Polychrome Bronze Sculpture: A Multi-Analytical Approach to Unveil the Renaissance Gilded Eagles in the Abbey of San Miniato al Monte, Florence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Non-Invasive Analyses
2.2. Micro-Invasive Analyses
2.2.1. Samples
2.2.2. FTIR Spectroscopy
2.2.3. XRPD
2.2.4. Optical Microscopy (MO) and Scanning Electron Microscopy (SEM-EDS)
3. Results
3.1. X-ray Fluorescence Spectroscopy (XRF)
3.2. Fourier-Transform Infrared Spectroscopy (FTIR) and X-ray Powder Diffraction (XRPD)
3.3. Optical Microscopy (OM) and Scanning Electron Microscope Coupled with Energy Dispersive Spectroscopy (SEM-EDS)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Giumlia-Mair, A. Polychromy on Greek and Roman Metals: Texst and analyses. In Proceedings of the III Workshop des Netzwerks Archäologisch-Historisch es Metallhandwerk, Uber den Glanz des Goldes und die Polychromie, Berlin, Germany, 11–12 May 2017. [Google Scholar]
- Magrini, D.; Bracci, S.; Bartolozzi, G.; Iannaccone, R.; Lenzi, S.; Liverani, P. Revealing Mithras’ Color with the ICVBC Mobile Lab in the Museum. Heritage 2019, 2, 2160–2170. [Google Scholar] [CrossRef]
- Bracci, S.; Iannaccone, R.; Magrini, D. The application of multi-band imaging integrated with non-invasive spot analyses for the examination of archaeological stone artefacts. Conserv. 360° 2020, 1, 141–160. Available online: https://monografias.editorial.upv.es/index.php/con_360/article/view/71 (accessed on 27 September 2023).
- Aggelakopoulou, E.; Sotiropoulou, S.; Karagiannis, G. Architectural Polychromy on the Athenian Acropolis: An in situ non-invasive analytical investigation of the colour remains. Heritage 2022, 5, 756–787. [Google Scholar] [CrossRef]
- Bourgeois, B.; Verri, G.; Jeammet, V. Color and Light: A Hellenistic Terracotta Figurine of a Maenad from Myrina. Heritage 2023, 6, 3005–3024. [Google Scholar] [CrossRef]
- Pucci, E.; Cagnini, A.; Galeotti, M.; Salvadori, B. Prime indagini su opere bronzee da Pompei. Nuovi dati sulla policromia antica. OPD Restauro 2020, 32, 88–99. [Google Scholar]
- Mathis, F.; Salomon, J.; Pagès-Camagna, S.; Dubus, M.; Robcis, D.; Aucouturier, M.; Descamps, S.; Delange, E. Corrosion patina or intentional patina: Contribution of non-destructive analyses to the surface study of copper-based archaeological objects. In Corrosion of Metallic Heritage Artefacts; European Federation of Corrosion (EFC) Series; Dillmann, P., Béranger, G., Piccardo, P., Matthiesen, H., Eds.; Woodhead Publishing: Cambridge, UK, 2007; pp. 219–238. [Google Scholar]
- Scott, D.A. Copper and Bronze in Art: Corrosion, Colorants, Conservation; Getty Conservation Institute: Los Angeles, CA, USA, 2002. [Google Scholar]
- Giumlia-Mair, A. Das Krokodil und Amenemhat III aus el-Faiyum. Antike Welt 1996, 27, 313–321. [Google Scholar]
- Giumlia-Mair, A, Development of artificial black patina on Mycenaean metal finds. Surf. Eng. 2013, 26, 99–100.
- Mathis, F.; Robcis, D.; Borel, T.; Aucouturier, M.; Descamps, S. Laboratory investigation of inlays and surface treatments for the decoration of copper-base alloy objects from the imperial Roman period. In Proceedings of the 34th International Symposium on Archaeometry, Zaragoza, Spain, 3–7 May 2004; pp. 201–208. [Google Scholar]
- Mathis, F.; Descamps, S.; Robcis, D.; Aucouturier, M. Original surface treatment of copper alloy in ancient Roman Empire: Chemical patination on a Roman strigil. Surf. Eng. 2005, 21, 346–351. [Google Scholar] [CrossRef]
- Craddok, P.; Giumlia-Mair, A. Hsmn-Km, Corinthian bronze, Shakudo: Black-patinated bronze in the ancient world. In Metal Plating and Patination; La Niece, S., Craddok, P., Eds.; Butterworth: London, UK, 1993; pp. 101–127. [Google Scholar]
- Pitthard, V.; Stone, R.; Stanek, S.; Griesser, M.; Gersch, C.K.; Hanzer, H. Organic patinas on Renaissance and Baroque bronzes–Interpretation of compositions of the original patination by using a set of simulated varnished bronze coupons. J. Cult. Herit. 2011, 12, 44–53. [Google Scholar] [CrossRef]
- Stone, R.E. Organic Patinas on Small Bronzes of the Italian Renaissance. Metrop. Mus. J. 2010, 45, 107–124. [Google Scholar] [CrossRef]
- Basso, E.; Pozzi, F.; Day, J.; Borsch, L. Unmasking a wild man: Scientific analysis of Bertoldo di Giovanni’s Shield Bearer in the Frick Collection. Herit. Sci. 2020, 8, 109–121. [Google Scholar] [CrossRef]
- Degano, I.; Modugno, F.; Colombini, M.P. Characterisation of organic patinas on indoor bronze sculptures. In Proceedings of the Art’11 10th International Conference on Non-Destructive Investigations and Microanalysis for the Diagnostics and Conservation of Cultural and Environmental Heritage, Florence, Italy, 13–15 April 2011. [Google Scholar]
- Boon, J.; van Langh, R. Comprehensive studies of patinas on Renaissance bronze statuettes with laboratory, synchrotron and neutron aided techniques. In Proceedings of the ICOM Committee for Conservation 17th Triennial Meeting, Melbourne, Australia, 19–23 September 2014. [Google Scholar]
- Darque-Ceretti, E.; Felder, E.; Aucouturier, M. Foil and leaf gilding on cultural artifacts: Forming and adhesion. Matéria 2011, 16, 540–559. [Google Scholar] [CrossRef]
- Darque-Ceretti, E.; Aucouturier, M. Gilding for Matter Decoration and Sublimation. A brief history of the artisanal technical know-how. In In Proceedings of the InART’13—1st International Conference on Innovation in Art Research and Technology, Evora, Portugal, 10–13 July 2013. [Google Scholar]
- Oddy, W.A. A History of gilding with particular reference to statuary. In Gilded Metals. History, Technology and Conservation; Drayman-Weisser, T., Ed.; Archetype Publications: London, UK, 2000; p. 1. [Google Scholar]
- Lins, A. Gilding Techniques of the Renaissance and after. In Gilded Metals. History, Technology and Conservation; Drayman-Weisser, T., Ed.; Archetype Publications: London, UK, 2000; p. 241. [Google Scholar]
- Brepohl, E. The Theory and Practice of Goldsmithing; McCreight, T., Ed.; Brynmorgen Press: Portland, ME, USA, 2001. [Google Scholar]
- Oddy, W.A. Gilding through the ages. Gold Bull. 1981, 14, 75–79. [Google Scholar] [CrossRef]
- Selwyn, L. Corrosion Chemistry of Gilded Silver and Copper. In Gilded Metals. History, Technology and Conservation; Drayman-Weisser, T., Ed.; Archetype Publications: London, UK, 2000; p. 21. [Google Scholar]
- Yriarte, C. Journal d’un sculpteur Florentin au XVe siècle: Livre de souvenirs de Maso di Bartolommeo, dit Masaccio, manuscrits conservés à la bibliothèque de Prato et à la Magliabecchiana de Florence. J. Rothschild Ed. 1894, 49–53. [Google Scholar]
- Madariaga, J.M. Analytical chemistry in the field of cultural heritage. Anal. Methods 2015, 7, 4848–4876. [Google Scholar] [CrossRef]
- Shugar, A.N.; Mass, J.L. Handheld XRF for Art and Archaeology; Leuven University Press: Leuven, Belgium, 2012; p. 480. [Google Scholar]
- Brocchieri, J.; Scialla, E.; Manzone, A.; Graziano, G.O.; D’Onofrio, A.; Sabbarese, C. An analytical characterization of different gilding techniques on artworks from the Royal Palace (Caserta, Italy). J. Cult. Herit. 2022, 57, 213–225. [Google Scholar] [CrossRef]
- Derrick, M.; Stulik, D.; Landry, J.M. Infrared Spectroscopy in Conservation Science. Scientific Tools for Conservation; J. Paul Getty Trust: Los Angeles, CA, USA, 2000. [Google Scholar]
- Figueiredo, E.; Silva, R.J.C.; Araújo, M.F.; Senna-Martinez, J.C. Identification of ancient gilding technology and Late Bronze Age metallurgy by EDXRF, Micro-EDXRF, SEM-EDS and metallographic techniques. Microchim. Acta 2010, 168, 283–291. [Google Scholar] [CrossRef]
- Gianoncelli, A.; Kourousias, G. Limitations of portable XRF implementations in evaluating depth information: An archaeometric perspective. Appl. Phys. A 2007, 89, 857–863. [Google Scholar] [CrossRef]
- Gigante, G.E.; Ridolfi, S. X-ray Techniques and X-ray Fluorescence with Portable Systems; Varella, E.A., Ed.; Conservation Science for the Cultural Heritage, Lecture Notes in Chemistry 79; Springer: Berlin/Heidelberg, Germany, 2013; pp. 91–161. [Google Scholar]
- Scott, D.A.; Schwab, R. Metallography in Archaeology and Art; Springer: Cham, Switzerland, 2019. [Google Scholar]
- La Russa, M.F.; Ruffolo, S.A.; Barone, G.; Crisci, G.M.; Mazzoleni, P.; Pezzino, A. The use of FTIR and micro-FTIR spectroscopy: An example of application to Cultural Heritage. Int. J. Spectr. 2009, 2009, 893528. [Google Scholar] [CrossRef]
- Monico, L.; Rosi, F.; Miliani, C.; Daveri, A.; Brunetti, B.G. Non invasive identification of metal-oxalate complexes on polychrome artwork surfaces by reflection mid-infrared spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 116, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Frost, R.L. Raman spectroscopy of natural oxalates. Anal. Chim. Acta 2004, 517, 207–214. [Google Scholar] [CrossRef]
- Martens, W.N.; Frost, R.L.; Williams, P. Raman and infrared spectroscopic study of the basic copper chloride minerals: Implications for the study of the copper and brass corrosion and “bronze disease”. Neues Jahrb. Mineral. Abh. 2003, 178, 197–215. [Google Scholar] [CrossRef]
- Frost, R.L.; Yang, J.; Ding, Z. Raman and FTIR spectroscopy of natural oxalates: Implications for the evidence of life on Mars. Chin. Sci. Bull 2003, 48, 1844–1852. [Google Scholar] [CrossRef]
- Van der Weerd, J.; Van Loon, A.; Boon, J.J. FTIR studies of the effects of pigments on the aging of oil. Stud. Conserv. 2005, 50, 3–22. [Google Scholar] [CrossRef]
- Vetter, W.; Latini, I.; Schreiner, M. Azurite in medieval illuminated manuscripts: A reflection-FTIR study concerning the characterization of binding media. Herit. Sci. 2019, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Filopoulou, A.; Vlachou, S.; Boyatzis, S.C. Fatty Acids and Their Metal Salts: A Review of Their Infrared Spectra in Light of Their Presence in Cultural Heritage. Molecules 2021, 26, 6005. [Google Scholar] [CrossRef] [PubMed]
- Robinet, L.; Corbeil, M.C. The characterization of metal soaps. Stud. Conserv. 2003, 48, 23–40. [Google Scholar] [CrossRef]
- Otero, V.; Sanches, D.; Montagner, C.; Vilarigues, M.; Carlyle, L.; Lopes, J.A.; Melo, M.J. Characterisation of metal carboxylates by Raman and infrared spectroscopy in works of art. J. Raman Spectrosc. 2014, 45, 1197–1206. [Google Scholar] [CrossRef]
- Pellegrini, D.; Duce, C.; Bonaduce, I.; Biagi, S.; Ghezzi, L.; Colombini, M.P.; Tinè, M.R.; Bramanti, E. Fourier transform infrared spectroscopic study of rabbit glue/inorganic pigments mixtures in fresh and aged reference paint reconstructions. Microchem. J. 2016, 124, 31–35. [Google Scholar] [CrossRef]
- Guglielmi, V.; Andreoli, M.; Comite, V.; Baroni, A.; Fermo, P. The combined use of SEM-EDX, Raman, ATR-FTIR and visible reflectance techniques for the characterisation of Roman wall painting pigments from Monte d’Oro area (Rome): An insight into red, yellow and pink shades. Environ. Sci. Pollut. Res. 2022, 29, 29419–29437. [Google Scholar] [CrossRef]
- Müller, C.; Pejcic, B.; Esteban, L.; Delle Piane, C.; Raven, M.; Mizaikoff, B. Infrared Attenuated Total Reflectance Spectroscopy: An Innovative Strategy for Analyzing Mineral Components in Energy Relevant Systems. Sci. Rep. 2014, 4, 6764. [Google Scholar] [CrossRef] [PubMed]
- Ellerbrock, R.; Stein, M.; Schaller, J. Comparing amorphous silica, short-range-ordered silicates and silicic acid species by FTIR. Sci. Rep. 2022, 12, 11708. [Google Scholar] [CrossRef]
- Bordignon, F.; Postorino, P.; Dore, P.; Laurenzi Tabasso, M. The Formation of Metal Oxalates in the Painted Layers of a Medieval Polychrome on Stone, as Revealed by Micro-Raman Spectroscopy. Stud. Conserv. 2008, 53, 158–169. [Google Scholar] [CrossRef]
- de Viguerie, L.; Payard, P.A.; Portero, E.; Walter, P.; Cotte, M. The drying of linseed oil investigated by Fourier transform infrared spectroscopy: Historical recipes and influence of lead compounds. Prog. Org. Coat. 2016, 93, 46–60. [Google Scholar] [CrossRef]
- Costagliola, P.; Benvenuti, M.; Chiarantini, L.; Bianchi, S.; Di Benedetto, F.; Paolieri, M.; Rossato, L. Impact of ancient metal smelting on arsenic pollution in the Pecora River Valley, Southern Tuscany, Italy. Appl. Geochem. 2008, 23, 1241–1259. [Google Scholar] [CrossRef]
- Van Langh, R.; James, J.; Burca, G.; Kockelmann, W.; Zhang, S.Y.; Lehmann, E.; Estermanne, M.; Pappot, A. New insights into alloy compositions: Studying Renaissance bronze statuettes by combined neutron imaging and neutron diffraction techniques. J. Anal. At. Spectrom. 2011, 26, 949. [Google Scholar] [CrossRef]
- Bewer, F.G. A Study of the Technology of Renaissance Bronze Statuettes. Ph.D. Thesis, University of London, London, UK, 1996. [Google Scholar]
- Radepont, M.; Coquinot, Y.; Janssens, K.; Ezrati, J.-J.; de Nolf, W.; Cotte, M. Thermodynamic and experimental study of the degradation of the red pigment mercury sulfide. J. Anal. At. Spectrom. 2015, 30, 599–612. [Google Scholar] [CrossRef]
- Anaf, W.; Janssens, K.; De Wael, K. Formation of Metallic Mercury During Photodegradation/Photodarkening of α-HgS: Electrochemical Evidence. Angew. Chem. Int. Ed. 2013, 52, 12568–12571. [Google Scholar] [CrossRef]
- Available online: https://www.youtube.com/watch?v=B4fvZNPZJvI (accessed on 14 February 2024).
Sample | Type of Sample | Position | Description | Analytical Techniques |
---|---|---|---|---|
01 | Chip | Western eagle, tail | stratigraphic sample | Metallography; SEM-EDS |
02 | Chip | Western bale of cloth | stratigraphic sample | Metallography; SEM-EDS |
03 | Powder | Western bale of cloth | green patina | ATR-FTIR; XRPD |
04 | Powder | Western bale of cloth | hard deposit | ATR-FTIR; XRPD |
05 | Powder | Western bale of cloth | hard deposit | ATR-FTIR; XRPD |
06 | Powder | Western eagle, under the tail | green patina | ATR-FTIR; XRPD |
07 | Powder | Western eagle, on the gilding | whitish patina | ATR-FTIR |
08 | Powder | Western eagle, feather | dark patina | ATR-FTIR |
09 | Chip | Eastern eagle, under the wing | stratigraphic sample | Metallography; SEM-EDS |
10 | Chip | Eastern bale of cloth | stratigraphic sample | Metallography; SEM-EDS |
11 | Powder | Western eagle, on the paw | blue paint | ATR-FTIR; XRPD |
12 | Powder | Western eagle, from the talon | black paint | ATR-FTIR; XRPD |
13 | Powder | Eastern eagle, from the talon | black paint | ATR-FTIR; XRPD |
14 | Powder | Western eagle, on the tongue | red paint | ATR-FTIR; XRPD |
Sample | Description | Position | ATR-FTIR | XRPD |
---|---|---|---|---|
03 | Green patina | W, B | Organic material, calcium carbonate | Cuprite, gerhardtite |
04 | Deposit | W, B | Gypsum, calcium oxalate, calcium carbonate, silicate | Gypsum |
05 | Deposit | W, B | Gypsum, calcium oxalate, calcium carbonate, silicate | Gypsum |
06 | Green patina | W | Atacamite, calcium oxalate, calcium carbonate | Atacamite, calcite, quartz, nantokite, paratacamite, weddellite, gypsum |
07 | White patina | W | Calcium oxalate, silicate | n.a. |
08 | Patina | W | Moolooite, gypsum, oil binder | n.a. |
11 | Blue paint on paw, after cleaning | W | Azurite, copper oxalate, oil binder, proteinaceous substance | Azurite, gold, lead sulphate |
12 | Dark paint on talon, after cleaning | W | Atacamite, calcium oxalate, moolooite | Weddellite, gypsum, quartz |
13 | Dark paint on talon, after cleaning | E | Polysaccharide component | Nantokite, cuprite, hematite, quartz, tenorite, gypsum |
14 | Red paint on tongue | W | Gypsum, calcium oxalate, moolooite, silicate | Cinnabar, gerhardtite, gypsum |
Sample | Description | Eagle | O wt% | Si wt% | Cu wt% | Sn wt% | As wt% |
---|---|---|---|---|---|---|---|
01 | Body | W | 2.55 | 0.85 | 88.85 | 8.15 | |
02 | Bale of cloth | W | 2.72 | 89.74 | 7.54 | ||
09 | Body | E | 2.24 | 89.56 | 8.23 | ||
10 | Bale of cloth | E | 2.62 | 87.99 | 9.08 | 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cantisani, E.; Salvioli, N.; Salvadori, B. Polychrome Bronze Sculpture: A Multi-Analytical Approach to Unveil the Renaissance Gilded Eagles in the Abbey of San Miniato al Monte, Florence. Heritage 2024, 7, 983-996. https://doi.org/10.3390/heritage7020047
Cantisani E, Salvioli N, Salvadori B. Polychrome Bronze Sculpture: A Multi-Analytical Approach to Unveil the Renaissance Gilded Eagles in the Abbey of San Miniato al Monte, Florence. Heritage. 2024; 7(2):983-996. https://doi.org/10.3390/heritage7020047
Chicago/Turabian StyleCantisani, Emma, Nicola Salvioli, and Barbara Salvadori. 2024. "Polychrome Bronze Sculpture: A Multi-Analytical Approach to Unveil the Renaissance Gilded Eagles in the Abbey of San Miniato al Monte, Florence" Heritage 7, no. 2: 983-996. https://doi.org/10.3390/heritage7020047
APA StyleCantisani, E., Salvioli, N., & Salvadori, B. (2024). Polychrome Bronze Sculpture: A Multi-Analytical Approach to Unveil the Renaissance Gilded Eagles in the Abbey of San Miniato al Monte, Florence. Heritage, 7(2), 983-996. https://doi.org/10.3390/heritage7020047