From CT Scans to Morphable Digital Models: Methodologies for Revealing and Preserving the Internal Structures of Artistic Figurines
Abstract
:1. Introduction
2. Related Works
3. Materials and Methods
3.1. Description
3.2. The Selection and Preparation of the Figurines
3.3. Equipment and Scan Parameters
3.4. Software
3.5. Material HU Density Values
3.6. Three-Dimensional Reconstruction
3.7. WebGL Presentation and Manipulation
4. Results
5. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Figurine | Series | Image Data | ||
---|---|---|---|---|
EPG_972 (xenofanis vertical–36073) | 06/05/2023, 1:22:47 μ.μ. CT, SCOUT MODE | 888 × 486 × 2 voxels | 0.55 × 0.60 × 265.64 mm | Original |
06/05/2023, 1:45:40 μ.μ. CT, HELICAL MODE | 512 × 512 × 561 voxels | 0.90 × 0.90 × 0.62 mm | Original | |
EPG_972 (xenofanis head–36073) | 06/05/2023, 1:28:45 μ.μ. CT, SCOUT MODE | 888 × 184 × 2 voxels | 0.55 × 0.60 × 100.55 mm | Original |
06/05/2023, 2:00:10 μ.μ. CT, HELICAL MODE | 512 × 512 × 169 voxels | 0.27 × 0.27 × 0.62 mm | Original | |
EPG_ΧA (alexandros small–36075) | 06/05/2023, 2:12:46 μ.μ. CT, SCOUT MODE | 888 × 413 × 2 voxels | 0.55 × 0.60 × 225.64 mm | Original |
06/05/2023, 2:14:37 μ.μ. CT, HELICAL MODE | 512 × 512 × 384 voxels | 0.81 × 0.81 × 0.62 mm | Original | |
EPG_ΧA (alexandros parts–36076) | 06/05/2023, 2:28:53 μ.μ. CT, SCOUT MODE | 888 × 404 × 2 voxels | 0.55 × 0.60 × 220.55 mm | Original |
06/05/2023, 2:28:53 μ.μ. CT, HELICAL MODE | 512 × 512 × 306 voxels | 0.45 × 0.45 × 0.62 mm | Original | |
EPG_102 (old man–36077) | 06/05/2023, 2:38:51 μ.μ. CT, SCOUT MODE | 888 × 613 × 2 voxels | 0.55 × 0.60 × 334.55 mm | Original |
06/05/2023, 2:40:57 μ.μ. CT, HELICAL MODE | 512 × 512 × 379 voxels | 0.70 × 0.70 × 0.62 mm | Original | |
EPG_102 (old man hand–36078) | 06/05/2023, 2:47:11 μ.μ. CT, SCOUT MODE | 888 × 321 × 2 voxels | 0.55 × 0.60 × 175.64 mm | Original |
06/05/2023, 2:48:42 μ.μ. CT, HELICAL MODE | 512 × 512 × 215 voxels | 0.24 × 0.24 × 0.62 mm | Original | |
EPG_672 (alexandros large –33079) | 06/05/2023, 2:53:51 μ.μ. CT, SCOUT MODE | 888 × 770 × 2 voxels | 0.55 × 0.60 × 420.55 mm | Original |
06/05/2023, 2:56:56 μ.μ. CT, HELICAL MODE | 512 × 512 × 605 voxels | 0.89 × 0.89 × 0.62 mm | Original | |
EPG_197 (cat-36080) | 06/05/2023, 3:03:11 μ.μ. CT, SCOUT MODE | 888 × 1550 × 2 voxels | 0.55 × 0.60 × 845.64 mm | Original |
06/05/2023, 3:05:05 μ.μ. CT, HELICAL MODE | 512 × 512 × 1379 voxels | 0.70 × 0.70 × 0.62 mm | Original | |
06/05/2023, 3:06:52 μ.μ. CT, HELICAL MODE | 512 × 512 × 41 voxels | 0.70 × 0.70 × 5.00 mm | Original |
References
- Benaki Museum. The Yannis Pappas Studio. Available online: https://www.benaki.org/index.php?option=com_buildings&view=building&id=5&Itemid=138&lang=el (accessed on 21 June 2024).
- Sakellariou, C.; Makris, D.; Karampinis, L. A Digital Study of the Morphological and Stability Issues of a Delicate Wax-based Artwork. Stud. Conserv. 2022, 68, 474–489. [Google Scholar] [CrossRef]
- Rich, J.C. The Materials and Methods of Sculpture; Dover Publications: New York, NY, USA, 1988. [Google Scholar]
- National Gallery of Art (NGA). Little Dancer Internal Construction. Article from the Catalog Edgar Degas Sculpture. 2010. Available online: https://www.nga.gov/features/modeling-movement/degas-internal-construction.html (accessed on 21 June 2024).
- Hughes, S. CT Scanning in Archaeology. In Computed Tomography—Special Applications; Saba, L., Ed.; IntechOpen: Rijeka, Croatia, 2011; pp. 57–70. [Google Scholar] [CrossRef]
- Auferherder, A. The Scientific Study of Mummies; Cambridge University Press: Cambridge, UK, 2003; Available online: https://assets.cambridge.org/97805218/18261/sample/9780521818261ws.pdf (accessed on 21 June 2024).
- Cox, S. A Critical Look at Mummy CT Scanning. Anat. Rec. 2015, 298, 1099–1110. [Google Scholar] [CrossRef] [PubMed]
- Cosmacini, P.; Piacentini, P. Notes on the history of the radiological study of Egyptian mummies: From X-rays to new imaging techniques. Radiol. Med. 2008, 113, 615–626. [Google Scholar] [CrossRef] [PubMed]
- Maravelia, A.; Bontozoglou, N.; Kalogerakou, K.; Couvaris, C.M.; Geroulanos, S. Application of smart infogramatics in Egyptology: The Athens mummy project as an example of effective interdisciplinary. Orient. Stud. 2019, 84, 127–169. [Google Scholar] [CrossRef]
- Lynnerup, N. Medical Imaging of Mummies and Bog Bodies—A Mini-Review. Gerontology 2010, 56, 441–448. [Google Scholar] [CrossRef]
- Bibb, R.; McKnight, L. Identification of bird taxa species in ancient Egyptian mummies: Part 2, a qualitative evaluation of the utility of CT scanning and 3D printing. J. Archaeol. Sci. Rep. 2022, 46, 103668. [Google Scholar] [CrossRef]
- Sutherland, M.L. Use of Computed Tomography scanning in a ‘virtual’ bioarchaeology of care analysis of a Central Coast Peruvian mummy bundle. Int. J. Paleopathol. 2019, 25, 129–138. [Google Scholar] [CrossRef]
- Ventura, L.; Fornaciari, G.; Calabrese, A.; Arrizza, L.; Fornaciari, A. Paleopathology of a 19th century mummy of a nobleman from Popoli, central Italy. Med. Hist. 2020, 4, 29–34. [Google Scholar]
- Coppa, A.; Bondioli, L.; Cucina, A.; Frayer, D.W.; Jarrige, C.; Jarrige, J.-F.; Quivron, G.; Rossi, M.; Vidale, M.; Macchiarelli, R. Early Neolithic tradition of dentistry Flint tips were surprisingly effective for drilling tooth enamel in a prehistoric population. Nature 2006, 440, 755–756. [Google Scholar] [CrossRef]
- Piombino-Mascali, D.; Jankauskas, R.; Zink, A.R.; Sergio Todesco, M.; Aufderheide, A.C.; Panzer, S. Paleoradiology of the Savoca Mummies, Sicily, Italy (18th–19th Centuries AD). Anat. Rec. 2015, 298, 988–1000. [Google Scholar] [CrossRef]
- Ventura, L.; Bruno, F.; Barile, A. Bilateral fabella in the mummy of the Blessed Jean Bassand (c.1360-1445). A unique description in ancient human remains. Int. J. Osteoarchaeol. 2021, 31, 1276–1279. [Google Scholar] [CrossRef]
- Karapanagiotou, A.V.; Lazaris, P.; Grigoraki, A.; Nikolentzos, K. The collection of Egyptian antiquities in the National Arcaeological Museum and the Athens mummy project: A preliminary report. J. Hell. Inst. Egyptol. (JHIE) 2021, 4, 29–40. [Google Scholar] [CrossRef]
- Spennemann, D.H.R.; Singh, C.L. Computed Tomography Analysis of the Manufacture of Cast Head-Bust Figurines by Patricia ‘Pat’ Elvins (1922–2011). Heritage 2023, 6, 2268–2291. [Google Scholar] [CrossRef]
- Sowada, K.; Davey, J. Computerised Tomography (CT) scans of a mummified male head from the Ptolemaic period. In Guardian of Ancient Egypt Studies in Honor of Zahi Hawass Volume III; Kamrin, J., Bárta, M., Ikram, S., Lehner, M., Megahed, M., Eds.; Charles University in Prague: Prague, Czech Republic, 2020; pp. 1511–1526. [Google Scholar]
- Yatsishina, E.B.; Vasilyev, S.V.; Vasilieva, O.A.; Galeev, R.M.; Dyuzheva, O.P.; Kovalchuk, M.V. CT-Scanning Analysis of the Inner Structure of Ancient Egyptian Mummy. Crystallogr. Rep. 2020, 65, 1064–1072. [Google Scholar] [CrossRef]
- Longo, S.; Mormina, E.; Granata, F.; Mallamace, D.; Longo, M.; Capuani, S. Investigation of an Egyptian Mummy board by Using Clinical Multi-slice Computed Tomography. Stud. Conserv. 2018, 63, 383–390. [Google Scholar] [CrossRef]
- Maher, M.A. X-ray computed tomography of a late period falcon bronze coffin. Radiat. Phys. Chem. 2019, 166, 108475. [Google Scholar] [CrossRef]
- Minozzi, S.; Giuffra, V.; Bagnoli, J.; Paribeni, E.; Giustini, D.; Caramella, D.; Fornaciari, G. An investigation of Etruscan cremations by Computed Tomography (CT). Antiquity 2010, 84, 195–201. [Google Scholar] [CrossRef]
- Saleem, S.N.; Seddik, S.A.E.; El-Halwagy, M. Scanning and three-dimensional-printing using computed tomography of the “Golden Boy” mummy. Front. Med. 2023, 9, 028377. [Google Scholar] [CrossRef]
- Cesarani, F.; Martina, M.C.; Grilletto, R.; Boano, R.; Roveri, A.M.; Capussotto, V.; Giuliano, A.; Celia, M.; Gandini, G. Facial reconstruction of a wrapped Egyptian mummy using MDCT. AJR Am. J. Roentgenol. 2004, 183, 755–758. [Google Scholar] [CrossRef]
- Morigi, M.P.; Casali, F.; Bettuzzi, M.; Brancaccio, R.; D’Errico, V. Application of X-ray Computed Tomography to cultural heritage diagnostics. Appl. Phys. A 2010, 100, 653–661. [Google Scholar] [CrossRef]
- Bossema, F.; Coban, S.; Kostenko, A.; van Duin, P.; Dorscheid, J.; Garachon, I.; Hermens, E.; van Liere, R.; Batenburg, K. Integrating expert feedback on the spot in a time-efficient explorative CT scanning workflow for cultural heritage objects. J. Cult. Herit. 2021, 49, 38–47. [Google Scholar] [CrossRef]
- Re, A.; Corsi, J.; Demmelbauer, M.; Martini, M.; Mila, G.; Ricci, C. X-ray tomography of a soil block: A useful tool for the restoration of archaeological finds. Herit. Sci. 2015, 3, 4. [Google Scholar] [CrossRef]
- Albertin, F.; Bettuzzi, M.; Brancaccio, R.; Morigi, M.P.; Casali, F. X-Ray Computed Tomography In Situ: An Opportunity for Museums and Restoration Laboratories. Heritage 2019, 2, 2028–2038. [Google Scholar] [CrossRef]
- Andonova, M. Ancient basketry on the inside: X-ray computed microtomography for the non-destructive assessment of small archaeological monocotyledonous fragments: Examples from Southeast Europe. Herit. Sci. 2021, 9, 158. [Google Scholar] [CrossRef]
- Applbaum, N.; Applbaum, Y. The Use of Medical Computed Tomography (CT) Imaging in the Study of Ceramic and Clay Archaeological Artifacts from the Ancient Near East. In X-rays for Archaeolog; Uda, M., Demortier, G., Nakai, I., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 231–245. [Google Scholar] [CrossRef]
- Sallam, A.M.; Hemeda, S.; Toprak, M.S.; Muhammed, M.; Hassan, M.; Uheida, A. CT Scanning and MATLAB Calculations for Preservation of Coptic Mural Paintings in Historic Egyptian Monasteries. Sci. Rep. 2019, 9, 3903. [Google Scholar] [CrossRef]
- Morigi, M.P.; Casali, F.; Bettuzzi, M.; Bianconi, D.; Brancaccio, R.; Cornacchia, S.; Pasini, A.; Rossi, A.; Aldrovandi, A.; Cauzzi, D. CT investigation of two paintings on wood tables by Gentile da Fabriano. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 580, 735–738. [Google Scholar] [CrossRef]
- Casali, F.; Bettuzzi, M.; Bianconi, D.; Brancaccio, R.; Cornacchia, S.; Cucchi, C.; Di Nicola, E.; Fabbri, A.; Lanconelli, N.; Morigi, M.P.; et al. X-ray computed tomography of an ancient large globe. In Optical Methods for Arts and Archaeology; SPIE: Bellingham, WA, USA, 2005; Volume 5857. [Google Scholar] [CrossRef]
- Badde, A.; Illerhaus, B. Three Dimensional Computerized Microtomography in the Analysis of Sculpture. Scanning 2008, 30, 16–26. [Google Scholar] [CrossRef]
- Ghysels, M. CT Scans in Art Work Appraisal. 2005. Available online: https://www.asianart.com/articles/ghysels/index.html (accessed on 21 June 2024).
- Karl, S.; Jungblut, D.; Mara, H.; Wittum, G.; Krömker, S. Insights into manufacturing techniques of archaeological pottery: Industrial X-ray computed tomography as a tool in the examination of cultural material. In Craft and Science: International Perspectives on Archaeological Ceramics, UCL Qatar Series in Archaeology and Cultural Heritage; Martinón-Torres, M., Ed.; Bloomsbury Qatar Foundation: Doha, Qatar, 2014; pp. 253–262. [Google Scholar] [CrossRef]
- Kozatsas, J.; Kotsakis, K.; Sagris, D.; David, K. Inside out: Assessing pottery forming techniques with micro-CT scanning. An example from Middle Neolithic Thessaly. J. Archaeol. Sci. 2018, 100, 102–119. [Google Scholar] [CrossRef]
- Lipkin, S.; Karjalainen, V.P.; Puolakka, H.L.; Finnilä, M.A. Advantages and limitations of micro-computed tomography and computed tomography imaging of archaeological textiles and coffins. Herit. Sci. 2023, 11, 231. [Google Scholar] [CrossRef]
- Miles, J.; Mavrogordato, M.; Sinclair, I.; Hinton, D.; Boardman, R.; Earl, G. The use of computed tomography for the study of archaeological coins. J. Archaeol. Sci. Rep. 2016, 6, 35–41. [Google Scholar] [CrossRef]
- Nemoto, A. June 2. CT Scan Reveals Tiny Statue inside Ancient Buddhist Workin Kyoto. The Asian Shimbun. 2020. Available online: https://www.asahi.com/ajw/articles/photo/30729105 (accessed on 21 June 2024).
- Vigorelli, L.; Re, A.; Guidorzi, L.; Brancaccio, R.; Bortolin, C.; Grassi, N.; Mila, G.; Pastrone, N.; Sacchi, R.; Grassini, S.; et al. The study of ancient archaeological finds through X-ray tomography: The case of the “Tintinnabulum” from the Museum of Anthropology and Ethnography of Torino. J. Phys. Conf. Ser. 2022, 2204, 012034. [Google Scholar] [CrossRef]
- Klein, C. CT Scan Reveals Mummified Monk Inside Ancient Buddha Statue. History, 23 August 2023. Available online: https://www.history.com/news/ct-scan-reveals-mummified-monk-inside-ancient-buddha-statue (accessed on 21 June 2024).
- Baumann, R.; Porter, C.D.; Seales, W.B. The use of Micro-CT in the study of archeological artifacts. In Proceedings of the 9th International Conference on NDT of Art, Jerusalem, Israel, 25–30 May 2008. [Google Scholar]
- Bello, S.M.; De Groote, I.; Delbarre, G. Application of 3-dimensional microscopy and micro-CT scanning to the analysis of Magdalenian portable art on bone and antler. J. Archaeol. Sci. 2013, 40, 2464–2476. [Google Scholar] [CrossRef]
- Sirr, S.A.; Waddle Luthier, J.R. Use of CT in detection of internal damage and repair and determination of authenticity in high quality bowed stringed instruments. Radiogr. Sci. Exhib. 1999, 19, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Bettuzzi, M.; Casali, F.; Morigi, M.P.; Brancaccio, R.; Carson, D.; Chiari, G.; Maish, J. Computed tomography of a medium size Roman bronze of Cupid. Appl. Phys. A 2015, 118, 1161–1169. [Google Scholar] [CrossRef]
- Sabino, R.C.; Vannier, M.W. The Slice is Right: Medical Imaging for Authentication of West African Ceramics. In Proceedings of the Recent Advances in Glass and Ceramics Conservation 2019, Interim Meeting of the ICOM-CC Working Group, London, UK, 5–7 September 2019. [Google Scholar]
- Björngrim, N.; Myronycheva, O.; Fjellström, P.A. The use of large-scale X-ray computed tomography for the evaluation of damaged structural elements from an old timber bridge. Wood Mater. Sci. Eng. 2022, 17, 1028–1029. [Google Scholar] [CrossRef]
- Seguin, F.H. High resolution computed tomography and digital radiography of archaeological and art—Historical objects. Mater. Res. Soc. Symp. Proc. 1991, 185, 65–72. [Google Scholar] [CrossRef]
- Ngan-Tillard, D.J.M.; Huisman, D.J.; Corbella, F.; Van Nass, A. Over the rainbow? Micro-CT scanning to non-destructively study Roman and early medieval glass bead manufacture. J. Archaeol. Sci. 2018, 98, 7–21. [Google Scholar] [CrossRef]
- Bill, J.; Daly, A.; Johnsen, O.; Dalen, K.S. DendroCT—Dendrochronology without damage. Dendrochronologia 2012, 30, 223–230. [Google Scholar] [CrossRef]
- Okochi, T. A non destructive dendrochronological study on wooden art sculptures using micro-focus X-ray Computed Tomography (CT) Reviewing two methods for scanning objects of different sizes. Dendrochronologia 2016, 38, 1–10. [Google Scholar] [CrossRef]
- Daly, A.; Streeton, N.L.W. Non-invasive dendrochronology of late-medieval objects in Oslo: Refinement of a technique and discoveries. Appl. Phys. A 2017, 123, 431. [Google Scholar] [CrossRef]
- Domínguez-Delmás, M.; Bossema, F.G.; van der Mark, B.; Kostenko, A.; Coban, S.B.; van Daalen, S.; van Duin, P.; Batenburg, K.J. Dating and provenancing the Woman with lantern sculpture—A contribution towards attribution of Netherlandish art. J. Cult. Herit. 2021, 50, 179–187. [Google Scholar] [CrossRef]
- Wilson, P.F.; Smith, M.P.; Hay, J.; Warnett, J.M.; Attridge, A.; Williams, M.A. X-ray computed tomography (XCT) and chemical analysis (EDX and XRF) used in conjunction for cultural conservation: The case of the earliest scientifically described dinosaur Megalosaurus bucklandii. Herit. Sci. 2018, 6, 56. [Google Scholar] [CrossRef] [PubMed]
- Bugani, S.; Camaiti, M.; Morselli, L.; Vande Casteele, E.; Cloetens, P.; Janssens, K. X-ray computed tomography as a non-destructive tool for stone conservation. In Proceedings of the 9th International Conference on NDT of Art, Jerusalem, Israel, 25–30 May 2008. [Google Scholar]
- Rankin, K.E.; Hazell, Z.J.; Middleton, A.M.; Mavrogordato, M.N. Micro-focus X-ray CT scanning of two rare wooden objects from the wreck of the London, and its application in heritage science and conservation. J. Archaeol. Sci. Rep. 2021, 39, 103158. [Google Scholar] [CrossRef]
- Jansen, R.; Poulus, M.; Kottman, J.; de Groot, T.; Huisman, D.; Stoker, J. CT: A New nondestructive method for visualizing and characterizing ancient roman glass fragments in situ in blocks of soil. Radiographics 2006, 26, 1837–1844. [Google Scholar] [CrossRef]
- Johnston, D. CT Scan for Free. Nautical Archaelogical Society. Available online: https://www.nauticalarchaeologysociety.org/ct-scan-for-free (accessed on 21 June 2024).
- Bettuzzi, M.; Brancaccio, R.; Casali, F.; Cornacchia, S.; Giordano, M.; Morigi, M.P.; Pasini, A.; Romani, D. Innovative systems for digital radiography and computed tomography: Applications to cultural heritage diagnostics. In Physics Methods in Archaeometry; Martini, M., Milazzo, M., Piacentini, M., Eds.; IOSPress: Amsterdam, The Netherlands, 2004; pp. 461–470. [Google Scholar]
- Vasilyev, S.V.; Vasilyeva, O.A.; Galeev, R.M.; Dyuzheva, O.P.; Novikov, M.; Chichaev, I.A.; Yatsishina, E.B. 3D reconstruction of the ancient Egyptian mummy skeleton from the Pushkin state museum of fine arts(I,11240). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W12, 225–229. [Google Scholar] [CrossRef]
- Fried, P.; Woodward, J.; Brown, D.; Harvell, D.; Hanken, J. 3D scanning of antique glass by combining photography and computed tomography. Digit. Appl. Archaeol. Cult. Herit. 2020, 18, e00147. [Google Scholar] [CrossRef]
- Bertolini, M.; Rossoni, M.; Colombo, G. Operative Workflow from CT to 3D Printing of the Heart: Opportunities and Challenges. Bioengineering 2021, 8, 130. [Google Scholar] [CrossRef]
- Byrne, N.; Velasco Forte, M.; Animesh, T.; Valverde, I.; Hussain, T. A systematic review of image segmentation methodology, used in the additive manufacture of patient-specific 3D printed models of the cardiovascular system. JRSM Cardiovasc. Dis. 2016, 5, 1–9. [Google Scholar] [CrossRef]
- Bücking, T.M.; Hill, E.R.; Robertson, J.L.; Maneas, E.; Plumb, A.A.; Nikitichev, D.I. From medical imaging data to 3D printed anatomical models. PLoS ONE 2017, 12, e0178540. [Google Scholar] [CrossRef]
- Osti, F.; Santi, G.M.; Neri, M.; Liverani, A.; Frizziero, L.; Stilli, S.; Maredi, E.; Zarantonello, P.; Gallone, G.; Stallone, S.; et al. CT Conversion Workflow for Intraoperative Usage of Bony Models: From DICOM Data to 3D Printed Models. Appl. Sci. 2019, 9, 708. [Google Scholar] [CrossRef]
- Robles, M.; Carew, R.M.; Morgan, R.M.; Rando, C. A step-by-step method for producing 3D crania models from CT data. Forensic Imaging 2020, 23, 200404. [Google Scholar] [CrossRef]
- Sainsbury, B.; Wilz, O.; Ren, J.; Green, M.; Fergie, M.; Rossa, C. Preoperative Virtual Reality Surgical Rehearsal of Renal Access during Percutaneous Nephrolithotomy: A Pilot Study. Electronics 2022, 11, 1562. [Google Scholar] [CrossRef]
- Wake, N.; Rosenkrantz, A.; Huang, W.; Wysock, J.; Taneja, S.; Sodickson, D.; Chandarana, H. A workflow to generate patient-specific three-dimensional augmented reality models from medical imaging data and example applications in urologic oncology. 3D Print. Med. 2021, 7, 34. [Google Scholar] [CrossRef] [PubMed]
- Kamio, T.; Onda, T. Fused Deposition Modeling 3D Printing in Oral and Maxillofacial Surgery: Problems and Solutions. Cureus 2022, 14, e28906. [Google Scholar] [CrossRef] [PubMed]
- Ravi, T.; Ranganathan, R.; Pugalendhi, A.; Arumugam, S. 3D Printed Patient Specific Models from Medical Imaging—A General Workflow. Mater. Today Proc. 2020, 22, 1237–1243. [Google Scholar] [CrossRef]
- Otton, J.; Birbara, N.; Hussain, T.; Greil, G.; Foley, T.; Pather, N. 3D printing from cardiovascularCT: A practical guide and review. Cardiovasc. Diagn. Ther. 2017, 7, 507–526. [Google Scholar] [CrossRef]
- Robinson, R.; Valindria, V.; Bai, W.; Oktay, O.; Kainz, B.; Suzuki, H.; Sanghvi, M.; Aung, N.; Paiva, J.; Zemrak, F.; et al. Automated Quality Control in Image Segmentation: Application to the UK Biobank Cardiac MR Imaging Study. J. Cardiovasc. Reson. 2019, 21, 18. [Google Scholar] [CrossRef]
- Stanford Medicine. Creating STL Files for 3D Printing. 3D and Quantitive Imaging Laboratory. Department of Radiology. Available online: https://3dqlab.stanford.edu/creating-stl-files-for-3d-printing (accessed on 21 June 2024).
- Khan, U.; Yasin, A.; Abid, M.; Awan, I.S.; Khan, S.A. A Methodological Review of 3D Reconstruction Techniques in Tomographic Imaging. J. Med. Syst. 2018, 42, 190. [Google Scholar] [CrossRef]
- RadiAnt Dicom Viewer. Available online: https://www.radiantviewer.com/ (accessed on 21 June 2024).
- Cignoni, P.; Callieri, M.; Corsini, M.; Dellepiane, M.; Ganovelli, F.; Ranzuglia, G. MeshLab: An Open-Source Mesh Processing Tool. In Proceedings of the European Interdisciplinary Cybersecurity Conference, Salerno, Italy, 2–4 July 2008; pp. 129–136. [Google Scholar]
- The WebGL API—Khronos Group. Available online: https://www.khronos.org/api/webgl (accessed on 21 June 2024).
- Bardis, G.; Koumpouros, Y.; Sideris, N.; Voulodimos, A.; Doulamis, N. WebGL enabled smart avatar warping for bodyweight animated evolution. Entertain. Comput. 2019, 32, 100324. [Google Scholar] [CrossRef]
- Makris, D.; Sakellariou, C.; Karampinis, L. Emerging materiality through dynamic digital conservation. Digit. Appl. Archaeol. Cult. Herit. 2021, 23, e00198. [Google Scholar] [CrossRef]
- Bolliger, S.; Oesterhelweg, L.; Spendlove, D.; Ross, S.N.; Thali, M. Is Differentiation of Frequently Encountered Foreign Bodies in Corpses Possible by Hounsfield Density Measurement? J. Forensic Sci. 2009, 54, 1119–1122. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Lee, H.J.; Kang, S.G. The Clinical Significance of Hounsfield Number of Metallic and Non-Metallic Foreign Bodies in the Soft Tissue. Soonchunhyang Med. Sci. 2010, 16, 226–230. [Google Scholar]
- Paulis, L.E.; Kroll, J.; Heijnens, L.; Huijnen, M.; Gerretsen, R.; Backes, W.H.; Hofman, P.A.M. Is CT bulletproof? On the use of CT for characterization of bullets in forensic radiology. Int. J. Leg. Med. 2019, 133, 1869–1877. [Google Scholar] [CrossRef] [PubMed]
- Baydoun, A.M.R.; Hamade, R.F. Differentiating and predicting HU values of 12 aluminum alloys via X-ray computed tomography. Mater. Chem. Phys. 2023, 301, 127611. [Google Scholar] [CrossRef]
Figurine | Material | HU Range | Mean and SD—Weighted Mean | ||||
---|---|---|---|---|---|---|---|
EGP_962 (xnph) | Wax | −31 | - | −108 | −65 | ±8.6 | −65 |
Plasticine | 1242 | - | 1188 | 1360 | ±29.4 | 1362 | |
Silicon | Measurement inability | ||||||
Wooden base | −467 | - | −771 | −655 | ±54.0 | −653 | |
Armature: | |||||||
Main wire | 3071 | - | 2723 | 3052 | ±38.6 | 3060 | |
Wire | 3071 | - | 1727 | 3068 | ±7.3 | 3071 | |
Nail | 3071 | - | 3071 | 3071 | ±0.0 | 3068 | |
Head fragment | Wax | −27 | - | −127 | −88 | ±17.5 | −99 |
Plasticine | 1770 | - | 1404 | 1729 | ±80.7 | 1795 | |
Armature | 3071 | - | 3071 | 3071 | ±0.0 | 3071 | |
EGP_ 102 (old man) | Wax | 6 | - | −163 | −68 | ±23.2 | −67 |
Plasticine | 1342 | - | 1096 | 1249 | ±39.4 | 1249 | |
Wooden base | −338 | - | −742 | −590 | ±64.4 | −589 | |
Armature: | |||||||
Wire | 3071 | - | 2604 | 3062 | ±23.4 | 3052 | |
Nail | 3071 | - | 3071 | 3071 | ±0.0 | 3071 | |
Plaster | 554 | - | 103 | 412 | ±35.2 | 414 | |
Hand fragment | Wax | −20 | - | −137 | −56 | ±15.1 | −58 |
Plasticine | 1463 | - | 1043 | 1386 | ±33.8 | 1374 | |
Armature: wire | 3071 | - | 3071 | 3071 | ±0.0 | 3071 | |
EGP_ΧA (small Alex) | Mazut | −21 | - | −175 | −62 | ±13.7 | −63 |
Armature: | |||||||
Wire | 3071 | - | 2771 | 3069 | ±4.1 | 3069 | |
Vertical stand | 3071 | - | 3065 | 3071 | ±0.0 | 3071 | |
Nails | 3071 | - | 3071 | 3071 | ±0.1 | 3071 | |
Wooden base | |||||||
A1 | −285 | - | −379 | −340 | ±12.3 | −339 | |
A2 | −355 | - | −492 | −425 | ±22.3 | −426 | |
B1 | −319 | - | −421 | −366 | ±17.0 | −368 | |
B2 | −355 | - | −495 | −424 | ±19.7 | −420 | |
Fragments | Mazut | −8 | - | −109 | −62 | ±16.7 | −64 |
Armature | 3071 | - | 2720 | 3068 | ±14.0 | 3068 | |
EGP_ 672 (large Alex) | Plasticine | 961 | - | −681 | 858 | 36.5 | 862 |
Wooden base: | |||||||
A1 | −500 | - | −746 | −611 | ±27.2 | −618 | |
A2 | −451 | - | −734 | −598 | ±40.0 | −607 | |
A3 | −471 | - | −605 | −556 | ±17.2 | −586 | |
A4 | −362 | - | −619 | −519 | ±31.0 | −512 | |
Armature: | |||||||
Horizontal E1 | 3071 | - | 2384 | 3069 | ±7.3 | 3070 | |
Horizontal E2 | 3071 | - | 3071 | 3071 | ±0.0 | 3071 | |
Vertical stand | 3071 | - | 2350 | 2918 | ±139.1 | 2918 | |
Binding wire | 3071 | - | 1557 | 3024 | ±54.4 | 3010 | |
Wires (radial) | 3071 | - | 2620 | 3070 | ±3.0 | 3070 | |
Wires ø 1.4–1.6 | 3071 | - | 2403 | 3061 | ±26.2 | 3058 | |
Restoration pins | 3071 | - | 1915 | 2919 | ±104.6 | 2968 | |
EGP_ 197 (cat) | Mazut | −22 | -- | −90 | −56 | ±6.7 | −55 |
Wooden base | −426 | - | −788 | −637 | ±40.6 | −581 | |
Wooden vertical element | −309 | - | −520 | −426 | ±39.1 | −444 | |
Wooden horizontal element | −399 | - | −522 | −466 | ±15.5 | −462 | |
Wooden spine reinforcement | 510 | - | −203 | 116 | ±29.3 | 117 | |
Armature: | |||||||
Wire | 3071 | - | 3071 | 3071 | ±0.0 | 3071 | |
Nails | 3071 | - | 3071 | 3071 | ±0.0 | 3071 | |
Plaster | 1018 | - | 260 | 663 | ±89.4 | 669 | |
Element on cat’s head | 1569 | - | 743 | 1284 | ±83.3 | 1238 |
Material | Mean Value | Standard Deviation |
---|---|---|
Wax | −69 | ±13 |
Plasticine | 1431 | ±46 |
Plasticine in EGP_672 | 858 | ±36 |
Mazut | −60 | ±12 |
Wooden elements | −509 | ±31 |
Metallic elements | 3061 | ±10 |
Plaster | 637 | ±62 |
Figurine | WL-WW | Materials Included in the 3D Model |
---|---|---|
EGP_ 962 (xnph) | −70–144 | Metallic armature, plasticine, wax |
1178–100 | Metallic armature, plasticine | |
3071–50 | Metallic armature | |
Fragment (head) | −108–132 | Metallic armature, plasticine, wax |
1100–140 | Metallic armature, plasticine | |
3071–50 | Metallic armature | |
EGP_102 (old man) | −294–181 | All materials, not wood with noise |
−100–200 | Metallic armature, plasticine, wax | |
1200–400 | Metallic armature, plasticine | |
3071–50 | Metallic armature | |
Fragment (arm) | −150–100 | Metallic armature, plasticine, wax |
1200–300 | Metallic armature, plasticine | |
3071–50 | Metallic armature | |
EGP_ΧA (small Alex) | −62–200 | Metallic armature, mazut |
2936–272 | Metallic armature | |
Fragments | −100–200 | Metallic armature, mazut |
3061–12 | Metallic armature | |
EGP_672 (large Alex) | 0–200 | Metallic armature, plasticine |
860–200 | Metallicarmature, part of plasticine | |
3071–200 | Metallic armature | |
EGP_ 197 (cat) | −500–12 | Metallicarmature, plaster, spine, mazut, wood |
−139–16 | Metallic armature, plaster, spine element, mazut | |
116–29 | Metallicarmature, plaster, spine element, and noise | |
663–100 | Metallic armature, plaster | |
3071–100 | Metallic armature |
Material | Range of CT Numbers (HU) | Average of CT Numbers (HU) | ||
---|---|---|---|---|
Stainless steel | 1071–3071 A | 2222 ± 737 A | ||
Steel | 1972–2249 B | 2034 ± 63 B | ||
Titanium | 2840–3071 A | 2921 ± 218 A | ||
Gold | 2748–3071 A | 3071 B | 2908 ± 325 A | 3071 ± 0 B |
Copper | 2812–3071 A | 1108–1698 Β | 2909 ± 228 A | 1403 ± 537 Β |
Brass | 2696–3071 B | 3067 ± 145.3 B | ||
Lead | 1901–3071 A | 3030–3071 B | 2758 ± 539 A | 3067 ± 83 B |
Silver | 3065–3071 A | 1556–2255 Β | 3069 A | 1695 ± 248 Β |
Aluminum | 223–248 Β | 233 ± 24 Β | ||
HU adsortion in regard to the atomic number of metals C: | ||||
Z ≤ 13 (Aluminum (3–5% Cu)): Z = 25–30 (Iron; Stainless steel; Coper; Brass (60–80% Cu; 20–40% Zn) Z ≥ 74 (Tungsten; Lead) | HU < 300 HU = 1300–2000 HU > 3000 | |||
Silicon | 195–755 A | 278 ± 120 A | ||
Glass | 105–2093 A | 947 ± 523 A | ||
Glass (bottle) | 199–241 Β | 209 ± 41 Β | ||
Glass (window) | 330–810 Β | 49 ± 56 Β | ||
Medpor | 19–53 A | 32 ± 5 A | ||
Stone | 735–1832 A | 1320 ± 280 A | ||
Limestone | 252–294 Β | 276 ± 41 Β | ||
Marble | 181–278 Β | 229 ± 82 Β | ||
Shale | 182–267 Β | 221 ± 33 Β | ||
Granite | 173–283 Β | 213 ± 110 Β | ||
Quartzite | 142–193 Β | 175 ± 40 Β | ||
Sandstone | 140–191 Β | 163 ± 42 Β | ||
Asphalt | 152–299 Β | 225 ± 109 B | ||
Cement | 75–196 Β | 142 ± 82 Β | ||
Tile | 144–174 Β | 155 ± 15 Β | ||
Pottery | 124–158 Β | 142 ± 18 Β | ||
Polystyrene | −62–35 A | −47 A | ||
Wood | −437–491 A | −464 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakellariou, C.; Makris, D.; Bardis, G. From CT Scans to Morphable Digital Models: Methodologies for Revealing and Preserving the Internal Structures of Artistic Figurines. Heritage 2024, 7, 5641-5659. https://doi.org/10.3390/heritage7100266
Sakellariou C, Makris D, Bardis G. From CT Scans to Morphable Digital Models: Methodologies for Revealing and Preserving the Internal Structures of Artistic Figurines. Heritage. 2024; 7(10):5641-5659. https://doi.org/10.3390/heritage7100266
Chicago/Turabian StyleSakellariou, Christina, Dimitrios Makris, and Georgios Bardis. 2024. "From CT Scans to Morphable Digital Models: Methodologies for Revealing and Preserving the Internal Structures of Artistic Figurines" Heritage 7, no. 10: 5641-5659. https://doi.org/10.3390/heritage7100266
APA StyleSakellariou, C., Makris, D., & Bardis, G. (2024). From CT Scans to Morphable Digital Models: Methodologies for Revealing and Preserving the Internal Structures of Artistic Figurines. Heritage, 7(10), 5641-5659. https://doi.org/10.3390/heritage7100266