Wall Drawing #736: Revealing Sol LeWitt’s Ink Mural Technique Using a Multi-Analytical Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Contemporary Inks from the Marescalchi Archive
2.2. Technical Information from the 2011 Interview with Andrea Marescalchi
2.3. Technical Information from the 2011 Interview with Andrea Marescalchi
- Samples 1, 2, and 8 were fragments detached from the wall;
- Samples 3, 4, 5, 6, and 7 were selectively collected to fully characterise the materials used in the wall drawing.
2.4. Apparatus
2.4.1. Raman Spectroscopy
2.4.2. Gas Chromatography–Mass Spectrometry (GC–MS)
2.4.3. Pyrolysis Coupled to Gas Chromatography–Mass Spectrometry (Py–GC–MS and Py(HMDS)–GC–MS)
2.4.4. High-Performance Liquid Chromatography (HPLC–DAD–ESI-Q-ToF)
3. Results and Discussion
3.1. Marescalchi Archive Inks
3.1.1. Chemical Investigation of Binders and Additives
- A/P (azelaic acid/palmitic acid) is commonly evaluated to investigate the occurrence of drying oils (A/P > 1), since the formation of dicarboxylic acids (peaking with azelaic acid) production occurs during the curing and ageing of drying oil. As for the black and blue inks, A/P < 1 values were observed. The lipids observed in their chromatograms cannot be associated with a siccative oil, and their presence can thus be associated to free acids of shellac resin, given that Py–GC–MS analysis already excluded the presence of egg, another common source of lipids in binding media. Conversely, A/P > 1 was observed in the red and yellow inks, consistent with a molecular profile typical of drying oils;
- P/S (palmitic acid/stearic acid) is a chemical parameter commonly used to differentiate drying oils based on the different relative abundance of the two main saturated monocarboxylic acids. The quantitative analysis performed for the red and yellow inks provided us with a P/S ratio values of 1.6 and 1.1, respectively, compatible with linseed oil, whose presence cannot be fully ascertained since mixtures cannot be excluded [35];
- % ∑D percentage (dicarboxylic acids sum/total free acids) and O/S (oleic acid/stearic acid) are chemical parameters useful to evaluate the degree of ageing/curing, since oleic acid is highly reactive towards oxidation, and as stated above dicarboxylic acids are auto-oxidation products. The values achieved (O/S = 0.7, for both red and yellow inks) suggest a partial oxidation of the lipid binder, consistent with the fact that the archive inks are quite contemporary (80s–90s) and were in liquid form when cast on the glass slides as mock-ups, which were further sampled and analysed just after few weeks; notably, we determined a higher ageing degree for the red ink (% ∑D = 50) than for the yellow one (% ∑D = 36).
3.1.2. Investigation of Dyes and Pigments
3.2. Samples from Wall Drawing #736
- PBMA in all the samples collected selectively from the surface (samples 5, 6, and 7);
- PBMA + PVAc in the samples obtained as fragments (degradation of the wall drawing), thus composed by both the coloured ink’s layers and the white preparation (Samples 1, 2, and 8).
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- LeWitt, S. Wall Drawings. Arts Mag. 1970, 44, 45. [Google Scholar]
- Sol Lewitt, interview by Claes Soederquist, Hanno Fuchs and Andi Loor reported in Vanishing Point, catalogue Moderna 510 Museet, Stockholm, Sweden. 1984.
- Aveihè, L. Long Live the Ephemeral: Cataloguing Sol LeWitt’s Wall Drawings; LeWitt, L., Areford, D.S., Eds.; Yale University Press: New Haven, CT, USA, 2021; pp. 203–230. [Google Scholar]
- Areford, D.S. (Ed.) Locating Sol LeWitt; Yale University Press: New Haven, CT, USA, 2021. [Google Scholar]
- Armando, L. (Ed.) Le installazioni. Conservazione, Movimentazione e Riallestimento, Kermes; Nardini: Firenze, Italy, 2020; Volume 117. [Google Scholar]
- Pugliese, M.; Feriani, B. Monumenti Effimeri. Storia e Conservazione Delle Installazioni; Electa: Stockholm, Sweden, 2009. [Google Scholar]
- Hogan, J.; Snow, C. Sol Lewitt’s Wall Drawings: Conservation of an ephemeral art practice. In Proceedings of the Objects Specialty Group Postprints, Volume Twenty-Two, Miami, FL, USA, 13–16 May 2015; Hamilton, E.E., Dodson, K., Barack, S., Moomaw, K., Eds.; The American Institute for Conservation of Historic & Artistic Works: Washington, DC, USA, 2015; pp. 37–46. [Google Scholar]
- Rousaki, A.; Vandenabeele, P. Raman Analysis of Inorganic and Organic Pigments. In Analytical Chemistry for the Study of Paintings and the Detection of Forgeries; Colombini, M.P., Degano, I., Eds.; De Gruyter: Berlin, Germany, 2022; pp. 289–315. [Google Scholar]
- Tamburini, D.; Sabatini, F.; Berbers, S.; van Bommel, M.R.; Degano, I. An Introduction and Recent Advances in the Analytical Study of Early Synthetic Dyes and Organic Pigments in Cultural Heritage. Heritage 2024, 7, 1969–2010. [Google Scholar] [CrossRef]
- Andreotti, A.; Bonaduce, I.; Colombini, M.P.; Gautier, G.; Modugno, F.; Ribechini, E. Combined GC/MS Analytical Procedure for the Characterization of Glycerolipid, Waxy, Resinous, and Proteinaceous Materials in a Unique Paint Microsample. Anal. Chem. 2006, 78, 4490–4500. [Google Scholar] [CrossRef] [PubMed]
- Ghelardi, E.; Degano, I.; Colombini, M.P.; Mazurek, J.; Schilling, M.; Learner, T. Py-GC/MS applied to the analysis of synthetic organic pigments: Characterization and identification in paint samples. Anal. Bioanal. Chem. 2015, 407, 1415–1431. [Google Scholar] [CrossRef] [PubMed]
- Moretti, P.; Germinario, G.; Doherty, B.; van der Werf, I.D.; Sabbatini, L.; Mirabile, A.; Sgamellotti, A.; Miliani, C. Disclosing the composition of historical commercial felt-tip pens used in art by integrated vibrational spectroscopy and pyrolysis-gas chromatography/mass spectrometry. J. Cult. Herit. 2019, 35, 242–253. [Google Scholar] [CrossRef]
- Degano, I.; Modugno, F.; Bonaduce, I.; Ribechini, E.; Colombini, M.P. Recent Advances in Analytical Pyrolysis to Investigate Organic Materials in Heritage Science. Angew. Chem. Int. Ed. 2018, 57, 7313–7323. [Google Scholar] [CrossRef] [PubMed]
- Germinario, G.; van der Werf, I.D.; Sabbatini, L. Chemical characterisation of spray paints by a multi-analytical (Py/GC–MS, FTIR, μ-Raman) approach. Microchem. J. 2016, 124, 929–939. [Google Scholar] [CrossRef]
- La Nasa, J.; Campanella, B.; Sabatini, F.; Rava, A.; Shank, W.; Lucero-Gomez, P.; De Luca, D.; Legnaioli, S.; Palleschi, V.; Colombini, M.P.; et al. 60 years of street art: A comparative study of the artists’ materials through spectroscopic and mass spectrometric approaches. J. Cult. Herit. 2021, 48, 129–140. [Google Scholar] [CrossRef]
- La Nasa, J.; Orsini, S.; Degano, I.; Rava, A.; Modugno, F.; Colombini, M.P. A chemical study of organic materials in three murals by Keith Haring: A comparison of painting techniques. Microchem. J. 2016, 124, 940–948. [Google Scholar] [CrossRef]
- Colombini, M.P.; Andreotti, A.; Bonaduce, I.; Modugno, F.; Ribechini, E. Analytical Strategies for Characterizing Organic Paint Media Using Gas Chromatography/Mass Spectrometry. Acc. Chem. Res. 2010, 43, 715–727. [Google Scholar] [CrossRef]
- Degano, I.; La Nasa, J. Trends in High Performance Liquid Chromatography for Cultural Heritage. Top. Curr. Chem. 2016, 374, 20. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, A.; Sabatini, F.; Degano, I. Linking historical recipes and ageing mechanisms: The issue of 19th century iron gall inks. J. Cult. Herit. 2024, 67, 111–120. [Google Scholar] [CrossRef]
- Ferretti, A.; Hunt, E.; Degano, I. Exploring the optimal HPLC-DAD-HRMS parameters for acid dye-based artistic materials: An analytical challenge. Microchem. J. 2024, 204, 111111. [Google Scholar] [CrossRef]
- Tamburini, D. On the reliability of historic books as sources of reference samples of early synthetic dyes—The case of “The Coal Tar Colours of the Farbwerke vorm. Meister, Lucius & Brüning, Höchst on the Main, Germany—A General Part” (1896). Dye. Pigment. 2024, 221, 111796. [Google Scholar]
- Cadetti, S.; Casarano, A.; Felici, C.; Fornari, C.; Marchese, L.; Musa, C.; Todaro, C. Sol LeWitt, Wall Drawing 445; Wall Drawing 494. Intervista ad Andrea Marescalchi. In Il Futuro del Contemporaneo; Montalbano, L., Patti, M., Eds.; Edifir: Firenze, Italy, 2013; pp. 145–150. [Google Scholar]
- Sansotta, A.; Singer, S. Notes. In Sol Lewitt, Wall Drawings 1984–1992; Singer, S., Ed.; Kunsthalle Bern: Bern, Switzerland, 1992; p. 216. [Google Scholar]
- Sabatini, F.; Degano, I. Investigating the fragmentation pathways of β-naphthol pigments using liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2020, 34, e8789. [Google Scholar] [CrossRef] [PubMed]
- Sabatini, F.; Giugliano, R.; Degano, I. Photo-oxidation processes of Rhodamine B: A chromatographic and mass spectrometric approach. Microchem. J. 2018, 140, 114–122. [Google Scholar] [CrossRef]
- Ferretti, A.; Degano, I.; Legnaioli, S.; Campanella, B.; Sainati, A.; Colombini, M.P. Shedding light on the composition and degradation mechanism of dyes in historical ink’s collection (19th–20th century). Dye. Pigment. 2023, 220, 111672. [Google Scholar] [CrossRef]
- La Nasa, J.; Nodari, L.; Nardella, F.; Sabatini, F.; Degano, I.; Modugno, F.; Legnaioli, S.; Campanella, B.; Tufano, M.K.; Zuena, M.; et al. Chemistry of modern paint media: The strained and collapsed painting by Alexis Harding. Microchem. J. 2020, 155, 104659. [Google Scholar] [CrossRef]
- Wei, S.; Fang, X.; Cao, X.; Schreiner, M. Characterization of the materials used in Chinese ink sticks by pyrolysis-gas chromatography-mass spectrometry. J. Anal. Appl. Pyrolysis 2011, 91, 147–153. [Google Scholar] [CrossRef]
- Wei, S.; Fang, X.; Yang, J.; Cao, X.; Pintus, V.; Schreiner, M.; Song, G. Identification of the materials used in an Eastern Jin Chinese ink stick. J. Cult. Herit. 2012, 13, 448–452. [Google Scholar] [CrossRef]
- Centeno, S.A.; Lladò Buisan, V.; Ropret, P. Raman study of synthetic organic pigments and dyes in early lithographic inks (1890–1920). J. Raman Spectrosc. 2006, 37, 1111–1118. [Google Scholar] [CrossRef]
- Colombini, M.P.; Bonaduce, I.; Gautier, G. Molecular pattern recognition of fresh and aged shellac. Chromatographia 2003, 58, 357–364. [Google Scholar] [CrossRef]
- Tamburini, D.; Dyer, J.; Bonaduce, I. The characterisation of shellac resin by flow injection and liquid chromatography coupled with electrospray ionisation and mass spectrometry. Sci. Rep. 2017, 7, 14784. [Google Scholar] [CrossRef] [PubMed]
- Dallongeville, S.; Koperska, M.; Garnier, N.; Reille-Taillefert, G.; Rolando, C.; Tokarski, C. Identification of animal glue species in artworks using proteomics: Application to a 18th century gilt sample. Anal. Chem. 2011, 83, 9431–9437. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, J.; Svoboda, M.; Maish, J.; Kawahara, K.; Fukakusa, S.; Nakazawa, T.; Taniguchi, Y. Characterization of binding media in Egyptian Romano portraits using enzyme-linked immunosorbent assay and mass spectrometry. e-Preserv. Sci. 2014, 11, 76–83. [Google Scholar]
- Colombini, M.P.; Modugno, F. Organic Mass Spectrometry in Art and Archaeology; Wiley: Hoboken, NJ, USA, 2009; ISBN 9780470517031. [Google Scholar]
- Coccato, A.; Jehlicka, J.; Moens, L.; Vandenabeele, P. Raman spectroscopy for the investigation of carbon-based black pigments. J. Raman Spectrosc. 2015, 46, 1003–1015. [Google Scholar] [CrossRef]
- Lomax, S.Q. Phthalocyanine and quinacridone pigments: Their history, properties and use. Stud. Conserv. 2005, 50, 19–29. [Google Scholar] [CrossRef]
- Russell, J.; Singer, B.W.; Perry, J.J.; Bacon, A. The identification of synthetic organic pigments in modern paints and modern paintings using pyrolysis-gas chromatography-mass spectrometry. Anal. Bioanal. Chem. 2011, 400, 1473–1491. [Google Scholar] [CrossRef] [PubMed]
- Sonoda, N. Characterization of organic azo-pigments by pyrolysis-gas chromatography. Stud. Conserv. 1999, 44, 195–208. [Google Scholar]
- La Nasa, J.; Biale, G.; Sabatini, F.; Degano, I.; Colombini, M.P.; Modugno, F. Synthetic materials in art: A new comprehensive approach for the characterization of multi-material artworks by analytical pyrolysis. Herit. Sci. 2019, 7, 8. [Google Scholar] [CrossRef]
- SOPRANO (SOP Spectral Library). Available online: https://soprano.kikirpa.be/index.php?lib=sop (accessed on 29 November 2023).
- Fremout, W.; Saverwyns, S. Identification of synthetic organic pigments: The role of a comprehensive digital Raman spectral library. J. Raman Spectrosc. 2012, 43, 1536–1544. [Google Scholar] [CrossRef]
- Scherrer, N.C.; Stefan, Z.; Francoise, D.; Annette, F.; Renate, K. Synthetic organic pigments of the 20th and 21st century relevant to artist’s paints: Raman spectra reference collection. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 73, 505–524. [Google Scholar] [CrossRef] [PubMed]
Label | Description | Sample Fragment | Label | Description | Sample Fragment |
---|---|---|---|---|---|
1 | BRB: collected from the floor below one of the blue areas: fragment with layers of blue and red inks on a white base preparation. | 2 | RYG: collected from the floor below one of the red areas: fragment with layers of red, yellow, and grey inks on a white base preparation. | ||
Label | Description | Sampling spot | Label | Description | Sampling spot |
3 | White preparation layer without fixative. | 4 | White preparation layer with fixative. | ||
5 | YY: selective surface sampling of yellow ink. Probable traces of black ink and fixative. | 6 | GG: selective surface sampling of grey ink (black ink diluted 1:60 in water). Probable traces of fixative. | ||
7 | RRR: selective surface sampling of yellow ink. Probable traces of black ink and fixative. | 8 | RGG: fragment with layers of red and black inks on a white base preparation. |
Archive Ink | Pigments | Binder/Additives |
---|---|---|
Black | Carbon black | Animal glue, shellac resin, paraffin wax, 1,6-hexanediol |
Blue | PB 15:3 | Animal glue, shellac resin |
Yellow | PY3, PY13 | Animal glue, shellac resin, siccative oil |
Red | PR149, PR11, unknown naphthol AS pigment | Animal glue (?), shellac resin, siccative oil |
Material | Pyrolysis Products | tr (min) | m/z | Samples | ||||||||||||
G | B | Y | R | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 8 | ||||
PB 15:3 | 1,2-dicyanobenzene | 12.9 | 128, 101, 75 | x | ||||||||||||
Benzonitrile | 15.7 | 103, 76, 50 | x | |||||||||||||
O-cyanobenzoic acid | 16.5 | 147, 76, 104 | x | |||||||||||||
PY13 | 2,4-dimethylaniline | 14.5 | 121, 106, 120 | x | ||||||||||||
N-(2,4-dimethylphenyl) formamide | 14.6 | 147, 118, 132 | x | x | ||||||||||||
N-(2,4-dimethylphenyl) acetamide | 16.8 | 121, 106, 163 | x | x | ||||||||||||
3,3′-dichlorobiphenyl-4-amine | 19.8 | 237, 239, 167 | x | |||||||||||||
PR149 | m-xylene | 11.5 | 91, 106, 77 | x | ||||||||||||
Benzo[c,d]indol-2(1H)-one | 17.1 | 169, 144, 140 | x | |||||||||||||
Naphthol AS pigment | Toluene | 9.9 | 91, 65, 39 | x | ||||||||||||
Phenol | 12.8 | 94, 66, 39, 55 | x | |||||||||||||
p-aminotoluene | 13.7 | 106, 77, 51 | x | |||||||||||||
2-naphthol | 16.7 | 144, 115 | x | |||||||||||||
Animal glue | Pyrrole | 10.6 | 67, 39, 52 | x | ||||||||||||
Toluene | 10.9 | 91, 65, 39 | x | |||||||||||||
3-methyl-1H-pyrrole | 12.1 | 53, 80 | x | |||||||||||||
Hexahydro-pyrrole [1,2-a] pyrazine-1, 4-dione | 18.8 | 111, 83, 154, 70, 91, 48, 126 | x | |||||||||||||
Shellac resin | Butolic acid-TMS * | 33.0 | 373, 357, 275, 215, 185, 157, 87 | x | ||||||||||||
PVAc (polyvinyl acetate) | Acetone | 5.4 | 43, 58 | x | x | x | x | x | ||||||||
Acetic acid | 7.2 | 43, 60 | x | x | x | x | x | |||||||||
Benzene | 7.9 | 78, 51, 39 | x | x | x | x | x | |||||||||
Toluene | 9.9 | 91, 65, 39, 51 | x | x | x | x | x | |||||||||
Ethylbenzene | 11.4 | 91, 106, 51, 77 | x | x | x | x | x | |||||||||
Styrene | 1.,8 | 104, 78, 51, 63 | x | x | x | x | x | |||||||||
Indene | 13.5 | 115, 89, 63, 58, 39 | x | x | x | x | x | |||||||||
1-methyl indene | 14.4 | 130, 115, 51, 64, 77, 39, 102 | x | x | x | x | x | |||||||||
3-methyl indene | 14.5 | 130, 115, 51, 64, 77, 39, 102 | x | x | x | x | x | |||||||||
Naphthalene | 14.7 | 128, 102, 51, 39 | x | x | x | x | x | |||||||||
2-methyl naphthalene | 15.5 | 142, 115, 63, 89 | x | x | x | x | x | |||||||||
1-methyl naphthalene | 15.6 | 142, 115, 63, 89 | x | x | x | x | x | |||||||||
Acenaphthene | 15.9 | 154, 76, 115, 128, 51, 63, 102 | x | x | x | x | x | |||||||||
PBMA (poly (n-butyl methacrylate)) | 1-butene | 4.9 | 41, 56 | x | x | x | x | x | x | x | ||||||
Benzene | 7.9 | 78, 63 | x | x | x | x | x | x | x | |||||||
Methyl methacrylate | 8.8 | 41, 69, 100, 85, 59 | x | x | x | x | x | x | x | |||||||
Methacrylic acid | 10.8 | 39, 86, 58 | x | x | x | x | x | x | x | |||||||
n-butyl methacrylate | 12.7 | 69, 87, 41, 56, 29, 99, 113 | x | x | x | x | x | x | x | |||||||
PEA (poly (ethyl acrylate)) | Ethanol | 5.2 | 31, 45 | x | ||||||||||||
Ethyl acrylate | 8.5 | 55, 45, 99, 73 | x | |||||||||||||
Ethyl methacrylate | 10.7 | 69, 41, 99, 84, 114 | x | |||||||||||||
Diethyl glutarate | 15.1 | 143, 115, 87, 55, 73, 101 | x | |||||||||||||
Dimer | 15.5 | 98, 154, 53, 81, 109 | x | |||||||||||||
Trimer | 18.2 | 134, 208, 255, 79, 181, 106, 152, 55, 125, 226 | x |
Material | %Ala | %Gly | %Val | %Leu | %Ile | %Ser | %Pro | %Phe | %Asp | %Glu | %Hyp |
---|---|---|---|---|---|---|---|---|---|---|---|
Blue ink | 3.9 | 3.0 | 5.9 | 6.6 | 9.7 | 12.7 | 4.8 | 11.4 | 9.7 | 11.8 | 20.5 |
Black ink | 5.4 | 12.4 | 3.6 | 5.5 | 5.0 | 6.3 | 32.3 | 5.8 | 5.0 | 6.9 | 11.7 |
Yellow ink | 16.0 | 8.8 | 4.9 | 5.1 | 7.7 | 11.1 | 3.9 | 8.7 | 7.7 | 9.7 | 16.5 |
Casein | 5.0 | 3.0 | 7.6 | 11.9 | 6.6 | 5.8 | 11.5 | 5.9 | 8.5 | 22.2 | 0.0 |
Egg | 7.7 | 4.8 | 7.7 | 11.0 | 6.7 | 10.3 | 5.7 | 6.4 | 12.6 | 15.0 | 0.0 |
Animal glue | 12.3 | 29.4 | 3.9 | 4.7 | 2.5 | 3.8 | 12.4 | 2.8 | 6.6 | 9.9 | 7.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferretti, A.; Degano, I.; Filomena, M.; La Nasa, J.; Campanella, B.; Legnaioli, S.; Penoni, S.; Pintus, R.; Todaro, C.; Modugno, F. Wall Drawing #736: Revealing Sol LeWitt’s Ink Mural Technique Using a Multi-Analytical Approach. Heritage 2024, 7, 4265-4281. https://doi.org/10.3390/heritage7080201
Ferretti A, Degano I, Filomena M, La Nasa J, Campanella B, Legnaioli S, Penoni S, Pintus R, Todaro C, Modugno F. Wall Drawing #736: Revealing Sol LeWitt’s Ink Mural Technique Using a Multi-Analytical Approach. Heritage. 2024; 7(8):4265-4281. https://doi.org/10.3390/heritage7080201
Chicago/Turabian StyleFerretti, Adele, Ilaria Degano, Marta Filomena, Jacopo La Nasa, Beatrice Campanella, Stefano Legnaioli, Sara Penoni, Renata Pintus, Cristiana Todaro, and Francesca Modugno. 2024. "Wall Drawing #736: Revealing Sol LeWitt’s Ink Mural Technique Using a Multi-Analytical Approach" Heritage 7, no. 8: 4265-4281. https://doi.org/10.3390/heritage7080201
APA StyleFerretti, A., Degano, I., Filomena, M., La Nasa, J., Campanella, B., Legnaioli, S., Penoni, S., Pintus, R., Todaro, C., & Modugno, F. (2024). Wall Drawing #736: Revealing Sol LeWitt’s Ink Mural Technique Using a Multi-Analytical Approach. Heritage, 7(8), 4265-4281. https://doi.org/10.3390/heritage7080201