcing: A case study of flint in Britain. Sci. Rep. 2021, 11, 10197. [Google Scholar] [CrossRef]
- Scianna, A.; Villa, B. GIS Applications in archaeology. Archeol. Calc. 2011, 22, 337–363. [Google Scholar]
- Katsianis, M. Conceptual and practical issues in the use of GIS for archaeological excavations. In Thinking Beyond the Tool: Archaeological Computing & the Interpretive Process; Chrysanthi, A., Murrieta Flores, P., Papadopoulos, C., Eds.; Archaeopress: Oxford, UK, 2012; pp. 51–71. [Google Scholar]
- Menéndez-Marsh, F.; Al-Rawi, M.; Fonte, J.; Dias, R.; Gonçalves, L.H.; Gonçalves Seco, L.; Hipólito, J.; Machado, J.P.; Medina, J.; Moreira, J.; et al. Geographic Information Systems in Archaeology: A Systematic Review. JCAA 2023, 6, 40–50. [Google Scholar] [CrossRef]
- Lock, G.; Pouncett, J. Spatial thinking in archaeology: Is GIS the answer? J. Archaeol. Sci. 2017, 84, 129–135. [Google Scholar] [CrossRef]
- Gillings, M.; Hacıgüzeller, P.; Lock, G. (Eds.) Re-Mapping Archaeology: Critical Perspectives, Alternative Mappings, 1st ed.; Routledge: London, UK, 2018. [Google Scholar] [CrossRef]
- McCoy, M.D. Geospatial Big Data and archaeology: Prospects and problems too great to ignore. J. Archaeol. Sci. 2017, 84, 74–94. [Google Scholar] [CrossRef]
- Börjesson, L.; Sköld, O.; Friberg, Z.; Löwenborg, D.; Pálsson, G.; Huvila, I. Re-purposing Excavation Database Content as Paradata: An Explorative Analysis of Paradata Identification Challenges and Opportunities. KULA Knowl. Creat. Dissem. Preserv. Stud. 2022, 6, 1–18. [Google Scholar] [CrossRef]
- Isto, H. Improving the usefulness of research data with better paradata. Open Inf. Sci. 2022, 6, 28–48. [Google Scholar] [CrossRef]
- Terry, C.S. Finding space to store archaeological collections. In The Oxford Handbook of Museum Archaeology; Oxford University Press: Oxford, UK, 2022; Volume 221. [Google Scholar]
- Clarke, M. The Digital Dilemma: Preservation and the Digital Archaeological Record. Adv. Archaeol. Pract. 2015, 3, 313–330. [Google Scholar] [CrossRef]
- Nicholson, C.; Kansa, S.; Gupta, N.; Fernandez, R. Will It Ever Be FAIR? Making Archaeological Data Findable, Accessible, Interoperable, and Reusable. Adv. Archaeol. Pract. 2023, 11, 63–75. [Google Scholar] [CrossRef]
- Densmore, A.L. Virtual Excavations: Digital Repositories, Data Reuse, and Ethically Accessible Archaeology. Master’s Thesis, The University of Wisconsin-Milwaukee, Milwaukee, WI, USA, 2022. [Google Scholar]
- Kalaf, A.; Al Sharaa, H.; Hatem, I.; Hussein, M. Building archaeology geodatabase in Iraq using GIS. MATEC Web Conf. 2018, 162, 03023. [Google Scholar] [CrossRef]
- Gao, H.-G.; Nie, Y.-P. Study of archeology spatial database in Xinjiang based on ArcGIS Engine. In Proceedings of the 2011 International Conference on Computer Science and Network Technology, Harbin, China, 24–26 December 2011; pp. 232–235. [Google Scholar] [CrossRef]
- Oswin, J. A Field Guide to Geophysics in Archaeology; Springer Praxis: Chichester, UK, 2009. [Google Scholar]
- Manataki, M.; Vafidis, A.; Sarris, A. GPR Data Interpretation Approaches in Archaeological Prospection. Appl. Sci. 2021, 11, 7531. [Google Scholar] [CrossRef]
- Von der Osten-Woldenburg, H. Magnetic Gradiometry in Archaeo-geophysics. In Encyclopedia of Solid Earth Geophysics; Gupta, H., Ed.; Springer Cham: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Al-Khersan, E.H.; Al-Ani, J.M.T.; Abrahem, S.N. Integrated GPR and ERT as Enhanced Detection for Subsurface Historical Structures Inside Babylonian Houses Site, Uruk City, Southern Iraq. Pure Appl. Geophys. 2016, 173, 963–982. [Google Scholar] [CrossRef]
- Xin, Z.; Liu, L.; Han, J.; Liang, H. Application of electrical resistivity tomography (ERT) in archaeological investigation of Chengsijiazi Ancient City ruins. IOP Conf. Ser. Earth Environ. Sci. 2021, 660, 012118. [Google Scholar] [CrossRef]
- De Bonis, M.; Nguyen, H.; Bourdot, P. A Literature Review of User Studies in Extended Reality Applications for Archaeology. In Proceedings of the IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Singapore, 17–21 October 2022; pp. 92–101. [Google Scholar] [CrossRef]
- Cassidy, B.; Sim, G.; Robinson, D.W.; Gandy, D. A Virtual Reality Platform for Analyzing Remote Archaeological Sites. Interact. Comput. 2019, 31, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Nawaf, M.; Drap, P.; Ben-Ellefi, M.; Nocerino, E.; Chemisky, B.; Chassaing, T.; Colpani, A.; Noumossie, V.; Hyttinen, K.; Wood, J.; et al. Using Virtual or Augmented Reality for the time-based study of complex underwater archaeological excavations. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 8, 117–124. [Google Scholar] [CrossRef]
- Murphy, M.; McGovern, E.; Pavia, S. Historic building information modelling (HBIM). Struct. Surv. 2009, 27, 311–327. [Google Scholar] [CrossRef]
- Fai, S.; Graham, K.; Duckworth, T.; Wood, N.; Attar, R. Building information modelling and heritage documentation. In Proceedings of the 23rd International Symposium, International Scientific Committee for Documentation of Cultural Heritage (CIPA), Prague, Czech Republic, 12–19 July 2011; pp. 12–16. [Google Scholar]
- Hichri, N.; Stefani, C.; De Luca, L.; Veron, P. Review Of The « As-Built BIM » Approaches. In Proceedings of the 3D-ARCH-3D Virtual Reconstruction and Visualization of Complex Architectures, Trento, Italy, 25–26 February 2013; pp. 107–112. [Google Scholar]
- López, F.J.; Lerones, P.M.; Llamas, J.; Gómez-García-Bermejo, J.; Zalama, E. A Review of Heritage Building Information Modeling (H-BIM). Multimodal Technol. Interact. 2018, 2, 21. [Google Scholar] [CrossRef]
- Doneus, M.; Neubauer, W.; Studnicka, N. Digital recording of stratigraphic excavations. In Proceedings of the 19th International Symposium CIPA 2003 “New Perspectives to Save Cultural Heritage”, Antalya, Turkey, 30 September–4 October 2003; pp. 451–456. [Google Scholar]
- Doneus, M.; Neubauer, W. Laser scanners for 3D documentation of stratigraphic excavations. In Recording, Modeling and Visualization of Cultural Heritage, Proceedings of the International Workshop, Centro Stefano Franscini, Monte Verita, Ascona, Switzerland, 22–27 May 20005; Baltsavias, E., Gruen, A., van Gool, L., Pateraki, M., Eds.; Taylor & Francis: London, UK, 2005; pp. 193–203. [Google Scholar]
- Katsianis, M.; Tsipidis, S.; Kotsakis, K.; Koussoulakou, A. A 3D digital workflow for archaeological intra-site research using GIS. J. Archaeol. Sci. 2008, 35, 655–667. [Google Scholar] [CrossRef]
- Dellepiane, M.; Dell’Unto, N.; Callieri, M.; Lindgren, S.; Scopigno, R. Archeological excavation monitoring using dense stereo matching techniques. J. Cult. Herit. 2013, 14, 201–210. [Google Scholar] [CrossRef]
- De Reu, J.; Plets, G.; Verhoeven, G.; De Smedt, P.; Bats, M.; Cherretté, B.; De Maeyer, W.; Deconynck, J.; Herremans, D.; Laloo, P.; et al. Towards a three-dimensional cost-effective registration of the archaeological heritage. J. Archaeol. Sci. 2013, 40, 1108–1121. [Google Scholar] [CrossRef]
- Opitz, R.S.; Johnson, T.D. Interpretation at the controller’s edge: Designing graphical user interfaces for the digital publication of the excavations at Gabii (Italy). Open Archaeol. 2016, 2, 1–17. [Google Scholar] [CrossRef]
- Dell’Unto, N.; Landeschi, G.; Apel, J.; Poggi, G. 4D recording at the trowel’s edge: Using three-dimensional simulation platforms to support field interpretation. J. Archaeol. Sci. Rep. 2017, 12, 632–645. [Google Scholar] [CrossRef]
- Huggett, J. The apparatus of digital archaeology. Intern. Archaeol. 2017, 44, 7. [Google Scholar] [CrossRef]
- Huvila, I.; Huggett, J. Archaeological practices, knowledge work and digitalization. J. Comput. Appl. Archaeol. 2018, 1, 88–100. [Google Scholar] [CrossRef]
- Katsianis, M.; Kotsakis, K.; Stefanou, F. Reconfiguring the 3D excavation archive. Technological shift and data remix in the archaeological project of Paliambela Kolindros, Greece. J. Archaeol. Sci. Rep. 2021, 26, 102857. [Google Scholar] [CrossRef]
- Quartermaine, J.; Olson, B.; Killebrew, A.E. Image-based modeling approaches to 2D and 3D digital drafting in archaeology at Tel Akko and Qasrin: Two case studies. J. East. Mediterr. Archaeol. Herit. Stud. 2014, 2, 110–127. [Google Scholar]
- Berggren, Å.; Dell’Unto, N.; Forte, M.; Haddow, S.; Hodder, I.; Issavi, J.; Lercari, N.; Mazzucato, C.; Mickel, A.; Taylor, J.S. Revisiting reflexive archaeology at Çatalhöyük: Integrating digital and 3D technologies at the trowel’s edge. Antiquity 2015, 89, 433–448. [Google Scholar] [CrossRef]
- Forte, M.; Dell’Unto, N.; Jonsson, K.; Lercari, N. Interpretation Process at Çatalhöyük using 3D. In Assembling Çatalhöyük, Themes in Contemporary Archaeology; Hodder, I., Marciniak, A., Eds.; Routledge: New York, NY, USA, 2015; pp. 43–57. [Google Scholar]
- Katsianis, M.; Tsipidis, S.; Kalisperakis, I. Enhancing excavation archives using 3D spatial technologies. In Archaeological Research in the Digital Age, Proceedings of the 1st Conference on Computer Applications and Quantitative Methods in Archaeology Greek Chapter (CAA-GR) Rethymno, Rethymno, Greece, 6–8 March 2014; Papadopoulos, C., Paliou, E., Chrysanthi, A., Kotoula, E., Sarris, A., Eds.; IMS-FORTH: Rethymno, Greece, 2015; pp. 46–54. [Google Scholar]
- Wilhelmson, H.; Dell’Unto, N. Virtual taphonomy: A new method integrating excavation and post-processing of human remains. Am. J. Phys. Anthropol. 2015, 157, 305–321. [Google Scholar] [CrossRef] [PubMed]
- Egglezos, D.; Moullou, D. Back-analysis sheds light on the history of the Acropolis Wall: The interpretation of a permanent structural failure. In Proceedings of the 15th European Conference on Soil Mechanics and Geotechnical Engineering, Athens, Greece, 12–15 September 2011; Anagnostopoulos, A., Pachakis, M., Tsatsanifos, C., Eds.; IOS PRESS: Athens, Greece, 2011; pp. 1841–1846. [Google Scholar] [CrossRef]
- ASCSA. Available online: https://www.ascsa.edu.gr/news/newsDetails/bruce-on-idig (accessed on 7 November 2023).
- Uildriks, M. iDig-Recording archaeology: A review. Internet Archaeol. 2016, 42. [Google Scholar] [CrossRef]
- INARI AIS. Available online: https://www.inari-software.com/ (accessed on 7 November 2023).
- Psarros, D.; Stamatopoulos, M.I.; Anagnostopoulos, C.N. Information Technology and Archaeological Excavations: A Brief Overview. Sci. Cult. 2022, 8, 147–167. [Google Scholar] [CrossRef]
- Rossi, C.; Achille, C.; Fassi, F.; Lori, F.; Rechichi, F.; Fiorillo, F. Digital Workflow to Support Archaeological Excavation: From the 3D Survey to the Websharing of Data. In Innovative Models for Sustainable Development in Emerging African Countries. Research for Development; Aste, N., Della Torre, S., Talamo, C., Adhikari, R., Rossi, C., Eds.; Springer Cham: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Wilson, A. The use of remote sensing and digital tools for cultural heritage management and archaeological research. Levant 2021, 53, 384–388. [Google Scholar] [CrossRef]
- Edgeworth, M. From spade-work to screen-work: New forms of archaeological discovery in digital space. In Visualization in the Age of Computerization; Carusi, A., Sissel Hoel, A., Webmoor, T., Woolgar, S., Eds.; Routledge: London, UK, 2014; pp. 40–58. [Google Scholar]
- Lukas, D.; Engel, C.; Mazzucato, C. Towards a living archive: Making multi layered research data and knowledge generation transparent. J. Field Archaeol. 2018, 43 (Suppl. S1), 19–30. [Google Scholar] [CrossRef]
- Vital, R.; Sylaiou, S. Digital survey: How it can change the way we perceive and understand heritage sites. Digit. Appl. Archaeol. Cult. Herit. 2022, 24, e00212. [Google Scholar] [CrossRef]
- Taylor, J.; Issavi, J.; Berggren, Å.; Lukas, D.; Mazzucato, C.; Tung, B.; Dell’Unto, N. “The rise of the machine”: The impact of digital tablet recording in the field at Çatalhöyük. Internet Archaeol. 2018, 47. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moullou, D.; Vital, R.; Sylaiou, S.; Ragia, L. Digital Tools for Data Acquisition and Heritage Management in Archaeology and Their Impact on Archaeological Practices. Heritage 2024, 7, 107-121. https://doi.org/10.3390/heritage7010005
Moullou D, Vital R, Sylaiou S, Ragia L. Digital Tools for Data Acquisition and Heritage Management in Archaeology and Their Impact on Archaeological Practices. Heritage. 2024; 7(1):107-121. https://doi.org/10.3390/heritage7010005
Chicago/Turabian StyleMoullou, Dorina, Rebeka Vital, Stella Sylaiou, and Lemonia Ragia. 2024. "Digital Tools for Data Acquisition and Heritage Management in Archaeology and Their Impact on Archaeological Practices" Heritage 7, no. 1: 107-121. https://doi.org/10.3390/heritage7010005
APA StyleMoullou, D., Vital, R., Sylaiou, S., & Ragia, L. (2024). Digital Tools for Data Acquisition and Heritage Management in Archaeology and Their Impact on Archaeological Practices. Heritage, 7(1), 107-121. https://doi.org/10.3390/heritage7010005