Neverovsky Palaeoreef and Associated Deep-Marine Facies: High-Value Late Devonian Geoheritage from the Rudny Altai
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Neverovsky Palaeoreef
4.2. Zolotukha Section
4.3. Razdolnoe Section
4.4. Values of the Proposed Geosites
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cifuentes-Correa, L.M.; Montoya-Hincapié, E.M.; Valencia-Arias, A.; Quiroz-Fabra, J.; Londoño-Celis, W. Research trends in geoheritage, geotourism and its relationship with new technologies. J. Tour. Dev. 2023, 40, 155–163. [Google Scholar]
- Gray, M. Case studies associated with the 10 major geodiversity-related topics. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2024, 382, 20230055. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Franco, G.; Carrión-Mero, P.; Montalván-Burbano, N.; Caicedo-Potosí, J.; Berrezueta, E. Geoheritage and Geosites: A Bibliometric Analysis and Literature Review. Geosciences 2022, 12, 169. [Google Scholar] [CrossRef]
- Kubalíková, L.; Irapta, P.N.; Pál, M.; Zwolinski, Z.; Coratza, P.; Vries, B.W. Visages of geodiversity and geoheritage: A multidisciplinary approach to valuing, conserving and managing abiotic nature. Geol. Soc. Spec. Publ. 2023, 530, 1–12. [Google Scholar] [CrossRef]
- Pérez-Romero, M.E.; Álvarez-García, J.; Flores-Romero, M.B.; Jiménez-Islas, D. UNESCO Global Geoparks 22 Years after Their Creation: Analysis of Scientific Production. Land 2023, 12, 671. [Google Scholar] [CrossRef]
- Quesada-Valverde, M.E.; Quesada-Román, A. Worldwide Trends in Methods and Resources Promoting Geoconservation, Geotourism, and Geoheritage. Geosciences 2023, 13, 39. [Google Scholar] [CrossRef]
- Pescatore, E.; Bentivenga, M.; Giano, S.I. Geoheritage and Geoconservation: Some Remarks and Considerations. Sustainability 2023, 15, 5823. [Google Scholar] [CrossRef]
- Yazdi, A.; Dabiri, R.; Mollai, H. Protection of Geological Heritage by a New Phenomenon in Earth Sciences: Geoconservation. J. Min. Environ. 2024, 15, 365–379. [Google Scholar]
- Ech-charay, K.; Boumir, K.; Ouarhache, D.; Ouaskou, M.; Marzouki, A. The Geoheritage of the South-Eastern Frontal Zone of the Middle Atlas (Morocco): First Inventory and Assessment. Geoheritage 2022, 14, 103. [Google Scholar] [CrossRef]
- Giovagnoli, M.C. The Italian Geosite Inventory: Past, Present, and Future. Geoheritage 2023, 15, 69. [Google Scholar] [CrossRef]
- Szepesi, J.; Ésik, Z.; Soós, I.; Novak, T.; Suto, L.; Rozsa, P.; Lukács, R.; Harangi, S. Methodological review of geosite inventory and assessment work in the light of protection, sustainability and the development of geotourism. Foldt. Kozlony 2018, 148, 143–160. [Google Scholar]
- Kröner, A.; Rojas-Agramonte, Y. The Altaids as seen by Eduard Suess, and present thinking on the late Mesoproterozoic to Palaeozoic evolution of central Asia. Austrian J. Earth Sci. 2014, 107, 156–168. [Google Scholar]
- Safonova, I. The Russian-Kazakh Altai orogen: An overview and main debatable issues. Geosci. Front. 2014, 5, 537–552. [Google Scholar] [CrossRef]
- Şengör, A.M.C.; Sunal, G.; Natal’in, B.A.; van der Voo, R. The Altaids: A review of twenty-five years of knowledge accumulation. Earth-Sci. Rev. 2022, 228, 104013. [Google Scholar] [CrossRef]
- Wan, B.; Xiao, W.; Windley, B.F.; Gao, J.; Zhang, L.; Cai, K. Contrasting ore styles and their role in understanding the evolution of the Altaids. Ore Geol. Rev. 2017, 80, 910–922. [Google Scholar] [CrossRef]
- Wang, T.; Huang, H.; Zhang, J.; Wang, C.; Cao, G.; Xiao, W.; Yang, Q.; Bao, X. Voluminous continental growth of the Altaids and its control on metallogeny. Natl. Sci. Rev. 2023, 10, nwac283. [Google Scholar] [CrossRef] [PubMed]
- Wilhem, C.; Windley, B.F.; Stampfli, G.M. The Altaids of Central Asia: A tectonic and evolutionary innovative review. Earth-Sci. Rev. 2012, 113, 303–341. [Google Scholar] [CrossRef]
- Yakubchuk, A. The Altaids orogenic collage and its metallogeny reconsidered. Trans. Inst. Min. Metall. Sect. B Appl. Earth Sci. 2003, 112, B130–B131. [Google Scholar]
- Huang, S. The geological heritages in Xinjiang, China: Its features and protection. J. Geogr. Sci. 2010, 20, 357–374. [Google Scholar] [CrossRef]
- Chlachula, J. Geo-tourism perspectives in East Kazakhstan. Geogr. Environ. Sustain. 2019, 12, 29–43. [Google Scholar] [CrossRef]
- Chlachula, J. Gemstones of eastern Kazakhstan. Geologos 2020, 26, 139–162. [Google Scholar] [CrossRef]
- Chlachula, J.; Zhensikbayeva, N.Z.; Yegorina, A.V.; Kabdrakhmanova, N.K.; Czerniawska, J.; Kumarbekuly, S. Territorial assessment of the East Kazakhstan geo/ecotourism: Sustainable travel prospects in the southern Altai area. Geosciences 2021, 11, 156. [Google Scholar] [CrossRef]
- Zhanabayev, D.; Dzhanaleeva, K.; Ramazanova, N.; Keukenov, Y.; Mendybayeva, G.; Makhanova, N. Morphological characteristics of East Kazakhstan as a factor of geotourism development. Geoj. Tour. Geosites 2023, 46, 174–183. [Google Scholar] [CrossRef]
- Cunningham, D. The Case for a Globally Recognized Geopark in the NE Gobi Altai Region of Mongolia. Geoheritage 2021, 13, 105. [Google Scholar] [CrossRef]
- Gutak, J.M.; Ruban, D.A.; Yashalova, N.N. New marine geoheritage from the Russian Altai. J. Mar. Sci. Eng. 2021, 9, 92. [Google Scholar] [CrossRef]
- Karpunin, A.M.; Mamonov, S.V.; Mironenko, O.A.; Sokolov, A.R. Geological Monuments of Nature of Russia; Lorien: Moscow, Russia, 1998; p. 200. (In Russian) [Google Scholar]
- Dubatolov, V.N.; Krasnov, V.I. Middle Devonian and Frasnian seas of Siberia. Stratigr. Geol. Correl. 2000, 8, 557–578. [Google Scholar]
- Izokh, O.P.; Izokh, N.G.; Saraev, S.V.; Dokukina, G.A. C isotopic variations in the lower-middle Frasnian (lower Upper Devonian) of the Rudny Altai. Geol. Mag. 2015, 152, 565–571. [Google Scholar] [CrossRef]
- Kiessling, W.; Krause, M.C. PARED—An Online Database of Phanerozoic Reefs. 2022. Available online: https://www.paleo-reefs.pal.uni-erlangen.de (accessed on 29 March 2024).
- Raja, N.B.; Pandolfi, J.M.; Kiessling, W. Modularity explains large-scale reef booms in Earth’s history. Facies 2023, 69, 15. [Google Scholar] [CrossRef]
- Ruban, D.A. Ancient carbonate reefs as geological heritage: State of knowledge and case example. Carbonates Evaporites 2023, 38, 75. [Google Scholar] [CrossRef]
- Hasterok, D.; Halpin, J.A.; Collins, A.S.; Hand, M.; Kreemer, C.; Gard, M.G.; Glorie, S. New Maps of Global Geological Provinces and Tectonic Plates. Earth-Sci. Rev. 2022, 231, 104069. [Google Scholar] [CrossRef]
- Buslov, M.M.; Kokh, D.A.; De Grave, J. Mesozoic-Cenozoic tectonics and geodynamics of Altai, Tien Shan, and Northern Kazakhstan, from apatite fission-track data. Russ. Geol. Geophys. 2008, 49, 648–654. [Google Scholar] [CrossRef]
- Cunningham, W.D. Lithospheric controls on late Cenozoic construction of the Mongolian Altai. Tectonics 1998, 17, 891–902. [Google Scholar] [CrossRef]
- Huangfu, P.; Fan, W.; Li, Z.-H.; Zhang, H.; Zhao, J.; Shi, Y. Linkage between the India–Asia collision and far-field reactivation of the Altai mountains. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2023, 616, 111478. [Google Scholar] [CrossRef]
- Novikov, I.S. Late Paleozoic, Middle Mesozoic, and Late Cenozoic stages of the Altai orogeny. Geol. I Geofiz. 2002, 43, 434–445. [Google Scholar]
- Yin, A. Cenozoic tectonic evolution of Asia: A preliminary synthesis. Tectonophysics 2010, 488, 293–325. [Google Scholar] [CrossRef]
- Chernyshev, I.V.; Vikentyev, I.V.; Chugaev, A.V.; Dergachev, A.L.; Ratkin, V.V. Sources of Metals for the Rudny Altai VMS Deposits: Results of High-Precision MC-ICP-MS Lead Isotope Study. Geochem. Int. 2023, 61, 539–561. [Google Scholar] [CrossRef]
- Gorzhevsky, D.I.; Yakovlev, G.F. Evidence of the Telbess phase of tectogenesis in Rudny Altai. Int. Geol. Rev. 1959, 1, 60–65. [Google Scholar] [CrossRef]
- Kozlov, M.S. Formation conditions of the Rudny Altai metallogenic province. Geol. Ore Depos. 2015, 57, 266–291. [Google Scholar] [CrossRef]
- Mesentseva, O.P. Trepostomids (Bryozoa) from the Devonian of Salair, Kuznetsky Basin, Gorny and Rudny Altai, Russia. Bull. Geosci. 2008, 83, 449–460. [Google Scholar] [CrossRef]
- Obut, O.T.; Shcherbanenko, T.A. Late Devonian radiolarians from the Rudny Altai (SW Siberia). Bull. Geosci. 2008, 83, 371–382. [Google Scholar] [CrossRef]
- Saraev, S.V.; Baturina, T.P.; Bakharev, N.K.; Izokh, N.G.; Sennikov, N.V. Middle-Late Devonian island-arc volcanosedimentary complexes in northwestern Rudny Altai. Russ. Geol. Geophys. 2012, 53, 982–996. [Google Scholar] [CrossRef]
- Sekerina, D.D.; Egorov, A.S. Features of the deep structure, geotectonic position, and evolutionary history of the Zmeinogorsk-Bystrushinsky trough of Rudny Altai. Reg. Geol. I Metallog. 2024, 97, 17–26. (In Russian) [Google Scholar]
- Seravkin, I.B.; Kosarev, A.M. Southern Urals and Rudny Altai: A Comparative Paleovolcanic and Metallogenic Analysis. Geol. Ore Depos. 2019, 61, 99–117. [Google Scholar] [CrossRef]
- Afanas’eva, M.S.; Amon, E.O.; Gutak, Y.M. New Finds of Middle-Upper Devonian Radiolarians in the Rudnyi Altai Region. Dokl. Earth Sci. 2009, 425A, 351–356. [Google Scholar] [CrossRef]
- Elkin, E.A. (Ed.) Key Sections of the Devonian of the Rudny Altai, Salair and Kuzbass; SO RAN: Novosibirsk, Russia, 2004; p. 104. (In Russian) [Google Scholar]
- Gutak, Y.M.; Rodygin, S.A. Conodonts, Brachiopods and the Stratigraphy of the Middle-Upper Devonian Boundary Deposits of the Altay-Sayan Folded Area (Russia). Bull. L’academie Serbe Sci. Arts Cl. Sci. Math. Nat. Sci. Nat. 2004, 42, 131–138. [Google Scholar]
- Murzin, O.V.; Gorshechnikova, V.I.; Zhdanov, V.A.; Syroezhko, N.V.; Kochurova, L.I.; Kartashova, N.V. State Geological Map of the Russian Federation, Gornyak, Descriptive Note; VSEGEI: Sankt-Peterburg, Russia, 2001; p. 219. (In Russian) [Google Scholar]
- Golonka, J. Late Devonian paleogeography in the framework of global plate tectonics. Glob. Planet. Chang. 2020, 186, 103129. [Google Scholar] [CrossRef]
- Scotese, C.R.; Song, H.; Mills, B.J.W.; van der Meer, D.G. Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years. Earth-Sci. Rev. 2021, 215, 103503. [Google Scholar] [CrossRef]
- Brilha, J. Inventory and Quantitative Assessment of Geosites and Geodiversity Sites: A Review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef]
- Bruschi, V.M.; Cendrero, A. Geosite evaluation; can we measure intangible values? Alp. Mediterr. Quat. 2005, 18, 293–306. [Google Scholar]
- Gutak, J.M.; Ruban, D.A.; Ermolaev, V.A. Devonian geoheritage of Siberia: A case of the northwestern Kemerovo region of Russia. Heliyon 2023, 9, e13288. [Google Scholar] [CrossRef]
- Hamidy, M.E.; Errami, E.; Kabouri, J.E.; Naim, M.; Assouka, A.; Youssef, A.A.B.; Bchari, F.E. Jbel Irhoud Geosite, the Cradle of Humanity (Youssoufia Province, Marrakech-Safi region, Morocco): Evaluation and Valorization of the Geological Heritage for Geoeducation and Geotourism Purposes. Geoheritage 2024, 16, 28. [Google Scholar] [CrossRef]
- Pasquaré Mariotto, F.; Corti, N.; Drymoni, K. Advanced Technologies for Geosite Visualization and Valorization: A Review. Appl. Sci. 2023, 13, 5598. [Google Scholar] [CrossRef]
- Štrba, Ľ.; Vravcová, A.; Podoláková, M.; Varcholová, L.; Kršák, B. Linking Geoheritage or Geosite Assessment Results with Geotourism Potential and Development: A Literature Review. Sustainability 2023, 15, 9539. [Google Scholar] [CrossRef]
- Wimbledon, W.A. The development of a methodology for the selection of British geological sites for conservation: Part 1. Mod. Geol. 1995, 20, 159–202. [Google Scholar]
- Zorlu, K.; Polat, S.; Yılmaz, A.; Dede, V. An integrated fuzzy-rough multi-criteria group decision-making model for quantitative assessment of geoheritage resources. Resour. Policy 2024, 90, 104773. [Google Scholar] [CrossRef]
- Champenois, F.; George, A.D.; McNamara, K.J.; Shaw, J.; Cherdantseva, M. Contrasting morphology and growth habits of Frutexites in Late Devonian reef complexes of the Canning Basin, northwestern Australia. Geobiology 2024, 22, e12579. [Google Scholar] [CrossRef] [PubMed]
- Copper, P.; Edinger, E. Distribution, geometry and palaeogeography of the Frasnian (Late Devonian) reef complexes of Banks Island, NWT, Western Arctic, Canada. Geol. Soc. Spec. Publ. 2009, 314, 109–124. [Google Scholar] [CrossRef]
- Antoshkina, A.I. Organic buildups and reefs on the Palaeozoic carbonate platform margin, Pechora Urals, Russia. Sediment. Geol. 1998, 118, 187–211. [Google Scholar] [CrossRef]
- Weller, H. Facies and development of the Devonian (Givetian/Frasnian) elbingerode reef complex in the Harz Area (Germany). Facies 1991, 15, 1–49. [Google Scholar] [CrossRef]
- Bouari, A.; Lazreq, N.; Soulaimani, A.; Tahiri, A.; Aboulfaraj, A. The Heritage Interest of the Koudiat Ferjane Outcrops of Jebel Ardouz in the M’zoudia Region and Their Protection. Geoheritage 2021, 13, 13. [Google Scholar] [CrossRef]
- Moonpa, K.; Srichan, W.; Charoentitirat, T.; Intawong, T. Lower Permian limestone associated with ocean floor rocks in the Inthanon Zone of northern Thailand: New evidence for mélange. Geosci. J. 2024, 28, 1–14. [Google Scholar] [CrossRef]
- Talent, J.A.; Mawson, R. Teaching reef environments and paleoecology on contemporary and Quaternary reefs. J. Geol. Educ. 1993, 41, 231–243. [Google Scholar] [CrossRef]
- Braga, J.C.; Martín, J.M.; García-Hoyo, G.; Tejero-Trujeque, L. The Messinian (Late Miocene) coral reefs in the Cabo de Gata-Níjar UNESCO Global Geopark. Geoconservation Res. 2021, 4, 650–662. [Google Scholar]
- Corbí, H.; Fierro, I.; Aberasturi, A.; Sánchez Ferris, E.J. Potential Use of a Significant Scientific Geosite: The Messinian Coral Reef of Santa Pola (SE Spain). Geoheritage 2018, 10, 427–441. [Google Scholar] [CrossRef]
- Chylińska, D. The Role of the Picturesque in Geotourism and Iconic Geotourist Landscapes. Geoheritage 2019, 11, 531–543. [Google Scholar] [CrossRef]
- Kirillova, K. A review of aesthetics research in tourism: Launching the Annals of Tourism Research Curated Collection on beauty and aesthetics in tourism. Ann. Tour. Res. 2023, 100, 103553. [Google Scholar] [CrossRef]
- Kirillova, K.; Fu, X.; Lehto, X.; Cai, L. What makes a destination beautiful? Dimensions of tourist aesthetic judgment. Tour. Manag. 2014, 42, 282–293. [Google Scholar] [CrossRef]
- Sezen, I.; Yilmaz, S. Visual assessment for the evaluation of Erzurum-Bayburt-Of highway as scenic road. Sci. Res. Essays 2010, 5, 366–377. [Google Scholar]
- Wang, P.; Yang, W.; Wang, D.; He, Y. Insights into public visual behaviors through eye-tracking tests: A study based on national park system pilot area landscapes. Land 2021, 10, 497. [Google Scholar] [CrossRef]
- Bohatý, J.; Herbig, H.-G. Middle Givetian echinoderms from the Schlade Valley (Rhenish Massif, Germany): Habitats, taxonomy and ecostratigraphy. Palaontol. Z. 2010, 84, 365–385. [Google Scholar] [CrossRef]
- Gutiérrez-Marco, J.C.; Štorch, P. The Checa Silurian Section, an Outstanding Fossil Site in the Molina-Alto Tajo UNESCO Global Geopark, Spain. Geoconservation Res. 2021, 4, 136–143. [Google Scholar]
- Louz, E.; Rais, J.; Barakat, A.; Barka, A.A.; Nadem, S. Inventory and Assessment of Geosites and Geodiversity Sites of the Ait Attab Syncline (M’goun UNESCO Geopark, Morocco) to Stimulate Geoconservation, Geotourism and Sustainable Development. Quaest. Geogr. 2023, 42, 115–143. [Google Scholar] [CrossRef]
- Thomas, B.A. The palaeobotanical beginnings of geological conservation: With case studies from the USA, Canada, and Great Britain. Geol. Soc. Spec. Publ. 2005, 241, 95–110. [Google Scholar] [CrossRef]
- Anougmar, S.; Meesters, A.; van Ree, D.; Compernolle, T. The dilemma of valuing geodiversity: Geoconservation versus geotourism. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2024, 382, 20230049. [Google Scholar] [CrossRef] [PubMed]
- Brilha, J. Geoconservation and protected areas. Environ. Conserv. 2002, 29, 273–276. [Google Scholar] [CrossRef]
- Chakrabarty, P.; Mandal, R. Geotourism development for fossil conservation: A study in amkhoi fossil park of West Bengal in India. Geoj. Tour. Geosites 2019, 27, 1418–1428. [Google Scholar] [CrossRef]
- Kazancı, N. Geological Background and Three Vulnerable Geosites of the Kızılcahamam-Çamlıdere Geopark Project in Ankara, Turkey. Geoheritage 2012, 4, 249–261. [Google Scholar] [CrossRef]
- Munt, M. A history of geological conservation on the Isle of Wight. Geol. Soc. Spec. Publ. 2008, 300, 173–179. [Google Scholar] [CrossRef]
- Page, K.N. The protection of Jurassic sites and fossils: Challenges for Global Jurassic Science (inluding a proposed statement on the conservation of palaeontological heritage and stratotypes). Riv. Ital. Di Paleontol. E Stratigr. 2004, 110, 373–379. [Google Scholar]
- Rabal-Garcés, R.; Castanera, D.; Luzón, A.; Barco, J.L.; Canudo, J.I. A Palaeoichnological Itinerary Through the Cenozoic of the Southern Margin of the Pyrenees and the Northern Ebro Basin (Aragón, Northeast Spain). Geoheritage 2018, 10, 499–509. [Google Scholar] [CrossRef]
- Ruiz, R.C.; Candelario, Y.P.; Fernández, C.F. El Hierro UNESCO Global Geopark: Geological Heritage, Geoconservation and Geoturism. Geoconserv. Res. 2023, 6, 128–138. [Google Scholar]
- Worton, G.J.; Prosser, C.D.; Larwood, J.G. Paleontological and Geological Highlights of the Black Country UNESCO Global Geopark. Geoconserv. Res. 2021, 4, 144–157. [Google Scholar]
- Braden, K.; Prudnikova, N. The challenge of ecotourism development in the Altay Region of Russia. Tour. Geogr. 2008, 10, 1–21. [Google Scholar] [CrossRef]
- Dunets, A.N.; Zhogova, I.G.; Sycheva, I.N. Common characteristics in the organization of tourist space within mountainous regions: Altai-Sayan region (Russia). Geoj. Tour. Geosites 2019, 24, 161–174. [Google Scholar]
- Minaev, A.I.; Chernova, E.O.; Sukhova, M.G.; Juravleva, O.V. Environmental and Economic Trends of Recreation Development in the Republic of Altai. Smart Innov. Syst. Technol. 2022, 275, 373–380. [Google Scholar]
- Chernova, E.O.; Sukhova, M.G. Recreational-commercial zoning of Altai mountains. Sustain. Dev. Mt. Territ. 2017, 9, 362–368. [Google Scholar] [CrossRef]
- Vinokurov, Y.I.; Krasnoyarova, B.A. Greater Altai: Features of Development and International Cooperation. Reg. Res. Russ. 2023, 13, 758–768. [Google Scholar] [CrossRef]
- Lin, B.; Zeng, Y.; Asner, G.P.; Wilcove, D.S. Coral reefs and coastal tourism in Hawaii. Nat. Sustain. 2023, 6, 254–258. [Google Scholar] [CrossRef]
- Spalding, M.; Burke, L.; Wood, S.A.; Ashpole, J.; Hutchison, J.; zu Ermgassen, P. Mapping the global value and distribution of coral reef tourism. Mar. Policy 2017, 82, 104–113. [Google Scholar] [CrossRef]
Level 1 | Level 2 | Level 3 | Explanatory Notes |
---|---|---|---|
Geoheritage | Most general term (idea) reflecting the presence of the intrinsic and extrinsic heritage values in geological (also geomorphological) phenomena (features) | ||
Geoheritage resource | Phenomena (objects and processes) | ||
Potential resource | Geoheritage may exist, but its manifestations have not been inventoried | ||
Geological bodies, geological landscapes, geological (tectonic) domains | |||
Proven resource | Geoheritage exists, and its manifestations have been inventoried | ||
In situ and ex situ manifestations such as geosites (also geomorphosites), geoparks, mineral and fossil collections, special exhibits, etc. | |||
Geoheritage properties | Characteristics | ||
Descriptive categories | Descriptive properties can be established, but not measured; commonly, they are linked to the heritage values only indirectly | ||
Type (geological content, essence), form (physical appearance such as natural outcrop, quarry, collected specimen, etc.), size, shape (configuration, geometry), age, dynamics, color | Particular descriptive properties correspond to different grades of these categories | ||
Assessment categories | Assessment properties can be established and measured (quantitatively or semi-quantitatively); commonly, they are linked to the heritage value directly; these categories can be considered as assessment criteria | ||
Rank (relative uniqueness, rarity), number of types, accessibility, vulnerability (also conservation state), need for interpretation, importance (scientific, educational, touristic), aesthetic attractiveness | Particular assessment properties correspond to different grades of these categories; rank is related to the intrinsic heritage value, and the other categories are technical (functional) and related to the extrinsic heritage value |
Types (Dominant Types Are Marked with *) | Geosites (Characteristic Features Related to Particular Types Are Indicated) | ||
---|---|---|---|
Neverovsky Palaeoreef | Zolotukha Section | Razdolnoe Section | |
Palaeogeographical * | + (palaeoreef facies and ecosystem) | + (deep-marine facies) | + (deep-marine facies) |
Stratigraphical * | + (Frasnian stratigraphy) | + (Givetian–Frasnian transition) | + (age of the Kamenevskaya Fm.) |
Palaeontological * | + (richness in fossils) | + (richness in fossils) | + (richness in fossils) |
Sedimentary | +(carbonate rocks) | +(siliciclastic rocks and radiolarites) | +(siliciclastic rocks) |
Igneous | + (volcanic features) | - | - |
Economical | + (abandoned quarry) | - | - |
Geomorphological | + (reefs expressed in local landforms) | - | - |
Criteria (Assessment Categories) and Scores | Geosites | ||
---|---|---|---|
Neverovsky Palaeoreef | Zolotukha Section | Razdolnoe Section | |
Rarity: global (+500), national (+250), regional (+100), local (+50) | +500 | +100 | +100 |
Number of geoheritage types: >10 (+50), 4–10 (+25), 2–3 (+10), 1 (0) | +25 | +25 | +25 |
Accessibility: easy in populated area (+25), easy in remote area (0), difficult (−25) | +25 | +25 | +25 |
Vulnerability: no danger (+25), potential danger (0), partly damaged (−25), fully destroyed (−50) | +25 | +25 | +25 |
Need for interpretation: absent (+25), basic geological knowledge required (0), professional geological knowledge required (−10), scientific analysis required (−25) | 0 | −10 | −10 |
Scientific importance: international (+25), local (0) | +25 | +25 | +25 |
Educational importance: international (+25), local (0) | 0 | 0 | 0 |
Touristic importance: international (+25), local (0) | 0 | 0 | 0 |
Aesthetic importance: high (+50), medium (+25), low (0) | +25 | 0 | 0 |
TOTAL SCORES | 625 | 190 | 190 |
Finally justified rank: global (G)—>499, national (N)—250–499, regional (R)—100–249, local (L)—<100 | Global | Regional | Regional |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutak, J.M.; Ruban, D.A. Neverovsky Palaeoreef and Associated Deep-Marine Facies: High-Value Late Devonian Geoheritage from the Rudny Altai. Heritage 2024, 7, 2385-2398. https://doi.org/10.3390/heritage7050113
Gutak JM, Ruban DA. Neverovsky Palaeoreef and Associated Deep-Marine Facies: High-Value Late Devonian Geoheritage from the Rudny Altai. Heritage. 2024; 7(5):2385-2398. https://doi.org/10.3390/heritage7050113
Chicago/Turabian StyleGutak, Jaroslav M., and Dmitry A. Ruban. 2024. "Neverovsky Palaeoreef and Associated Deep-Marine Facies: High-Value Late Devonian Geoheritage from the Rudny Altai" Heritage 7, no. 5: 2385-2398. https://doi.org/10.3390/heritage7050113
APA StyleGutak, J. M., & Ruban, D. A. (2024). Neverovsky Palaeoreef and Associated Deep-Marine Facies: High-Value Late Devonian Geoheritage from the Rudny Altai. Heritage, 7(5), 2385-2398. https://doi.org/10.3390/heritage7050113