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Abstract: The corrosion of metals is very important, both economically and environmentally, and
is a serious concern. Since the past decades, traditional (chemical) corrosion inhibitors to prevent
corrosion have been and are still being used. Although these inhibitors can be said to be a good choice
among other protection techniques because of their good efficiency, the toxicity of many of them
causes environmental problems, and, due to the change in the laws on the use of chemicals, many
of them are no longer allowed. Hence, during the past years, research on green corrosion inhibitors
(GCIs) increased and very favorable results were obtained, and now they are very popular. It can be
said that biodegradability and easy preparation are their most important factors. Meanwhile, the use
of plants, especially their extracts, has been studied a lot. Plant extracts contain compounds that have
anti-corrosion properties. In this review, the use of plants as GCIs is investigated, focusing on recent
advances in their use. Also, the phenomenon of corrosion, corrosion protection (including coatings,
nanoparticles, and chemical inhibitors), and other GCIs are briefly reviewed.

Keywords: plants; corrosive environment; corrosion protection; green chemistry

1. Introduction

It can be said that the development of the economy causes the advancement of
technology and the rapid development of society, although it is difficult to ignore the
negative consequences it has for the environment [1]. Pollution is directly related to the
increase in human population density, in fact, the increase in population causes an increase
in human activities, which affects the ecosystem [2]. It can be said, simply, that any
human activity that causes the reduction of the quality of the environment is pollution [3].
Environmental pollution is the most important problem in the world, which was created
by humans, and continuing knowledge of the source of pollution and its consequences
is important because unawareness causes activities that may increase pollution [4]. In
general, pollution can be classified into three types: activities that cause air, water, or soil
pollution [5]. Deforestation, toxic pollutants, plastics, industrial effluents, agricultural
and household waste, greenhouse gas, and improper waste disposal can be considered
examples of pollution [6–10]. Meanwhile, corrosion can be considered a phenomenon that
causes huge losses and has negative environmental consequences [11]. In fact, corrosion is
a spontaneous process, although it can be caused by man-made activities, and many factors
play a role in the creation and progress of corrosion (see Figure 1) [12]. In fact, corrosion is
an electrochemical process [13]. The destruction of metal structures is very high all over
the world, and this problem not only causes economic damage but also poses a serious
threat to safety [14]. Corrosion can be considered an important issue for many industries
such as oil and gas, construction, marine, aerospace, petrochemical, military, and ceramic
industries [15]. High strength and corrosion resistance are always two main and important
factors for the use of metallic materials [16]. Corrosion reduction is always a priority in
a project where metallic and metal-based alloys are used [17].
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Corrosion reduction is always a priority in a project where metallic and metal-based al-
loys are used [17].  

 
Figure 1. Effective factors in the creation and progression of corrosion. 

Researchers are always looking for low-cost and good-performance solutions to 
prevent and reduce corrosion [18]. Today, corrosion inhibitors are widely used [19]. In 
general, corrosion inhibitors can be divided into inorganic and organic categories based 
on their chemical composition [20,21]. Although these inhibitors are used, they have 
problems such as toxicity, short sustainability, and rapid decomposition [22]. For exam-
ple, chromates and benzimidazole derivatives that can prevent corrosion are very toxic 
and cause great harm to the environment [23]. The use of nanomaterials such as hollow 
mesoporous silica, clay, carbon nanotubes, and graphene oxide is another way to prevent 
corrosion [24,25]. Also, these nanomaterials can be considered as hosts, and corrosion 
inhibitors can be placed in them [26–28]. Coating technology is another solution to retard 
corrosion. In fact, the coating is an outer layer that prevents the penetration of corrosive 
species like a shield. Among a wide variety of materials, polymers are known as a unique 
coating due to their properties such as hydrophobicity, anti-fouling, self-healing, and 
mechanical, chemical, and thermal resistance [29]. Considering the pollution of corrosion 
inhibitors, one of the main goals of industries is to use non-toxic and environmentally 
friendly materials, and of course, cost-effective materials. For several years, GCIs (in-
cluding plant extracts and fruit waste) have received much attention [30]. Many of them 
have antimicrobial properties in addition to anti-corrosion properties due to being rich in 
bioactive compounds [31]. It can be said that almost all parts of the plant such as leaves, 
roots, bark, flowers, fruits, wood, and seeds are used to prepare the inhibitor, but the 
leaves are considered more often because they have the highest abundance of phyto-
chemicals, although this does not apply to all plants [32,33]. Usually, GCIs are used in 
very low concentrations, and, due to their adsorptive properties, they can be absorbed on 
exposed metal surfaces [34]. One of the most important issues in their preparation is the 
solvents used to extract plant extracts,; for this reason, it is important to choose the right 
solvent (in terms of availability, cost-effectiveness, and safety) [35,36]. Also, the extraction 
temperature is important;, in the recommended literature the ideal temperature is be-
tween 60 and 80 °C [37,38].  
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Researchers are always looking for low-cost and good-performance solutions to
prevent and reduce corrosion [18]. Today, corrosion inhibitors are widely used [19]. In
general, corrosion inhibitors can be divided into inorganic and organic categories based on
their chemical composition [20,21]. Although these inhibitors are used, they have problems
such as toxicity, short sustainability, and rapid decomposition [22]. For example, chromates
and benzimidazole derivatives that can prevent corrosion are very toxic and cause great
harm to the environment [23]. The use of nanomaterials such as hollow mesoporous silica,
clay, carbon nanotubes, and graphene oxide is another way to prevent corrosion [24,25].
Also, these nanomaterials can be considered as hosts, and corrosion inhibitors can be placed
in them [26–28]. Coating technology is another solution to retard corrosion. In fact, the
coating is an outer layer that prevents the penetration of corrosive species like a shield.
Among a wide variety of materials, polymers are known as a unique coating due to their
properties such as hydrophobicity, anti-fouling, self-healing, and mechanical, chemical,
and thermal resistance [29]. Considering the pollution of corrosion inhibitors, one of the
main goals of industries is to use non-toxic and environmentally friendly materials, and of
course, cost-effective materials. For several years, GCIs (including plant extracts and fruit
waste) have received much attention [30]. Many of them have antimicrobial properties
in addition to anti-corrosion properties due to being rich in bioactive compounds [31]. It
can be said that almost all parts of the plant such as leaves, roots, bark, flowers, fruits,
wood, and seeds are used to prepare the inhibitor, but the leaves are considered more
often because they have the highest abundance of phytochemicals, although this does
not apply to all plants [32,33]. Usually, GCIs are used in very low concentrations, and,
due to their adsorptive properties, they can be absorbed on exposed metal surfaces [34].
One of the most important issues in their preparation is the solvents used to extract plant
extracts, for this reason, it is important to choose the right solvent (in terms of availability,
cost-effectiveness, and safety) [35,36]. Also, the extraction temperature is important, in the
recommended literature the ideal temperature is between 60 and 80 ◦C [37,38].

In this review, the use of plants as GCIs is investigated as well as the phenomenon of
corrosion, corrosion protection (including coatings, nanoparticles, and chemical inhibitors),
and other members of the category of GCIs are briefly reviewed.
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2. Corrosion and Factors Affecting It

Corrosion is always lurking in metal structures; this phenomenon has a slow but
continuous behavior and causes major failures [31]. Although corrosion is mostly slow, in
some environments, such as the sea and industrial towns, it is very rapid and severe [14,31].
In general, metals and metal-based alloys are affected by many factors such as moisture,
chemicals, pollutants, fuels, and mineral raw materials, and thus, the conditions for corrosion
are created [14]. As mentioned earlier, corrosion is mainly electrochemical in nature and
flows in layers of moisture on the metal surface [14]. The mechanism of corrosion flow
can be briefly explained. After the initial contact of the metal with the atmosphere (the
duration of contact can be from several hours to several days), a surface layer (consisting
of oxides and hydroxides) and an electrolyte solution (due to the absorption of water and
precipitation of aggressive gases), which can be a very thin layer moisture or an aqueous
thick layer, forms on the metal [14,39]. As the thickness of the aqueous layer increases, first
the corrosion rate increases (because the electroconductivity of the electrolyte increases) and
then decreases (because the rate of oxygen diffusion to the metal surface reduces) [14,15].
Next, the Fe2+ ions that enter the solution undergo hydrolysis and oxidation processes, and
finally, this process continues with the absorption of oxygen or hydrogen release and leads to
the formation of iron corrosion products [14]. Corrosion products, which are called rust, are
a barrier between the metal and the environment and include many oxides, hydroxides, and
oxyhydroxides [14,40]. Three factors have an effect on corrosion, which are environmental
factors, metallurgical factors, and structural factors [14,41]. Environmental factors can
be considered temperature fluctuations, humidity, and pollutants [14]. As mentioned
previously, temperature is an important factor in the corrosion rate. Briefly, in constant
humidity, the increase in temperature causes an increase in corrosion, but in closed-air
spaces, decreasing the temperature without extra dehumidification increases the rate of
corrosion [15]. In general, it can be said that the effect of temperature is partly dependent on
the humidity of the environment. One of the pollutants is sulfur dioxide, and there is a high
content of it in industrial areas and cities with high density [14]. Sulfur dioxide is the result
of the combustion of sulfur-containing fuels and has the ability to accelerate the cathodic
reaction of hydrogen evolution, in fact, it plays the role of an oxidizing agent [15,42,43]. Rain
has both a positive and a negative role in the corrosion process, in fact, rain has a positive
effect by removing chlorine ions and some pollutants from the metal surface, but on the
other hand, as the metal surface becomes wet, the possibility of transferring active corrosive
compounds (such as sulfur dioxide) increases [15,44]. In fact, sulfur dioxide can acidify the
electrolyte on the surface, resulting in the formation of soluble corrosion products [15]. It
can be said that the positive or negative effect of rain depends on the presence of pollutants
in the atmosphere, although the direction and speed of the wind are also important during
rain [14,15]. Also, pH is an important factor, in general, when it decreases, the intensity and
rate of corrosion increase [45]. Chloride ions are one of the most aggressive species that can
cause corrosion and there is a high content of them in the marine atmosphere [14,15]. In
coastal areas, chlorine ions dissolve in the moisture layer and cause the solubility of corrosion
products to increase and the passive layers to be destroyed [14,31]. Also, a high salinity
atmosphere can lead to the formation of thick layers of rust on the wet surface of carbon
steel, causing it to easily separate from the metal substrate, as a result, the surface becomes
unprotected and this means accelerating the corrosion process [14,34]. Moreover, an increase
in temperature and intensity of ultraviolet (UV) radiation causes the release of chlorine
ions [45,46]. Processing and manufacturing method, type, and concentration of alloying
elements can be considered metallurgical factors that are directly related to corrosion [14].
For example, in steel, different alloying elements can cause corrosive behavior [47]. The
structural factors are different for each structure, but in general, it can be said that the
design of the structure, the geometric features of the structure, the spatial orientation of the
structure relative to the earth’s surface or sky, and the orientation of the surface relative to
the main points are of great importance [14,48]. Finally, it can be said that corrosion is the
cause of stress concentration and loss of material strength [49,50].
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3. Corrosion Protection

Protective coatings have the most important effect in preventing corrosion. In this
regard, many coatings are used such as paint, polymer, metallic coating, and phosphating
coating [15,31]. Meanwhile, the use of nanoparticles to strengthen the coating is common [51].
It can be said that paint and varnish are used more than other coatings to protect structures,
and, usually, these coatings consist of several layers (primer and topcoat) [52]. First, it is
necessary to prepare the metal surface, which is done manually and mechanized (such
as brushes, sand, and shot blast tools), and organic solvents or alkaline solutions (such
as sodium hydroxide and potassium hydroxide) are used for degreasing [14]. Then, it is
applied on the surface of the primer to improve adhesion for the next layer (paint) [15].
To improve the properties of the primer layer, pigments, and corrosion inhibitors (which
will be explained in Section 4) can be added to it [14,31]. Various resins such as epoxy,
vinyl ester, acrylic, and polyurethane are used for corrosion protection [12,23,28]. Epoxy
has properties such as chemical stability, high mechanical properties, and good adhesion
to surfaces, and, due to hydroxyl and amino groups, they can coordinate with metal
d-orbitals [28,53]. But, if the epoxy is exposed to UV radiation for a long time, due to the
photodegradation reactions in the matrix, it causes the loss of mechanical properties and
yellowing of the epoxy [14]. However, nanoparticles such as clay, carbon black, graphene
oxide, and graphene can be used to improve UV resistance and other properties [28,54–56].
Another resin used is vinyl ester, the reasons for which are elasticity, adhesion, and
UV resistance [12]. Acrylic coatings have high resistance to acids and alkalis, but their
properties decrease in long-term contact with water, also they have a relatively high
cost [14]. Their properties depend on factors such as functional groups, side chain length,
and the presence of a methyl or hydrogen group on α-carbon [14,53]. Polyurethane has
high flexibility, abrasion resistance, high adhesion, and UV resistance, but low thermal
stability and resistance to mechanical stress are its weak points [23,30]. The disadvantages
mentioned in the coatings can be improved to a great extent with additives such as clay,
metal oxide, carbide, carbon nanomaterials (such as carbon nanotubes, graphene, and
graphene oxide), silica, and nitride [14]. However, in the field of corrosion protection,
conductive polymers (such as polyethylene, polypyrrole, polyaniline, and polythiophene)
have also been used [15]. These polymers are not toxic, also they exhibit two behaviors
(physical and electronic barrier) [57]. Metal coating (or cathodic protection) is another
method used. In short, zinc, aluminum, magnesium, and their alloys are used as coatings
because their electrode potential is more negative than iron (or steel) [15]. For phosphating,
the steel is immersed in an acidic solution (metallic phosphate salts), and a crystalline
layer of phosphate forms on the surface of the steel [14,15]. In fact, an uneven surface is
created. These structures are only used in dry indoor environments because their service
life will be greatly reduced by getting wet [15].

4. Corrosion Inhibitors

An inhibitor is a substance (chemical or natural) that, when added in low concentrations
(1 to 15,000 ppm) in a corrosive environment, will reduce or prevent corrosion [58]. This
explanation can be considered the simplest interpretation for an inhibitor. Before using them,
several important factors such as toxicity, environmental compatibility, cost, availability,
and evaluating and identifying corrosion problems should be considered [23,30,31]. To
reduce corrosion, the inhibitor can affect the components of a corrosion cell (which includes
the anode, cathode, electrolyte, and electronic conductor), so the inhibitor may cause
anodic inhibition, cathodic inhibition, resistance inhibition, and diffusion restriction [58]. In
general, an ideal inhibitor should have factors such as no toxicity and pollution problems,
long-term effectiveness, good protection at very low concentrations, uniform and localized
corrosion suppression, protection of all materials exposed to corrosion species, efficiency
under all conditions (temperature and velocity), as well as not creating deposits on the
metal surface [31,58]. Many inhibitors are composed of organic and inorganic compounds
(usually composed of elements of groups V B and, VI B) [14,58]. The effectiveness of organic
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inhibitors can be increased with halogen ions [59]. Briefly, it can be said that the highest
and lowest effects are related to I− and Cl−, respectively, and no effects have been reported
for fluoride [58]. In fact, this efficiency improvement is related to the synergism of halogen
ions, as metal adsorbs halogen ions, whose charge shifts the surface in a negative direction,
thus increasing the adsorption of cationic organic inhibitors because organic inhibitors are
adsorbed on the surface of metals [58,59]. Inhibitors generally behave in two ways, either
they form a protective shield on anodes or cathodes or they are directly adsorbed on the
metal surface [58,60]. Based on the mechanism, the inhibitors are divided into three groups:
anodic, cathodic, and mixed, which are briefly discussed in Table 1. Aditionally, Figure 2
shows the classification of corrosion inhibitors based on mechanism, environment, and
protection [58,61].

Table 1. A brief description of inhibitors based on mechanism.

Inhibitor Corrosion Inhibition Method The Most Common Inhibitor

Anodic
By forming a protective film along the
anode, they increase their potential
and reduce the corrosion reaction.

Chromates and tungstates

Cathodic

By blocking the cathode sites, they
reduce the rate of the reduction
reaction of the electrochemical
corrosion cell, and as a result,

the corrosion is reduced.

Elements arsenic and antimony

Mixed

By forming a film that causes deposits
on the surface, they block the anodic

and cathodic sites and delay
corrosion.

Silicates and phosphates

Note: Data from [58,59].

Surfaces 2024, 7, FOR PEER REVIEW  5 
 

sion cell (which includes the anode, cathode, electrolyte, and electronic conductor), so the 
inhibitor may cause anodic inhibition, cathodic inhibition, resistance inhibition, and 
diffusion restriction [58]. In general, an ideal inhibitor should have factors such as no 
toxicity and pollution problems, long-term effectiveness, good protection at very low 
concentrations, uniform and localized corrosion suppression, protection of all materials 
exposed to corrosion species, efficiency under all conditions (temperature and velocity), 
as well as not creating deposits on the metal surface [31,58]. Many inhibitors are com-
posed of organic and inorganic compounds (usually composed of elements of groups V B 
and, VI B) [14,58]. The effectiveness of organic inhibitors can be increased with halogen 
ions [59]. Briefly, it can be said that the highest and lowest effects are related to I- and Cl-, 
respectively, and no effects have been reported for fluoride [58]. In fact, this efficiency 
improvement is related to the synergism of halogen ions, as metal adsorbs halogen ions, 
whose charge shifts the surface in a negative direction, thus increasing the adsorption of 
cationic organic inhibitors because organic inhibitors are adsorbed on the surface of 
metals [58,59]. Inhibitors generally behave in two ways, either they form a protective 
shield on anodes or cathodes or they are directly adsorbed on the metal surface [58,60]. 
Based on the mechanism, the inhibitors are divided into three groups: anodic, cathodic, 
and mixed, which are briefly discussed in Table 1. Aditionally, Figure 2 shows the clas-
sification of corrosion inhibitors based on mechanism, environment, and protection 
[58,61]. 

Table 1. A brief description of inhibitors based on mechanism. 

Inhibitor Corrosion Inhibition Method 
The Most Common 

Inhibitor 

Anodic 
By forming a protective film along the anode, 

they increase their potential and reduce the cor-
rosion reaction. 

Chromates and tung-
states 

Cathodic 

By blocking the cathode sites, they reduce the 
rate of the reduction reaction of the electrochem-
ical corrosion cell, and as a result, the corrosion 

is reduced. 

Elements arsenic and 
antimony 

Mixed 
By forming a film that causes deposits on the 

surface, they block the anodic and cathodic sites 
and delay corrosion. 

Silicates and phos-
phates 

Note: Data from [58,59]. 

 
Figure 2. General classification of inhibitors. 

Usually, the mechanism of the inhibition process is due to absorption [60,61]. In 
general, the chemical structure of the inhibitor and the surface charge of the metal affect 

Figure 2. General classification of inhibitors.

Usually, the mechanism of the inhibition process is due to absorption [60,61]. In
general, the chemical structure of the inhibitor and the surface charge of the metal affect the
absorption [58]. Important factors play a role in inhibition, and inhibition always results
from one or more mechanisms (see Figure 3) [58,60].
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5. GCIs
5.1. Background

As mentioned earlier, there are various methods to prevent corrosion, but it can
be said that the use of corrosion inhibitors is one of the most effective and practical
methods [62–64]. Corrosion inhibitors contain compounds based on whether they are
inorganic or organic [65]. For inorganic inhibitors, nitrate, nitrite, chromate, dichromate, and
phosphate can be mentioned, and on the other hand, organic inhibitors contain functional
groups, heteroatoms (such as O, N, S, P), π-bonds, and aromatic heterocyclic rings [65–68].
Many corrosion inhibitors have a high protective effect, but recently, their use has been
limited due to high cost, toxicity, non-biodegradability, and health hazards [63,69,70].
They have a significant effect on ecosystems and living beings, so they have important
environmental concerns [63,70]. Some of them contain heavy elements that cause water
and soil pollution due to the accumulation and non-biodegradation of these elements
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and, eventually, cause their accumulation in plants and animals, and in this way, enter
the food chain and have irreparable effects on human health [71,72]. Therefore, a less
expensive, available, and non-toxic alternative to common corrosion inhibitors is essential.
Hence, research was conducted on the development of corrosion inhibitors based on natural
resources, and in fact, a new concept called green corrosion inhibitors emerged [64,73].
According to new legislation, chemicals must be safe for the environment and humans,
so high efficiency is not a sufficient condition for using an inhibitor [74,75]. In this regard,
green corrosion inhibitors have gained a lot of popularity. Their inhibition results are
comparable to conventional organic and anodic inhibitors, and in some cases, they have
been more efficient, although it has been reported in the literature that the efficiency of
some of them decreases greatly at high temperatures [62,76–78]. In fact, the development
of green corrosion inhibitors still needs to be improved. It can be said that most natural
products can be considered green corrosion inhibitors because they are rich in compounds
that are effective for corrosion inhibition [73,79,80]. When talking about green corrosion
inhibitors, plants are always unconsciously considered, while a wide range of sources can
be considered (see Figure 4) [81–84].
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As seen in Figure 4, the use of various sources can be considered for use, and many of
them, in addition to anti-corrosion properties, can reduce microbial aggression due to the
presence of compounds such as polyphenols, alkaloids, and terpenes [81,82,85].

5.2. Classification of GCIs
5.2.1. Amino Acids

Amino acids are one of the most popular inhibitors and have been used to inhibit corrosion
in many metals such as iron, steel, aluminum, copper, and nickel [62]. Their popularity
is due to their reversibility, non-toxicity, easy to make, biodegradability, environmentally
friendly, solubility in water, and low cost [62,74,86]. The presence of heteroatoms such as
N and O (because they contain carboxyl groups and amino groups) as well as conjugated
π-bonds-electron systems can be considered as the main reasons for their anti-corrosion
properties [62]. However, the molecular structure of the side chain is also very important.
In fact, the adsorption energy increases with the lengthening of the side chain, and its
maximum value on the iron surface (based on the side chain) is in the following order:
acidic < polar < nonpolar < basic [87]. Also, having a negative or positive charge depends
on the pH and they usually have a positive charge in an acidic environment [74]. Usually,
their corrosion inhibition mechanism is based on the absorption and formation of a film
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on the metal surface [74,88]. Methionine, cysteine, lysine, arginine, glycine, and valine
can be mentioned as some of the amino acids that have been investigated for corrosion
inhibition [62,74]. Yeganeh et al. [62] investigated the effect of L-methionine on the corrosion
inhibition of stainless steel in the sulfuric acid (H2SO4) solution. The results showed that
methionine increases the charge transfer resistance and decreases the corrosion current
density, so the electrochemical impedance spectroscopy results showed a maximum efficiency
of 97%. Methionine has two groups, -NH2 and -S-CH3, and corrosion inhibition of methionine
was reported due to the chemisorption process (chemical bond between sulfur and iron) and
the physisorption process (due to the interaction of functional groups and the surface).

5.2.2. Bio-Polymers

Polymers extracted from natural resources (renewable resources) can be considered
as a new and attractive approach to inhibit corrosion. Their mechanical and thermal
properties, non-toxicity, and compatibility with the environment can be considered to be
their strengths [89,90]. They are widely used in various applications such as cosmetics, food
preservation, medicine, and textiles [89,91]. The use of a polymer as a host for a corrosion
inhibitor can be considered a successful combination because, in addition to the low use
(concentration) of the inhibitor, the polymer can be a long-term protector [74]. As described
in Section 3 (corrosion protection), polymers can resist solvents and many aggressive species.
One of these polymers that is used to inhibit corrosion is chitosan because it has many
adsorption sites [92]. Chitosan is used for many applications such as cosmetics, medicine,
water treatment, and also the protection of bronze objects [93,94]. The poor solubility of
chitosan in water is perhaps considered its only weakness (as an inhibitor), although this
problem can be solved by using chitosan derivatives such as carboxymethyl chitosan (while
retaining the number of adsorption sites) [92]. Dalhatu et al. [95] investigated the effect
of L-arginine grafted onto chitosan on the corrosion inhibition of mild steel in 0.5M HCl.
The evaluation showed that the inhibition efficiency at optimum concentration rose to
91.4%. The optimized structures are presented in Figure 5. It can be said that the absorption
performance of a corrosion inhibitor molecule depends on the highest occupied molecular
orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), in fact, HOMO and
LUMO are related to the electron donation characteristics and electron accepting behaviors,
respectively. HOMO is mainly localized over the L-arginine while, LUMO density is
localized exclusively on the chitosan ring, indicating that these regions are mainly involved
in electron donation and acceptance, respectively, during the metal inhibitor interactions.
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5.2.3. Drugs

Pharmaceutical products are one of the candidates for corrosion inhibition due to having
heteroatoms and various compounds [96]. In fact, expired drugs are considered waste, but
many of them can be used as inhibitors, thereby preventing the waste of resources [96].
Although the drugs are designed for therapeutic use and no corrosion protection application
is reported for them by the manufacturer, the use of other compounds along with them can
increase the anti-corrosion effect [97,98]. To date, the effectiveness of many drugs to inhibit
corrosion has been evaluated, such as naproxen, glucosamine, clotrimazole, amoxicillin,
ciprofloxacin, doxycycline, and streptomycin [74,99,100]. Chaouiki et al. [66] investigated the
effect of two hydrazone derivatives based on Naproxen ((E)-N′-(2,4-dimethoxybenzylidene)-
2-(6-methoxynaphthalen-2-yl) propanehydrazide (HYD-1), and N′-cyclohexylidene-2-(6-
methoxynaphthalen-2-yl) propanehydrazide (HYD-2)) on corrosion inhibition of mild steel
in a hydrochloric acid (HCl) solution. Naproxen is a medication used to treat pain and joint
swelling. The results showed that both compounds have high inhibitory performance and
this effect increases with increasing their concentration, and they are also in the category of
mixed inhibitors (they affect both anodic and cathodic reactions). Moreover, the results of
electrochemical evaluations showed maximum inhibition efficiency for HYD-1 and HYD-2
of 96% and 84%, respectively. Both compounds prevent corrosion via adsorption on the
surface, and also, increasing the temperature reduces the protection of the inhibitors so
that, for HYD-1, the maximum inhibition efficiency decreases from 96% (at a temperature
of 303 K) to 81% (at a temperature of 333 K). Feng et al. [101] investigated the effect
of two types of expired glucosamine drugs (glucosamine sulfate (GS) and glucosamine
hydrochloride (GH)) on the corrosion inhibition of carbon steel in an H2SO4 solution. Also,
in this study, iodide ions were used to increase the inhibitory effect. The evaluation showed
that GH has better inhibition compared to GS, although the performance of GS improved
with the addition of iodide ions. Also, they were in the category of mixed inhibitors and
their inhibitory properties were due to the covering effect. Figure 6 shows that, for the
neutral glucosamine molecule, the HOMO is mainly distributed around the amino and
carbonyl groups, so these groups easily interact with metals by creating negative charges
from heteroatoms of N and O. Also, the LUMO is distributed in the carbonyl group, so it is
an active site for accepting electrons. This study shows that glucosamine is not only useful
for the treatment of osteoarthritis but it can also be used to inhibit corrosion.
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room temperature [103,104]. It can be said that their unique properties such as high thermal
and chemical stability, non-flammability, very low toxicity, low volatility, and the ability to
absorb metal surfaces have made them popular [74,105,106]. The efficiency of ionic liquids
depends on factors such as temperature, pH, specific interactions, and chemical structures,
and they also prevent corrosion by forming a protective film on the surface [106,107].
Many ionic liquids that contain cations with nitrogen atoms have been investigated as
corrosion inhibitors; in fact, the corrosion properties of ionic liquids derived from quaternary
ammonium are much better [104,106]. These properties include higher purity products,
cheaper synthesis methods, tensioactive properties, and less toxicity (compared to ionic
liquids derived from heterocyclic groups) [106,107]. Arellanes-Lozada et al. [106] investigated
the effect of methyltrioctylammonium methyl sulfate and trimethyltetradecylammonium
methyl sulfate on the corrosion inhibition of API-X52 steel in an HCl solution. The results
showed that the inhibitors are very effective at a temperature of 40 ◦C, which is related
to the high thermal stability of methyl sulfate anions. Also, they were in the category of
mixed inhibitors.

5.2.5. Plants

Plants can be considered an extremely rich source of compounds with anti-corrosion
properties. Today, the use of plant extracts and oils to inhibit corrosion is widely inves-
tigated [28,30,31]. Unlike synthetic (chemical) inhibitors, they are non-toxic in nature [74].
Also, they are very popular due to their cheap price, high abundance, easy preparation
method, environmental friendliness, and biodegradability [83,108]. However, their long-term
use and preservation are partly affected by biodegradability [74]. It can be said that the
first use of a plant extract as a corrosion inhibitor dates back to 1930, which was the extract
of Chelidonium majus and some other plants in a pickling bath of H2SO4 [108,109]. Plant oils
and extracts include a wide range of phytochemical compounds such as tannins, flavonoids,
and polyphenols, so they have a high potential for corrosion inhibition [83,85,109]. Many
plant compounds have been evaluated for corrosion inhibition, but given that there are
about 300,000 different types of plants in the world, there are still numerous types of plants
remaining [83,109]. In Section 5.3, plants will be thoroughly investigated.

5.2.6. Surfactants

Typically, surfactants are used in applications such as shampoos, detergents, paints,
coatings, and concrete, but they also have other uses, in fact, they are also used as
corrosion inhibitors [110]. Their advantages include cheapness, easy preparation methods,
non-toxicity, and high performance [74]. Surfactants have hydrophilic and hydrophobic
parts [74,111]. The hydrophilic part interacts with polar entities and the hydrophobic part
interacts with hydrophobic entities. In fact, this dual nature of their interaction with surfaces
and interfaces is very influential and decisive [112,113]. Generally, surfactants are classified
as barrier-type inhibitors because they reduce corrosion by creating a physical barrier, in
fact, they can act as anodic or cathodic inhibitors [112,114]. In fact, it is the absorption of
surfactant on the surface that can prevent corrosion, and this absorption depends on factors
such as the electrochemical potential of the surface, temperature, the concentration of the
adsorbent, and the composition of the solution [112]. Still, many studies in the field of
surfactants are about their ability to inhibit corrosion in acidic environments [115–118].

5.2.7. Vitamins and Food Supplements

Vitamins and food supplements are also in the category of green corrosion inhibitors,
although priority is usually given to substances with expired dates [84]. Vitamins are of
great interest due to factors such as good solubility, non-toxicity, low price, and suitable
functional groups [84,119]. Much research has shown that vitamins such as B, C, D, and
E can be used as corrosion inhibitors [84,120–125]. They are soluble in water (directly
added to the corrosion medium) or fat (used to make superhydrophobic self-assembling
protective layers), so the first factor for their selection is the medium to be used [84,122,125].
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Argiz et al. [120] investigated the effect of ascorbic acid (vitamin C) on the corrosion
inhibition of steel in cement mortars contaminated by chlorides. The results showed
that ascorbic acid can inhibit corrosion and this ability is stable for 8 months. Also, its
highest efficiency, obtained by adding a 10−3 mol/L concentration in the mixing water, is
97.3%. Uzoma et al. [126] investigated the effect of aspartame on the corrosion inhibition of
T95 carbon steel in HCl. The results showed that aspartame is a mixed inhibitor and the
inhibition efficiency increases with increasing temperature (60 to 90 ◦C). Also, at 90 ◦C using
2000 ppm of aspartame, an inhibition efficiency of 86% was obtained after 4 h of immersion.

5.2.8. Natural Gums

The last member of the category of green corrosion inhibitors is natural gums.
Gums are generally classified as a pathological response to plant damage and are
exudated from the stem or root of the tree [127]. They are a mixture of long-chain
polysaccharides, whose hydrolysis often produces arabinose, galactose, mannose, and
glucuronic acid [128,129]. Natural gums are used in the food processing, cosmetic, and
pharmaceutical industries [127,128]. In the past years, many studies have been conducted
on natural gums as corrosion inhibitors, in fact, gums have compounds containing
oxygen atoms, nitrogen, and COOH functional groups and can form complexes with
metal ions on metal surfaces [127,129]. However, it is possible to improve the stability
and properties of gums through the addition of some agents such as surfactants or salt of
halides, and self-healing agents [128]. Palumbo et al. [130] investigated the effect of guar
gum on the corrosion inhibition of N80 carbon steel under a sweet environment in a saline
solution. The performance of guar gum increased with increasing concentration and
immersion time but showed a decreasing trend with increasing temperature so that the
inhibition efficiency with 0.4 g L−1 of guar gum at 25 ◦C was 76.16%, but by increasing the
temperature to 50 ◦C, the inhibition efficiency decreased to 63.19%. Timothy et al. [131]
investigated the effect of Berlinia grandiflora and cashew on the corrosion inhibition of
mild steel in HCl. The results showed that the inhibition efficiency (at 20 ◦C) for Berlinia
grandiflora and cashew (using 1000 ppm of each) is 92% and 75%, respectively. Also,
the inhibition efficiency decreased to 76% and 67% for Berlinia grandiflora and cashew
after 48 h of immersion, respectively. Moreover, after 24 h of immersion at 60 ◦C, the
inhibition efficiency for Berlinia grandiflora and cashew was 80% and 57%, respectively.
Table 2 shows some of the natural gums and a brief description of them.

Table 2. A brief description of some natural gums.

Natural Gums Brief Description

Gum arabic
Its other name is acacia gum, which is obtained from the Acacia

Senegal tree and is used in drug delivery, adhesive, anti-corrosion
agents, and food packaging.

Guar gum
It is obtained from the Cyamopsis tetragonoloba plant and is used in

agriculture, drug delivery, biomedical, pharmaceuticals, coatings, and
food industries.

Xanthan gum It is secreted by the Xanthomonas campestris bacteria and is used in
cosmetics, the oil industry, tissue engineering, and food industries.

Albizia gum It is obtained from the Albizia tree and is used in the cosmetics,
pharmaceutical, and food industries.

Dacroydes edulis gum It is obtained from the Dacryodes edulis tree and is used in cosmetics,
pharmaceutical, adhesive, and anti-corrosion agents.

Cashew tree gum It is obtained from the Anacardium occidentale tree and is used in
medicine, anti-corrosive agents, emulsifying agents, and coating.

Raphia hookeri gum It is obtained from the Raphia hookeri tree and is used in
pharmaceuticals, emulsifiers, and anti-corrosive agents.

Note: Data from [127,128,132,133].
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5.3. Using Plants as GCIs

In Section 5.2.5, the use of plants to inhibit corrosion was briefly explained. In general,
the result of using plants with an inhibition efficiency of more than 80% can be considered
a good inhibitor. Different parts of plants can be used, including leaves, roots, fruits,
flowers, oil, woody parts, whole plants, and even waste [30–33]. In fact, these inhibitory
properties are due to their rich natural compounds. Usually, plant extracts are more often
used to investigate corrosion inhibition [32,33,74]. In short, the solution that consists of
the active ingredients of the plant and a certain medium (solvent) is called an extract [82].
Therefore, the method of preparation of plant extract is very important. Figure 7 shows the
general process of preparation of plant extract.
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Solvent extraction is usually more popular and is the most widely used because it
is easier, faster, and has a higher production capacity than other methods [134]. In this
method, the solvent penetrates into the plant tissue and causes the required compounds
to be extracted [74,134]. Many factors affect the quality of the extract, including the type
of solvent (polar or non-polar), the ratio of solvent to solid, and temperature (usually
between 60 and 80 ◦C is the best) [134]. But, in general, the solvent has the most key role,
because it is responsible for dissolving the active compounds from the plant tissue, also, the
solvents affect the properties of the extracts [82,135]. Table 3 summarizes some of the most
commonly used solvents for extraction and the active extracts (phytochemicals) commonly
obtained from them.

Table 3. Types of phytochemicals extracted from common solvents.

Solvent Acetone Ethanol Methanol Water

Phytochemicals
Flavonols

and
Tannins

Alkaloids,
Flavonols,

Polyacetylenes,
Polyphenols,

Propolis, Sterols,
Tannins, and
Terpenoids

Anthocyanins,
Flavonols, Lactones,

Quassinoids,
Phenones,

Polyphenols,
Saponins, Tannins,

Terpenoids, Totarol,
and Xanthoxyllines

Anthocyanins,
Lectins,

Polypeptides,
Saponins,
Starches,

Tannins, and
Terpenoids

Note: Data from [136].
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The inhibition mechanism of GCIs has been widely investigated. In general, the inhibition
mechanism and inhibition efficiency are directly dependent on the active phytochemical
compounds of the plant extract [65,134,137]. The absorption mechanism of GCIs is classified
into three ways: chemisorption, physisorption, or a combination of the two (mixed) [76]. In
general, the interaction between the charged metal surface and the inhibitor determines
the type of absorption, in fact, the weak polar interaction causes physisorption, and the
molecule with strong electrostatic forces on the metal surface causes chemisorption [64,138].
But, in general, a mixed inhibitor provides the best protection because it affects both
cathodic and anodic reactions [64,134,139]. As mentioned before (Section 5.1), temperature
has an important effect on the performance of GCIs. Evaluating efficiency at different
temperatures is essential because many extracts can have very different performances
with increasing and decreasing temperatures [82]. In fact, with increasing temperature,
the amount of absorption in physisorption and chemisorption decreases and increases,
respectively [76,138]. Also, the immersion time can have a great effect on the performance
of the inhibitor [82]. Sivakumar and Srikanth [83], in investigating the inhibitory effect of
Mimusops Elengi extract on the corrosion of mild steel in HCl medium, reported a decrease
in inhibition efficiency with increasing temperature. Also, inhibition efficiency increased
with increasing immersion time (from 1 to 12 h), which was related to increased absorption
of extract compounds on the substrate surface. Abdallah et al. [63], in the study of the
use of natural nutmeg oil to prevent the corrosion of carbon steel in HCl, reported that, as
the temperature increases (30 to 60 ◦C), the corrosion rate values increase while inhibition
efficiency values decrease. Begum et al. [109] also reported, in the study of the use of
Spilanthes acmella leaves extract for corrosion inhibition of mild steel in HCl, that, with
increasing temperature (303 to 333 K), efficiency and corrosion rate decrease and increase,
respectively. Barbouchi et al. [79], in the study of the use of Terebinth extract to prevent
iron corrosion in NaCl, reported that, with the increase of immersion time (up to 72 h),
the thickness of the created protective layer increases. Although there are many studies
that report a decrease in efficiency with increasing temperature, some researchers report
an increase in efficiency, such as Méndez et al. [140], who used Ilex paraguariensis extract
to inhibit the corrosion of aluminum in HCl and the results showed that the maximum
value of efficiency at 315 and 323 K is 69 and 71%, respectively, and these results were
obtained using a concentration of 0.248 g L−1 of the extract. Regardless of the adsorption
mechanism, temperature, and immersion time, other parameters such as the density
of functional groups, polarizability, and electronegativity are also very important [73].
However, in addition to the nature of the inhibitor and its chemical composition and surface
charge of the substrate, the type of corrosive medium is also important [65,134,141–143].
For example, extracts that contain aromatic rings, multiple bonds, and heteroatoms can
be easily protonated in an acidic medium, which creates positively charged inhibitory
species that can adsorb through chloride ions on the positively charged steel surface [134].
Dehghani et al. [69] in investigating the use of Ziziphora leaf extract molecules to prevent
corrosion of mild steel in HCl, reported that protonated forms of acacetin, chrysin, and
thymonin (leaf extract molecules) electrostatically interact with absorbed chloride ions.
Ginger has been extensively studied for its anti-corrosion activity. The compounds in it
such as gingerols, shogaols, and curcumin play an important role, in fact these compounds
accumulate on the surface of the metal and block the anode and cathode sites, which is
due to π-electrons and heteroatom oxygen atoms in the phenolic compounds [12,23]. Also,
gingerol is hydrophobic, so the penetration of corrosive species is delayed [23]. Ganoderma
lucidum mushroom is suitable for anti-corrosion activity due to its diverse compounds. In
fact, amine and hydroxyl groups in Ganoderma lucidum compounds (such as proline and
triterpenoids) can transfer electrons with Fe2+ in anodic regions and physically absorb
on the mild steel surface and form a protective film, and Ganoderma lucidum contains
hydrophobic compounds (such as quercetin, proline, and gallic acid) [27]. Matcha is
another plant that has important compounds. The main compounds of matcha (mainly
catechins) can be adsorbed on the steel surface, which is due to the π-electron transfer



Surfaces 2024, 7 393

between the oxygen atoms and the aromatic rings of these compounds with the vacant
d-orbitals of the steel surface [30]. Table 4 reports a summary of the performance of some
corrosion inhibitors (plant-based) in different media.

Table 4. Corrosion inhibition performance of some plants in different corrosion media.

Plant Substrate Corrosive Medium Maximum Inhibition
Efficiency (%) Reference

Artemisia vulgaris—Solanum
tuberosum Mild steel H2SO4 88.06–83.22 [73]

Coriaria nepalensis Mild steel H2SO4 97.03 [77]

Terebinth (Pistacia terebinthus L.) Iron Sodium chloride (NaCl) 86.4 [79]

Ixora coccinea Mild steel H2SO4-HCl 77.96–89.38 [144]

Justicia secunda Aluminum HCl 94.30 [145]

Gongronema latifolium Mild steel HCl 81.69 [146]

Clinopodium acinos Mild steel HCl 89.90 [147]

White tea Mild steel HCl 96.00 [148]

Momordica charantia Carbon steel H2SO4 93.51 [149]

Malva sylvestris Mild steel NaCl 91.00 [150]

Lilium brownii X70 steel HCl 85.00 [151]

Pueraria lobata 10# steel HCl 94.37 [152]

Allamanda cathartica Mild steel H2SO4 72.75 [153]

Cauliflower Copper H2SO4 99.00 [154]

Peach pomace Mild steel NaCl 88.00 [155]

Binda rind Mild steel HCl 97.33 [156]

Betel Carbon steel HCl 94.90 [157]

Platanus acerifolia Carbon steel NaCl 99.86 [158]

Catharanthus roseus Mild steel NaCl 84.00 [159]

Mutiti Low—carbon steel H2SO4 86.23 [160]

Chamaerops humilis Mild steel HCl 88.00 [161]

Elaeoselinum thapsioides Carbon steel HCl 82.00 [162]

Punica granatum L. Mild steel HCl 87.30 [163]

Gentiana olivieri Mild steel HCl 89.70 [164]

Tithonia diversifolia Mild steel HCl 79.99 [165]

Matricaria aurea Mild steel HCl 93.56 [166]

Pogostemon quadrifolius floral Mild steel HCl 95.79 [167]

Taxus baccata Carbon steel HCl 74.26 [168]

Prunus dulcis Mild steel HCl 88.00 [169]

Artemisia herba-alba Stainless steel Phosphoric acid (H3PO4) 85.00 [170]

Artemisia oil Steel H3PO4 74.00 [171]

Psidium Guajava Mild steel H3PO4 82.00 [172]

Guar gum Carbon steel H3PO4 95.00 [173]
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Table 4. Cont.

Plant Substrate Corrosive Medium Maximum Inhibition
Efficiency (%) Reference

Rhynchostylis retusa Mild steel H2SO4 93.24 [174]

Acacia catechu Mild steel H2SO4 98.54 [175]

Solanum xanthocarpum Mild steel H2SO4 98.14 [176]

Veratrum Copper H2SO4 97.00 [177]

Brassica oleracea L. Q235 steel H2SO4-HCl 92.30–93.80 [178]

Thymus satureioides 316L stainless steel NaCl 82.00 [179]

Pinus nigra Carbon steel HCl 97.00 [180]

Palm seed Carbon steel HCl 95.00 [181]

Cucumis sativus L. Carbon steel H2SO4 92.80 [182]

Harmal roots Carbon steel H2SO4 94.10 [183]

Palm leaves Carbon steel HCl 96.80 [184]

Aerva lanata Aluminum NaCl 88.00 [185]

Ziziphus joazeiro Mild steel HCl 94.70 [186]

Trochodendron Aralioides Mild steel HCl 96.42 [187]

Aquatic Artichoke Mild steel HCl 98.70 [188]

Cynara scolymus L. Mild steel NaCl 96.10 [189]

Juglans regia L. Mild steel HCl 95.00 [190]

Rosa damascene Carbon steel H2SO4 75–96.1 [191]

Cinnamomum camphora Low carbon steel H2SO4 89–97 [192]

Olive leaf Copper KOH 90.68 [193]

Justicia brandegeeana Carbon steel H2SO4 82.41 [194]

Coffee waste Carbon steel HCl 76–96 [195]

Chamaerops humilis Carbon steel HCl 94 [196]

Grape seed oil Carbon steel HCl 79 [197]

Glebionis coronaria L. flower Mild steel HCl 95 [198]

Fig leaf Mild steel HCl 94 [199]

Cyclotrichium niveum Mild steel HCl 97.3 [200]

Pumpkin leaf Copper H2SO4 89.98 [201]

Pipper cubeba Carbon steel Sulfamic acid 96 [202]

Bagassa guianensis Zinc NaCl 97 [203]

Aloe vera (L.) Burm. F. Bronze B66 NaCl 89 [204]

Asafoetida Mild steel NaCl 90 [205]

Skytanthus acutus Carbon Steel NaCl 90 [206]

Orange peel Magnesium alloy NaCl 85.7 [207]

Nettle leaves Mild steel NaCl 95 [208]

Santolina chamaecyparissus 304 stainless steel NaCl 86.9 [209]

Myrmecodia Pendans Carbon steel NaCl 91.41 [210]

Ficus pumila Linn. XC38 steel NaCl 91.3 [211]
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Normally, HCl, H2SO4, and H3PO4 are used as acidic corrosion media. These acids
are used in theindustry in various processes such as descaling, chemical coloring, acid
pickling, phosphating, and drilling operations, and metal equipment comes into contact
with them [81]. Therefore, more of these environments are used to evaluate corrosion
inhibition. In addition to the mentioned media, plant extracts are also used in corrosive
media saturated with CO2 [212]. In this regard, the extracts obtained from many plants
such as olive leaf, Jatropha curcas, Coptis chinensis, Dimocarpus longan, tobacco leaf, dandelion,
licorice, Sida acuta, Kuding, and Pomelo have been investigated and some of them have
had acceptable results [135]. In recent years, many studies have been conducted to use
plant extracts as GCIs for reinforced concrete structures. Normally, in reinforced concrete,
steel undergoes pitting corrosion through contamination with chlorides or carbonation [70].
Hence, it is very important to use a corrosion inhibitor. Kola nut extract has been reported
to prevent chloride ions from reaching the surface of the armature [213]. Also, Bambusa
arundinacea extract prevents the conversion of hydroxide from calcium to calcite and has
a pore-blocking effect [214]. Valdez-Salas et al. [215] investigated the effect of Azadirachta
indica leaf extract on the corrosion inhibition of steel in concrete mortars contaminated
by aggressive chloride. The results showed that Azadirachta indica does not change the
integrity and physicochemical parameters of concrete, and after 182 days of investigation,
it showed a long-term protection against corrosion of 95%, which is a similar result
to commercial inhibitors. Naderi et al. [216] investigated the effect of licorice plant
extract on the corrosion inhibition of steel rebar in concrete contaminated by aggressive
chloride. The results showed that the extract has an inhibition efficiency higher than 80%.
Polyphenolic compounds such as tannins and flavonoids are abundant in licorice extract,
which causes corrosion inhibition. In general, we can say that GCIs are an exciting and
partly cost-effective solution for protecting metals. On the other hand, GCIs, especially
plant inhibitors, are very popular due to their non-toxicity (sometimes very low toxicity)
and eco-friendliness. There are still many species of plants that have not been investigated,
but it can be said that, in the not-too-distant future, GCIs will find their real place in
the industry.

6. Conclusions

To sum up, the use of plants as GCIs was reviewed, and corrosion, corrosion protection,
and other members of the GCI category were briefly reviewed. It can be said that the main
reason for using GCIs is their availability, and non-toxicity. Although they have become
surprisingly popular, there are still some problems associated with their use. Perhaps the
most important issues are the inhibitory effect, compatibility with other materials, and
cost. As mentioned earlier in this review, the effectiveness of GCIs depends on several
factors such as substrate type, corrosive media, temperature, and inhibitor concentration.
Hence, it can be said that a GCI can be used depending on the existing conditions. Also,
there is a possibility of the incompatibility of GCIs with some coatings or paints. Moreover,
for large-scale applications, there is a possibility of high cost to prepare some GCIs. So, it
can be said that research efforts should be focused on cost-effectiveness and performance
improvement in different conditions. In general, in the near future, GCIs can be considered
a green solution to protect metals.
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