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Abstract: Throughout history, natural stone has been a crucial building material due to its strength,
durability, and aesthetic qualities. Today, it continues to be a valuable resource, representing both a
cultural heritage asset and a significant economic material. However, the increasing frequency of heat
waves and fires driven by climate change poses a growing threat to stone building materials. This
paper reviews the scientific attention given to the effects of high temperatures on Global Heritage
Stone Resources (GHSRs), an international classification designed to enhance the recognition and
status of building stones. Through a systematic SCOPUS search with refined filtering criteria,
the study aims to quantify the existing research on these heritage stones. The search applied the
standardized lithotype terms from GHSR publications to ensure consistency, followed by the exclusion
of irrelevant terms when identified. Additionally, a relevance filter was applied to restrict the number
of articles per lithotype and ensure that only the most pertinent studies were considered. Key
findings from the literature reveal that exposure to high temperatures (ranging from 200 ◦C to 900 ◦C)
significantly affected the studied GHSRs, leading to thermal micro-fissuring, increased porosity, and
changes in water absorption, which compromise the mechanical properties of the stones. Moreover,
these conditions can result in irreversible chemical transformations, exacerbating the deterioration
of cultural heritage assets. The study emphasizes the critical need for research to better understand
how these stone materials behave when exposed to high temperatures. It also provides a relevant
framework for future investigations aimed at predicting and mitigating the effects of external threats
such as fires.

Keywords: global heritage stone resources; stone-built heritage; high temperature behavior;
preservation

1. Introduction

In a world where climate change is increasing the frequency of fires, understanding the
resilience of natural stone to high temperatures is both a scientific and global concern. This
issue is closely related to its historical application and its cultural heritage value. Through-
out history, stone has been used for various urban infrastructure needs, including road
construction [1], facade cladding, ashlar or masonry walls [2], and for decorative purposes
and sculptural endeavors [3]. Natural stone is essential for preserving and integrating
architectural heritage, and its continued use in modern applications highlights its inherent
sustainability, even amidst the prevalence of concrete in contemporary construction [1].

As a building material, natural stone is considered one of the Earth’s most sustainable
mineral resources [2]. It offers greater durability than alternative materials while consuming
less energy and producing fewer toxic by-products [3]. Global production of natural
stone is increasing due to ongoing research. Understanding its behavior under different
conditions has gained attention in recent decades for its performance in civil engineering
and architecture [4–7].
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As the world prioritizes sustainable development, studying stone materials is crucial
for addressing both immediate challenges and the long-term goals outlined in the Sus-
tainable Development Goals (SDGs) [8]. This framework underscores the importance of
natural resources like stone in fostering economic prosperity, environmental protection, and
climate resilience. Understanding how stone materials perform under high temperatures
can enhance structural integrity, promote the design of fire-resistant buildings, and improve
safety regulations, thereby safeguarding human lives and minimizing economic losses.

Climate change projections suggest an increase of future fire risk. Rising global
temperatures are directly linked to hotter and drier environments and increased severity
and frequency of fire events [1,9]. Additionally, high temperatures are associated with fire
events in buildings, often related to electrical issues.

Studying the impact of fire on stone materials can contribute to reducing this risk. In-
corporating fire-resilient strategies into infrastructure planning enhances overall resilience,
aligning with SDG Goal 9, which focuses on building resilient infrastructure and fostering
innovation. Additionally, understanding stone behavior under high temperatures is vital
for the preservation and restoration of cultural heritage sites, ensuring their longevity for
future generations.

Integrating stone that performs well under high temperatures into urban infrastructure
can improve disaster risk reduction efforts and protect urban populations, aligning with
SDG Goal 11 and 13. Goal 11 focuses on protecting cultural and natural heritage, while
Goal 13 addresses the impacts of climate change, focusing on combating climate change
and its effects.

Given the non-renewable nature of stone and its substantial cultural, social, and eco-
nomic value [10,11], it is crucial to ensure its protection through informed material choices
and effective preservation techniques. Scientific research on stone materials is essential
for preserving heritage against the effects of time, physical forces, and environmental
conditions. Heritage stones are found in architectural structures worldwide, representing
various historical periods and styles [12].

Despite the recognized importance of Global Heritage Stone Resources (GHSR) and
given their key role of natural stone in heritage, it is imperative to understand their behavior
under extreme conditions, especially in the context of increasing climate change impacts.
This comprehensive review aims to evaluate the attention given by the scientific community
to the challenges posed by high temperatures on GHSR.

By highlighting existing research, this paper identifies critical challenges where further
study is needed to ensure the preservation and resilience of these important materials,
thereby improving predictions and mitigation strategies for potential damage from events
such as fires.

Given the critical importance of GHSR, no comprehensive approach has yet been
applied to assess the extent of research focused on their response to high temperatures.
This paper seeks to fill this gap by providing a detailed review of the current state of
knowledge and highlighting the need for additional research.

2. Global Heritage Stone Resources

The concept of GHSR was initially introduced by the International Association of
Engineering Geology and the Environment (IAEG), specifically through Commission
10 - Building Stones and Ornamental Rocks (C-10), in late 2007. The concept underwent
thorough discussion by the Executive Committee of IAEG throughout 2008, culminating
in its formal deliberation during a meeting held in Madrid in September of that year.
Furthermore, the proposal for GHSR was introduced at the 33rd International Geological
Congress in Oslo in August 2008 [13], and it garnered attention in the primary forum of the
International Union for the Geological Sciences (IUGS), where it received support from the
IUGS [3].

For a lithotype to attain recognition as a GHSR, it must satisfy precise criteria, includ-
ing: (i) a history of significant and prolonged use (30 years or 50 years have been recom-
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mended), (ii) widespread geographic utilization (international use highlights a material’s
historical importance, but regional appreciation should also be valued), (iii) involvement in
significant projects (considering the candidate’s role in human projects now recognized
as having major heritage significance), (iv) cultural significance and recognition (artistic
and architectural masterpieces, heritage construction, as well as utilitarian applications),
(v) quarrying and availability (continuing availability of a GHSR allows both the repair of
heritage construction and encourages the building of future stone heritage, as well as pro-
motes the sustainability of stone use), and (vi) potential socio-economic and environmental
benefits [14,15].

The designation of GHSR does not discourage ongoing quarrying activities for these
stones; rather, it advocates for their sustainable use, ensuring availability for heritage struc-
ture repairs, future stone heritage construction, and overall sustainable stone utilization.
Moreover, it fosters the exploration of new materials for contemporary projects, which may
potentially earn GHSR recognition in the future [3]. Preserving historical quarries that have
supplied stones for architectural heritage remains of paramount importance. Neglecting
proper stone selection or employing incompatible mortars during restoration efforts can
result in structural and financial repercussions, jeopardizing aesthetic integrity [14].

Additionally, the GHSR stimulates scientific research and encourages international co-
operation in the study and utilization of natural stone resources. The associated papers with
this classification play a crucial role by serving as opportunities for further investigation
and documentation of heritage stones on a global scale [12].

As of the latest update in April 2023, the scope of this classification encompasses
32 lithotypes. Figure 1 presents the number of GHRS, considering the information obtained
by IAEG. Analysis of this figure offers clear insight into the prominence of limestones
among ornamental lithologies within the GHSR classification. Limestones correspond to
34.4% of all lithologies, which highlights their substantial importance. Marbles follow
closely (15.6%), with granites (6.2%), and sandstones (6.2%) also featuring prominently in
the GHSR classification.
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cation.

Analyzing the continental distribution of GHSR reveals a significant concentration
in Europe, where 71.9% of lithotypes are found, as depicted in Figure 2. This graphical
representation emphasizes the extensive scope of this study and highlights Europe’s pre-
dominant role, likely due to historical factors that facilitated the construction of numerous
stone monuments in the region.
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Figure 2. Worldwide distribution of Global Heritage Stone Resources.

The Americas account for 15.6% and Asia for 12.5% of the total lithotypes, demon-
strating a substantial presence of GHSR beyond Europe. These findings suggest that
Europe’s prominence in GHSR may be influenced its long-standing architectural heritage
and construction practices.

By contrast, the lower percentages observed in the Americas and Asia could be
attributed to regional differences in geological composition, construction traditions, and
historical contexts. Overall, the 32 lithologies represent 17 distinct countries. Understanding
these regional dynamics is crucial for developing tailored conservation strategies and
promoting sustainable management practices for GHSR globally.

This context highlights the importance of international collaboration and research
initiatives. As of the latest update in April 2023, Africa and Oceania remain the only
continents without any classified GHSR.

Figure 3 features photos of two architectural heritage buildings that use Lioz Limestone
This lithotype is included in the GHSR list and falls under both the limestone classification
and the Europe group, as it originates from Portugal.
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Figure 3. Global Heritage Stone Resource Lioz Limestone applications on heritage architectural
buildings (Portugal): (a) Belém Tower; (b) Jerónimos Monastery.

In Figure 4a, the geographical distribution of all GHSRs worldwide up to April 2023 is
depicted. In Figure 4b, a closer view of Europe is provided, showing that it hosts 72% of
the GHSR. This view is overlaid with a layer highlighting burned areas from 2000 to 2023.
This overview underscores the susceptibility of these valuable materials to fire incidents,
highlighting that areas previously affected by such phenomena remain at risk of future
occurrences. Given the significance of these stones for global heritage and the challenges
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posed by high temperatures, it is imperative to conduct thorough studies to anticipate and
understand their behavior when confronted with such challenges.
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3. Methods
3.1. Selection of Database

The initial bibliographic filtering process began by searching for relevant articles
related to each lithotype using the specific terms found in the GHSR publication, including
the lithotype name and its geological identification (Figure 5). This method was chosen
since certain lithologies are often studied under different names; however, considering all
possible variations would be impractical. Therefore, standardized classification terms were
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used, as these are the most recognized designations. The variability in the designations, a
longstanding issue within the scientific community, underscores the need for standardizing
lithology nomenclature to improve the accuracy of research assessments. The search for
each recognized lithology was conducted using a query structure as the following example:
for Bath limestone, the query was TS = (bath) AND TS = (limestone). This search was
applied to keywords, titles, and abstracts of papers indexed by SCOPUS, without any
restrictions on publication year to ensure that the search was comprehensive. The initial
search returned over 20,000 papers across all 32 lithologies under study.

Heritage 2024, 7, FOR PEER REVIEW  6 
 

 

certain lithologies are often studied under different names; however, considering all possi-
ble variations would be impractical. Therefore, standardized classification terms were used, 
as these are the most recognized designations. The variability in the designations, a 
longstanding issue within the scientific community, underscores the need for standardiz-
ing lithology nomenclature to improve the accuracy of research assessments. The search 
for each recognized lithology was conducted using a query structure as the following ex-
ample: for Bath limestone, the query was TS = (bath) AND TS = (limestone). This search 
was applied to keywords, titles, and abstracts of papers indexed by SCOPUS, without any 
restrictions on publication year to ensure that the search was comprehensive. The initial 
search returned over 20,000 papers across all 32 lithologies under study. 

 
Figure 5. Flowchart illustrating the selection process for the analyzed papers. 

Figure 6 presents the frequency of papers filtered from the first process, allowing for 
an analysis of the intensity of research for each stone. The results show significant dispar-
ities in the attention given to different stones in the literature. 

 
Figure 6. Number of papers resulting from the first filtering process. 

For instance, several stones, such as Teozantla Tuff, Pietra Mar del Plata, and Tennessee Mar-
ble have no associated studies, revealing potential areas for future research. 

Figure 5. Flowchart illustrating the selection process for the analyzed papers.

Figure 6 presents the frequency of papers filtered from the first process, allowing for an
analysis of the intensity of research for each stone. The results show significant disparities
in the attention given to different stones in the literature.
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For instance, several stones, such as Teozantla Tuff, Pietra Mar del Plata, and Tennessee
Marble have no associated studies, revealing potential areas for future research.

Other stones, such as Échaillon Stone, Tyndall Stone, Hallandia Gneiss, Kolmarden Ser-
pentine Marbles, Rochlitz Porphyry Tuff, and Arrábida Breccia have received limited research
attention, with fewer than five studies each.
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In the category of lithotypes with five to ten studies, we find Larvikite and Rosa Beta
Granite (five studies each), Alpedrete Granite, Petit Granit, Pietra Serena, and Podpec Limestone
(nine studies each), and Villamayor Sandstone (10 studies). Despite having received slightly
more attention than those in the “very few studies category”, these stones are still relatively
under-researched.

Lithotypes with a moderate number of studies (ranging from 10 to 50 studies) include
Lede Stone (12 studies), Makrana Marble (16 studies), and Connemara Marble (20 studies). Lioz
Limestone, Alwar Quartzite, and Jacobsville Sandstone also fall into this category, with 21, 22,
and 24 studies, respectively. Other examples include Jaisalmer Limestone (26 studies), Es-
tremoz Marble (29 studies), Bath Stone (31 studies), and Macael Marble (42 studies). Although
these stones have been relatively well-researched, there remains ample opportunity for
further investigation.

A small group of stones has been the subject of more extensive research, with between
fifty and one hundred studies. Notable examples include Welsh Slate (59 studies), and Lower
Globigerina Limestone (63 studies). These stones have attracted a moderate level of academic
attention, likely due to their historical or architectural significance.

Carrara Marble stands out with an impressive 516 studies dedicated to it, highlighting
its prominence and widespread use in sculpture and construction. This substantial body of
research underscores its historical and artistic importance.

Interestingly, no stone falls within the range of 500–1000 studies, revealing a gap
between moderately researched stones and those extensively studied. The most exten-
sively researched stones, with more than 5000 studies each, are Deccan Basalt and Portland
Limestone. Deccan Basalt, with 12,114 studies, and Portland Limestone, with 2190 studies,
are the most researched stones in this dataset, reflecting their geological significance and
widespread use. It is important to note that using English search terms may exclude some
research published in the native languages of the GHSRs’ geographical regions.

In conclusion, the distribution of research across these stones is highly uneven. While
stones like Deccan Basalt and Portland Limestone have been extensively studied, many others,
particularly those with fewer than ten studies, remain largely unexplored. This disparity
highlights significant opportunities for future research, especially for stones that received
little to no attention. Investigating the factors behind these imbalances could provide
insights into what drives research interest in different stone types.

To address this imbalance and ensure the focus remained on the relevant material,
a second filtering process was applied. This step involved excluding papers not directly
related to the lithotype. For instance, the initial search for Portland Limestone yielded
2190 papers, many of which were related to Portland cement rather than the GHSR itself.
By applying the exclusion criterion TS = (cement), the number of papers was significantly
reduced to 122. This exclusion step was applied specifically to Portland Limestone due to the
high prevalence of cement-related articles.

After this refinement, the final step aimed to ensure the scientific relevance of the
selected papers. The SCOPUS relevance tool, which ranks papers based on keyword
frequency and position, was employed. To maintain a balance between thoroughness
and practicality, a cap of 70 papers per lithotype was established. This limit was based
on the median initial count of around 24 articles per lithotype, ensuring a representative
sample while excluding less relevant papers. This was particularly important for lithotypes
like Deccan Basalt and Carrara Marble, which initially returned 12,114 and 516 articles,
respectively.

The total number of papers considered for each lithotype, after this meticulous process,
is detailed in Figure 6. The disparities in the number of articles can be attributed to factors
such as historical context, worldwide recognition, the type of applied built heritage, and
the year of inclusion in the GHSR list. Stones that have been classified for longer periods
tend to receive more academic attention.
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This structured methodology ensures a comprehensive and focused review of the most
pertinent research for each lithotype. No restrictions were placed on SCOPUS categories,
recognizing that stone intersects with various scientific fields besides geology.

3.2. Database Analyses Criteria

Through this method and a systematic analysis of the articles obtained from the
SCOPUS search, the goal was to assess the scope of scientific research on stone resources
and interpret quantitative findings, particularly regarding the effects of high temperatures
on GHSR stones.

Data analysis began with Microsoft Excel for initial organization and preprocessing.
Subsequently, Python was used for advanced statistical analysis and visualization, enabling
a detailed examination of relationships within the dataset. This integrated approach
allowed a comprehensive and in-depth exploration of the data.

In an initial assessment, it was considered important to analyze whether the paper
referred to different denominations of the lithology, to determine if a significant number of
studies might have been excluded from the analyses due to the use of different names.

After that, it was decided to explore whether any references were made to composition,
with the goal of determining the extent to which the lithology’s composition instigated
interest in the scientific community. Similarly, it was considered important to examine if
physical and/or mechanical properties were specified. Comparing these two aspects pro-
vides valuable insights into the primary lithological characteristics of GHSR as a geological
material. Additionally, it was essential to determine whether the analyzed papers included
information on the behavior of these materials at high temperatures.

For Other Nomenclatures: The goal was to determine whether the lithotype is com-
monly referred to by alternative names, as it can complicate the identification of all relevant
scientific publications. Variations in terminology may arise from different commercial
names or from distinct facies of the lithotype, each of which may be associated with
different properties and behaviors.

For Composition: The aim was to determine the level of attention given by the scientific
community to the significance of mineralogical, petrographic, and chemical composition of
the lithotypes, as they play a crucial role in understanding the behavior of stone materials.

For Physical and/or Mechanical Properties: The purpose was to investigate the extent
of research conducted regarding physical and mechanical properties, as it is essential to
understand how stone materials can be affected when exposed to various hazards. This
is a very inclusive category, encompassing a wide range of properties with the goal of
achieving a positive outcome in the research conducted on the studied lithologies.

For High Temperatures: The goal was to obtain an overview of the extent of investi-
gation being conducted on the effects of high temperatures on stone materials, given its
importance in this study. The minimum temperature considered was 120 ◦C, since 100 ◦C is
usually the limit temperature that studies consider for freeze-thaw tests [16,17], and it was
intended to extend that temperature 20 ◦C to exclude this specific test. Other studies, such
as [18], consider 100 ◦C as the temperature for drying stone samples before conducting
further tests if it does not affect their previous properties. This consideration also supported
the choice made in this methodology.

Information regarding the papers that fit the criteria is presented in Appendix A. In
Table 1 the inclusion criteria are listed. Each article was considered for inclusion in the
specific category only if it contained information that met the predefined criteria to have an
overview of the studied subjects.
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Table 1. Identified information and topics in the four different categories analyzed.

Categories Identified Information for Selection/Topic Detected for Selection

Other nomenclatures
References to other facies of the same lithotype

Different commercial names for the same lithotype data

Composition Mineralogic and petrographic composition
Chemical composition

Physical and/or Mechanical Properties Properties that characterize the stone as a material, some examples found:
porosity, capillarity, structure properties, color measurements, gloss.

High Temperatures Exposition of stone to temperatures above 120 ◦C data

4. Results

The applied methodology resulted in a Main Table (Appendix A, Table 1) presenting
information on each lithotype, including lithology, place of origin, year of entrance into the
GHSR catalog, and the reference paper leading to its classification.

Figure 7 displays the total number of topic entries for the papers that met the specific
GHSR criteria. It is important to note that the same paper can be counted multiple times if
it addresses more than one topic, meaning the overall number reflects the count of entries
across topics, not the total number of individual papers analyzed. Carrara Marble (70),
Macael Marble (60), and Portland Limestone (53) stand out among the lithotypes. In the case
of Carrara Marble and of Portland Limestone this outcome is related to the two stones having
scored the maximum number of reviewed papers (70). For that reason, it is considered that
lithology status also plays a significant role in the scientific attention given to the natural
stone, since Macael is a worldwide recognized marble that has been appreciated since the
Neolithic period (3400–3000 years B.C.) and is still applied in prominent international
buildings [19]. Examples like Deccan Basalt, Lower Globigerina, and Welsh Slate also support
that theory. Deccan Basalt was also one of the lithotypes with 70 reviewed papers, but it
is not among the most rated lithotypes, with 25 papers. Observation during the literature
review supports that the explanation that a large number of the papers filtered for Deccan
Basalt referred to other facies associated with the lava flows from which this lithology
originates. A similar situation occurred for Lower Globigerina Limestone and Welsh Slate: For
the first example, many studies emerged regarding the stratigraphic series relating to the
limestone’s occurrence, and for the second case, a large number of the selected papers fell
into the scientific fields of Arts and Humanities, as well as Social Sciences.
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As previously noted in this study, the longer a lithology has been classified, the more
likely it is to attract increased attention from researchers. For this reason, the year of
entrance was also considered for inclusion in Figure 7. The results of this assessment
are reflected in Figure 8, where it is evident that the years with the majority of entrances
2019 and 2017. However, upon analyzing the data for the total number of lithologies per
year, it becomes apparent that the average decreases in the most recent years (Figure 9),
corroborating this theory. Nonetheless, it is important to note that many of the lithotypes
had been studied prior to the establishment of its Global Heritage Stone Resource status.
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Figure 9. Number of papers selected per GHSR by year of entrance.

Figure 10a presents the results detailing the number of papers associated with each
individual topic. The results reveal that 67 papers (14.3%) mentioned alternative names
for the analyzed GHSR (Figure 11). This suggests that the potential for additional sci-
entific research not captured by this methodology is higher for lithotypes with multiple
denominations.
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Physical and/or Mechanical Properties and High Temperatures per GHSR.

Figure 10b illustrates the proportion of studies focusing on overall properties com-
pared to those addressing high temperature effects. Out of 32 lithotypes, only six have been
studied in relation to high temperatures. This indicates that research on high-temperature
behavior is less prevalent compared to general studies. This data underscores the need for
more focused research on the high-temperature properties of these culturally significant
lithotypes.

Among the selected papers on fire studies, a broad temperature range is observed,
from 200 ◦C to 900 ◦C (Figure 12). The most frequently studied temperatures are 200 ◦C,
250 ◦C, 300 ◦C, 400 ◦C, and 600 ◦C. This selection is justified by the need to evaluate stone
behavior at temperatures relevant to high-enthalpy geothermal applications (from room
temperature to 250 ◦C) [20]. Other studies focus on temperature ranges such as 300 ◦C,
400 ◦C, and 600 ◦C to simulate fire scenarios and assess the performance of stones in
heritage applications.
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Figure 12. Distribution of papers based on temperature range.

The geometry of the studied samples is also an important factor when comparing
results. Figure 13 shows that the predominant geometry chosen by researchers is cylindri-
cal (62.5%), followed by cubic (18.75%) and parallelepiped (6.65%), and other geometries
(18.75%). The studies categorized under “Other” encompass those involving disk morphol-
ogy and a U-shaped notch. These morphologies were grouped under “Other” to facilitate
the conduct of specific tests.
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In addition to geometry, the heating rate, and the duration of sample exposure to
the heat source play a crucial role in determining the results. Since the scope of this
study intends to call attention to the threat fire poses to cultural heritage and to the need
to understand the behavior of the stone, it is important to state that these laboratorial
parameters should try to mimic natural conditions as closely as possible. While some of the
studies filtered in this research focus on geothermal applications [20–24], which typically
involve a slower heating rate and longer exposure times, it is important to note that real
fire scenarios often entail rapid heating rates. Additionally, the duration of exposure can be
unpredictable and depends on available extinguishing methods and combustible material.
However, in the context of cultural heritage preservation, exposure times are anticipated to
be shorter due to the valued nature of these resources and the implementation of efficient
protective measures.

Some of the filtered studies describe different methods of exposure to the heating
source. Some immediately expose the samples to the chosen temperature, while others
control the heating rate, ranging from 0.05 ◦C/min to 9.6 ◦C/min (Figure 14). Regarding
the duration of exposure, intervals of 1 h, 24 h, and 48 h (at least) were reported in some of
the papers, suggesting a tendency towards either short or long periods of time (Figure 15).
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In all previously mentioned papers, the study samples were heated in a laboratory
setting using heating equipment usually referred to as a muffle or oven. However, none
of them explored case studies following real fire scenarios, despite some authors having
previously focused on these types of assessments [25–30]. This type of evaluation can be
more complex, as the natural heating process involves variations regarding temperature
penetration and velocity spread throughout the stone material, making it challenging to
assess mineralogical, physical, and mechanical properties. Additionally, sample assessment
can be challenging since preventing damage to the applied heritage should be a priority.
This aspect can contribute to the preference for laboratory evaluation where this is not a
concern and the heating process can be controlled.

The findings from the analyzed laboratory-filtered studies highlight that the assess-
ment of Physical-Mechanical properties tends to exceed the Minerochemical ones, except
for Makrana Marble. This data suggests that studies prioritize assessing the performance
of natural stones when exposed to high temperatures and are interested in assessing how
the stone behaves as an architectural and building material. However, it is also important
to understand the minerochemical changes that occur, since they are intrinsically related
to the overall behavior. Another significant aspect highlighted in Figure 16 is that all
lithotypes have some properties analyzed in both categories, which can be highly useful
for correlating these properties and understanding their associations.

Within Minerochemical properties, Scanning Electron Microscopy (SEM) and Polariz-
ing Microscopy are the most popular assessments, which may be due to the importance of
understanding with a high definition the mineralogic and structural changes on a smaller
scale, since one of the most damaging aspects resulting from high temperatures influences
are fissures and fractures that lead to higher scale cracks and deformation [26,28,31–36].

Within the Physical-Mechanical group, the assessment of open porosity and water
absorption stands out. These properties are deemed valuable for understanding the extent
of impact on a stone’s internal structure [7]. Open porosity provides critical insights into
the increase of voids in the natural stone, while water absorption indicates the influence of
variations on water-stone interaction.

Analyzing the filtered studies regarding the effects of high temperatures on GHSR
reveals a consistent finding: Temperature has a significant impact on stone materials.
Both Mineralogical and Physical-Mechanical properties are reported to be affected by
temperature variations.
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Similar to findings of the previous study [7], other research has reported changes
in the stone’s microstructure. For example, intense thermal micro-fissuring has been
identified using techniques such as ultrasonic tomography and Field Emission Scanning
Electron Microscopy (FESEM) [24]. Another study reported increases in open porosity
and water absorption following heating, which the authors attributed to the anisotropic
thermal deformation caused by micro-cracks and grain decohesion [37]. Stating initial
average values of capillarity absorption shifted from 1.35 g m−2 s−1/2 to 39.88 g m−2 s−1/2,
representing a percentual increase of 4504%. Open porosity average values shifted from
0.895% to 3.73%.

In some cases, the increase in anisotropy occurs due to thermal expansion of calcite
grains [38,39]. Specially, limited slip and twinning occur at 400 ◦C, limited recrystallization
at 500 ◦C, widespread recrystallization at 600–700 ◦C, and grain growth becomes prominent
at 800–900 ◦C [40,41].

In addition to changes in anisotropy, chemical changes also take place, for example,
marble exposed to temperatures between 500 and 700 ◦C resulted in the formation of
calcium and magnesium oxides confirmed by thermodynamic analysis [7]. Conversely,
limestone decomposes to calcium oxide at temperatures between 800 and 1000 ◦C [38].
Pietra Serena sandstone exhibited an increase in compressive (+12%) and tensile strength
(+10%), possibly due to chemical-physical transformations undergone by secondary min-
eralogical fractions (clay minerals) at high temperatures [42]. Globigerina limestone, on
the other hand, showed a decrease in compressive strength (−14%) and tensile strength
(−14.5%) [42]. These chemical changes can manifest as volume increase, reduced bearing
capacity, increased mass loss rate, and structural damage. All of the above can ultimately
result in distinct behaviors like change in P-wave velocity. In study [37], more than 50% of
specimens showed a significant reduction. Processes of vaporization and escape of adhered
water, bound water, and structural water are also observed at elevated temperatures [37].

Fracture toughness, for instance, exhibited varying trends with temperature [43,44].
In [43], fracture toughness of the studied Kimachi sandstone increased slightly by 11% at
lower temperatures (20–100 ◦C), then decreased gradually by 18% between 100 ◦C and
500 ◦C. Above 500 ◦C, a sharp decline of 44% was observed, with 500–600 ◦C identified
as a critical threshold for a significant drop, primarily due to increased fragmentation and
complex fracturing mechanisms such as intergranular and thermal cracking. In study [44],
a limestone from Saudi Arabia was considered. The study compared limestone samples
taken from deep within a petroleum reservoir to outcrop samples from the same geological
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formation collected at the surface. It was found that at 116 ◦C, the fracture toughness
increased moderately, with a 24% rise in both reservoir and outcrop specimens.

In a different study, [22], porous samples (Moleano limestone and Floresta sandstone),
exhibited an initial increase in tensile strength of approximately 6%, up to a critical tem-
perature of 150 ◦C, followed by a slight decrease. These samples also showed continuous
growth in fracture toughness until reaching a critical temperature. In contrast, non-porous
samples, Macael and Carrara marbles, displayed a steady decrease in tensile strength, with a
notable reduction of about 40% in fracture toughness after heating, demonstrating further
declines after a heating-cooling cycle [21].

In particular, the study [24] on Makrana marble indicated that compressive and tensile
strength decreased dramatically, with reductions ranging from 57.56% to 70.01% as tem-
peratures increased from 25 ◦C to 700 ◦C. Correspondingly, petrophysical values, elastic
parameters, and mechanical properties of the same marble exhibited a significant reduction
at high temperatures, indicating intense thermal micro-fissuring

Fracture toughness was considered a key parameter characterizing the residual
strength of rocks under temperature influences [21]. Areas more affected by high tempera-
tures, such as those directly exposed to heat, exhibited lower P-wave velocity and more
intense fissuration, whereas more protected areas showed thermal etch pits structures [37].

The studies collectively emphasize the significant impact of high temperatures on
natural stone, affecting microstructure, porosity, and mechanical properties [20,21,37,45–47].
Considering lithotype-specific characteristics is crucial when assessing thermal decay and
deciding on remediation measures, like consolidant application. Heating was found to be an
effective method for inducing artificial weathering in stone samples, facilitating consolidant
testing. However, adjustments to heating procedures and complementary methods are
necessary based on lithotype microstructural characteristics [42]. In [45], 3D ultrasonic
tomography allowed visualization of the depth reached by this consolidant, proven to be a
useful technique for assessing not only heat damage but also the consolidation efficiency
of consolidants. Ethyl silicate consolidant showed better performance than nanolime in
a study performed using Lioz Limestone samples. The average restoration percentage for
the P-wave velocity across the three specimens was 55%. The consolidants studied in [37]
were able to reduce capillarity absorption coefficient by 75.5% when comparing treated
samples with samples heated at 600 ◦C and a decrease of open porosity of 10.9%. However,
authors highlight that the effectiveness of weathered substrates remains an area that needs
further research and focus from the scientific community. Throughout the analysis of the
filtered papers, in addition to the previously mentioned high temperature studies, other
studies focusing on external factors that influence stone properties were also identified.
These include the effects of feral pigeon excrement [48], salt crystallization [49–53], and
interactions with acid rain [54,55] on certain classified GHSR.

Although feral pigeon excrement can significantly damage natural stone, particularly
limestone, due to its acidic nature [48,56], it is the only external factor that is not in a way
related to climate change. Salt crystallization on natural stone is related to climate change,
as it is influenced by humidity conditions as well as temperature variations [57]. These
settings can promote stone decay, particularly in the presence of specific salts such as halite,
nitratine, niter, and mirabilite [58]. One of the key factors contributing to the significance of
this aspect in the context of stone heritage decay is the potential for minimal quantities of
salts to induce substantial changes, particularly in the case of daily fluctuations in climate
and periods of severe drought [59]. Climate change has also been shown to influence the
acidity of rainfall [60,61], since the elevated atmospheric CO2 levels associated with climate
change contribute to higher concentrations of carbonic acid in the water system [54].

These studies are crucial to the characterization of heritage stones, as they evaluate how
materials respond to extreme external factors. Their significance stems from their ability to
reveal irreversible damage analogous to that caused by high temperatures. Consequently,
such assessments should be incorporated into the comprehensive understanding of each
lithology due to the valuable insights they offer.



Heritage 2024, 7 6326

5. Conclusions

The Global Heritage Stone Resource classification is a key initiative for natural stones
used in heritage applications, enhancing their protection and social recognition. This
recognition often correlates with a rise in scientific interest from the academic community.
Additionally, it is important to note that multiple designations for certain lithologies can
significantly hinder the assessment of the overall scientific output related to applications,
enhancing their protection and social recognition. This recognition often correlates with a
rise in scientific interest from the academic community. Additionally, it is important to note
that multiple designations for certain lithologies can significantly hinder the assessment of
the overall scientific output related to these materials in literature reviews.

Compared to the study of general properties, the issue of high temperatures remains
relatively underexplored, despite its significant impact, particularly for European countries,
which account for 72% of the total GHSR.

Studies evaluating the impact of high temperatures on GHSR reveal significant dispar-
ities in methodologies. This variability makes it challenging to compare the behavior of
different lithologies, a situation that is anticipated due to the lack of established standards
for guiding and assessing changes caused by high-temperature exposure.

Studies analyzing the impact of high temperatures on GHSR often focus on sound
lithologies. However, it is important to note that lithologies subjected to the effects of fire
may exhibit additional damage, especially given their application in heritage contexts and
extensive historical background. Consequently, a variation between laboratory results and
real-world scenarios is anticipated [62]. Also, these studies do not assess how the material
will behave over time [31]. This variability arises from the inherent susceptibility of these
materials to diverse factors over time, emphasizing the complex interaction and different
degrees of these influences on the lithology. Adding to that fact it is important not to
forget the impact of intrinsic initial properties, like the influence of textures and porosity
in the behavior of stone at different temperatures that will lead to different outcomes
regarding high temperatures behavior [63]. The mineralogy will also have a significant
impact, with some authors documenting changes in the mineralogical composition or
even the destruction of clay minerals [28,30,32,64–67]. It is also important to highlight
that studying the impact of high temperatures on heritage stones contributes directly
to the Sustainable Development Goals of the 2030 Agenda, particularly those focused
on environmental conservation and heritage preservation. This research addresses the
urgent need to combat climate change by offering valuable insights into the vulnerability
of heritage stone resources. Such understanding fosters a more sustainable and resilient
approach to preserving these materials, safeguarding cultural heritage, and advancing
global efforts toward a more sustainable and climate-resilient future.

In conclusion, the thorough analysis of studies on the effects of high temperatures
on GHSR reveals the intricate relationship between temperature, microstructure, and
mechanical properties. Grasping these interactions is essential for maintaining the integrity
of stone materials and ensuring their effective preservation.
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Appendix A

Table 1. Compilation of the main information assessed regarding each GHSR.

Name and
Visual Aspect Lithology Place of

Origin
Year of

Entrance
Reference for
Application

Total nr of
Papers Found Search Words Other Nomen-

clatures Composition Physical and/or
Mechanical Properties

High
Temperatures
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Limestone 
Bath, United 

Kingdom 
July 2019 Marker, 2015 31 

Bath stone + 
Limestone 

1 [68] 1 [69] 12 [48,49,54,68–76] 0 

 

Sandstone Michigan, USA January 2019 Rose et al. 2017 24 
Jacobsville + 
Sandstone 

1 [77] 2 [78,79] 1 [77] 0 

 

Sandy Limestone Brusssels, Bel-
gium 

January 2019 De Kock et al. 2015 9 Lede Stone + 
Limestone 

2 [80,81] 3 [81–80] 4 [81–83] 0 

 

Limestone 
Lisbon, Portu-

gal 
July 2019 Silva, 2019 21 Lioz + Limestone 1 [84] 4 [85–88] 4 [45,84,85,89] 3 [37,45,90] 

 

Limestone Malta January 2019 Cassar et al. 2017 63 
Globigerina + 
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gium 
December 

2017 
Pereira et al. 2015 9 

Petit Granit + 
Limestone 

5 [104–108] 3 [104,105,109] 3 [105,107,109] 0 

 

Sandy lime-
stone/Sandstone 

Florence, Italy July 2019 Fratini et al. 20115 9 Pietra Serena + 
Limestone 

0 8 [42,110–116] 5 [42,110,112,113,117] 1 [2] 

Limestone Bath, United
Kingdom July 2019 Marker, 2015 31 Bath stone +

Limestone 1 [68] 1 [69] 12 [48,49,54,68–76] 0
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Sandstone Michigan,
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Heritage 2024, 7 6328

Table 1. Cont.
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Limestone 
Podpeč, Slove-

nia 
December 

2017 
Kramar et al. 2015 9 

Podpeč + Lime-
stone 

1 [118] 3 [118–120] 1 [118] 0 

 

Limestone 
Portland, 

United King-
dom 

December 
2017 

Hughes et al. 2013 2190 
Portland + Lime-

stone 
6 [52,121–125] 20 [55,121–124,126–140] 

27 [52,55,122,124–
127,129,130,132–149] 

0 

 

Sandstone 
Salamanca, 

Spain 
February 

2018 
Garcia-Talegon et 

al. 2015 
10 

Villamayor + 
Sandstone 

2 [150,151] 8 [151–158] 8 [150–152,154,156–159] 0 

 

Limestone Alps, France April 2023 Dumont, 2020 1 
Echaillon Stone + 

Limestone 
1 [160] 1 [160] 1 [160] 0 

 

Breccia Arrábida, Por-
tugal 

April 2023  2 Arrábida + Brec-
cia 

2 [161,162] 1 [162] 0 0 

 

Dolomitic lime-
stone 

Manitoba, Can-
ada 

April 2023  1 
Tyndall Stone + 

Limestone 
1 [163] 0 1 [163] 0 

(not found) Tuff Mexico April 2023  0 Teozantla + Tuff - - - - 

Ig
ne

ou
s 

st
on

es
 

 

Limestone Jaisalmer, India April 2023 [3] 26 
Jaisalmer + Lime-

stone 
1 [164] 2 [164,165] 1 [164] 0 

 

Granite 
Alpedrete 

Province, Ma-
drid, Spain 

July 2019 
Freire-Lista et al. 

2015 8 
Alpedrete + 

Granite 4 [166–172] 6 [53,166–170] 7 [53,166–17171] 0 

Limestone Podpeč,
Slovenia

December
2017

Kramar et al.
2015 9 Podpeč +

Limestone 1 [118] 3 [118–120] 1 [118] 0
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127,129,130,132–149] 0
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2 [161,162] 1 [162] 0 0 

 

Dolomitic lime-
stone 

Manitoba, Can-
ada 
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Tyndall Stone + 

Limestone 
1 [163] 0 1 [163] 0 
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Ig
ne

ou
s 

st
on

es
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Alpedrete 

Province, Ma-
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Freire-Lista et al. 
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Manitoba,
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Ig
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ou
s

st
on

es
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Monzonite Larvik, Norway December 
2017 

Heldal et al. 2015 5 Larvikite + Mon-
zonite 

1 [172] 4 [172–175] 1 [172] 0 

 

Orthoquartzite 
Mar del Plata, 

Argentina 
January 2019 Cravero et al.2015 0 

Piedra Mar del 
Plata + 

- - - - 

 

Granite Italy July 2019 Careddu et al. 2015 5 Rosa Beta + Gran-
ite 

2 [176,177] 4 [176,178–180] 4 [176,178–180] 0 

 

Porphyry tuff 
Rochlitz, Ger-

many 
April 2023 [181] 2 

Rochlitz + 
Porphyry Tuff 

1 [181] 2 [181,182] 1 [181] 0 

M
et

am
or

ph
ic

 s
to

ne
s 

 

Deccan Deccan, India April 2023  12,114 Deccan + Basalt 0 19 [183–201] 6 [183,184,191,202–204] 0 

 

Marble Tuscany, Italy December 
2017 

Primavori, 2015 560 Carrara + Marble 3 [39,91,205] 26 [38,91,206–228] 35 [38,39,216–212,214–
220,222–239] 

6 
[38,39,209,219

,223,240] 

 

Marble Estremoz, Por-
tugal 

February 
2018 

Lopes & Martins, 
2015 

29 Estremoz + Mar-
ble 10 [241–250] 11 [241–251] 4 [242–244,249] 0  

 

Gneiss Getinge, Swe-
den 

December 
2017 

Schouenborg et al. 
2015 

1 Hallandia + 
Gneiss 

1 [252] 1 [252] 1 [252] 0 

Monzonite Larvik,
Norway

December
2017

Heldal et al.
2015 5 Larvikite +

Monzonite 1 [172] 4 [172–175] 1 [172] 0
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Serpentine Mar-
ble 

Kolmarden, 
Sweden 

January 2019 Wikstrom & Pe-
reira, 2015 

1 Kolmarden Ser-
pentine + Marble 

1 [253] 1 [253] 1 [253] 0 

 

Marble Almeria, Spain July 2019 Navarro et al. 2015 42 Macael + Marble 12 [19,248,254–263] 
22 [16,19–21,248,254–
256,258–262,264–272] 

22 [16,19,20,45,47,255–
262,265–267,270–275] 

4 
[20,21,45,273] 

 

Marble Makrana, India July 2019 Garg et al. 2019 16 
Makrana + Mar-

ble 
1 [276] 4 [24,276–278] 4 [24,276,279,280] 1 [24] 

 

Marble Tennessee, USA July 2019 Byerly & Knowles, 
2017 

0 Tennesse + Mar-
ble 

- - - - 

 

Slate 
Wales, United 

Kingdom 
January 2019 Hughes et al. 2016 59 Welsh + Slate 2 [281,282] 5 [281, 283-286] 4 [281,284–286] 0 

 

Sillimanite-grade 
ophicarbonate 

Connemara, 
Ireland 

April 2023 [287] 20 
Connemara + 

Marble 
2 [282,288] 10 [56,288–295] 3 [289,289,292] 0 

 

Phyllite Bernardos, 
Spain 

April 2023 [296] 1 Bernardos + Phyl-
lite 

1 [297] 1 [297] 1 [297] 0 

 

 

Quartzite Delhi, India April 2023 [298] 22 Alwar + Quartzite 2 [298,299] 6 [298,300–304] 6 
[298,299,301,302,305,306] 

0 

 

Serpentine
Marble

Kolmarden,
Sweden January 2019 Wikstrom &

Pereira, 2015 1
Kolmarden
Serpentine +

Marble
1 [253] 1 [253] 1 [253] 0
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