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Abstract: We studied the noncovalent interactions of gadolinium bisphthalocyanine (GdPc;) with
cluster models for graphene and hexagonal boron nitride (#BN) of variable size by using the PBE
functional of the generalized gradient approximation in conjunction with Grimme’s dispersion
correction and a DND double numerical basis set (that is, PBE-D2/DND). We found that in terms of
the bonding strength, changes in the Gd-N bond lengths, the charge and spin of the Gd central ion,
and the spin of the GdPc, molecule, the behaviors of the graphene- and #/BN-based model systems
are rather similar. As expected, when increasing the size of the graphene and /BN cluster models,
the strength of the interaction with GdPc; increases, in which the bonding with the " BN models is
usually stronger by a few kcal/mol. One of the main questions addressed in the present work was
whether a change in the antiferromagnetic spin alignment to a ferromagnetic one, which is typical for
GdPcy, is (at least theoretically) possible, as it has been observed previously for a number of graphene
models when a smaller basis set DN was employed. We found that the use of a larger DND basis set
dramatically reduces the occurrence of ferromagnetic adsorption complexes but does not exclude
this possibility completely.

Keywords: gadolinium bisphthalocyanine; adsorption; graphene; hexagonal boron nitride; DFT
calculations

1. Introduction

The deposition of single-molecule magnets (SMMs) onto solid surfaces and nanomate-
rials is considered as an essential step for their application in spintronic devices (see, for
example, [1-10]). A special emphasis is placed on graphene (per se, or an upper layer of
highly oriented pyrolytic graphite, HOPG) as a solid support [1-10] as well as on lanthanide
bisphthalocyanines (LnPc;, where Ln = Tb, Dy, Er) as representative SMMs [1-6,8-10].

The popularity of graphene, which is considered one of the most crucial and promising
nanomaterials, needs no additional comments or justifications. A rather curious observation
in the present context of surface-deposited SMMs is that its ‘sibling’, hexagonal boron
nitride (hBN) [11], has received much less attention. This is exemplified by the study of
manganese-containing dimers (with ligands other than Pcs) on graphene and #BN [7] and
the study [12] in which TbPc; deposited onto hBN was considered very briefly, for the sake
of comparison with MgO-supported bisphthalocyanine.

The interest in TbPc,- and DyPc;-containing systems is quite understandable due
to their very complex magnetic behaviors, with very high calculated and experimental
magnetic moments [13]. At the same time, their gadolinium analogue GdPc, [13-16]
deserves attention as well. Formally, it has the highest (of the entire LnPc; family) number
of unpaired electrons: seven on the half-filled 4f shell, plus one n-electron delocalized on
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the two Pc ligands. However, as a result of strong antiferromagnetic coupling, when the 4f
electrons and the m-electron have opposite directions, instead of the theoretical magnetic
moment of 7.94 BM, this value decreases to 6.9 BM [13,15].

Experimental measurements are of primary importance in the area of SMMs deposited
onto solid supports, but only limited research has been undertaken to complement these
with theoretical results [2,4,7]. The latter fact is easily explainable, since, as Marocchi
et al. [4] fairly noted, “simulating rare earths within DFT is very tricky, due to the strong
electronic correlation effects in 4f-electrons”. We learned this through our own experience
when we attempted to study by means of the density functional theory (DFT) the full series
(from La to Lu) of lanthanide-containing molecules, such as LnPc; bisphthalocyanines [17],
endohedral fullerenes Ln@Cg [18] and LnzN@I},-Cgg [19], as well as lanthanide atoms and
ions interacting with both cluster [20,21] and periodic [22] graphene models. Nevertheless,
along with the serious (sometimes unresolvable) problems of self-consistent field (SCF)
convergence for the Tb- and Dy-containing systems, we found that the case of their closest
neighbor Gd might be as simple as the cases of La (with a totally empty 4f shell) and Lu
(with a completely filled 4f shell), due to the half-filled 4f shell and zero orbital moment.
This property allowed us to successfully perform calculations for GdPc, adsorbed on
carbon nanotube [23] and graphene (both pristine and defect-containing) models [24].

In both works [23,24], we focused mostly on the variations in the geometry and inter-
action strength of GdPc, with different carbon nanoclusters. At the same time, perhaps the
most interesting (from our point of view) result is related to the spin coupling (or align-
ment) pattern. It was antiferromagnetic only in a limited number of calculations, similar
to isolated GdPc; [13,15,17] with an absolute value for its molecular spin of 6.007¢ [24],
whereas for most adsorption complexes (including those with all graphene models), the
coupling became ferromagnetic, reaching absolute spin values of almost 8e [24].

This latter observation served as the foundation for the present study. The previous
calculations [24] employed the double-numerical basis set DN, without polarization func-
tions added to any atoms, and thus, the ferromagnetic coupling might have been simply a
small basis set-related artifact. In the present work, we added a polarization function to all
non-hydrogen atoms (that is, we used a DND basis set) to eliminate this possibility. Our
second goal was to compare the behavior of graphene and its ‘sibling” #BN, in terms of the
bonding strength, changes in Gd-N bond lengths, the charge and spin of the Gd central ion,
as well as the spin of the GdPc, molecule. And our third goal was to trace how all the above
characteristics change when varying the size of the graphene and #BN cluster model. In this
way, we attempted to provide new detailed information to the obviously underexplored
area of LnPc, interactions with nanomaterials such as graphene and especially #BN.

2. Methods

A theoretical analysis of bonding strength, geometries, and electronic parameters of
noncovalent complexes of GdPc, with graphene and #BN cluster models of variable size
was performed by employing the numerical-based DFT module DMol? of the Materials
Studio suite [25-28]. As in all previous related works mentioned above [17-24], the PBE
(by Perdew-Burke-Ernzerhof [29]) general gradient approximation function was used in
conjunction with the empirical dispersion correction introduced by Grimme [30], that is,
the PBE-D2 combination. (One should note that for noncovalent complexes of tetraaza-
annulenes with carbon nanoclusters, PBE-D2 yields more realistic geometries than, for
example, the widely used hybrid functional B3LYP [31].)

As already mentioned in the introduction, the size of the double-numerical basis set
(DN in [23,24]) was increased by adding a polarization d-function to all non-H atoms, that is,
to DND (which is equivalent to the 6-31G(d) Pople-type basis set). The settings employed
for the full geometry optimization and the calculation of the electronic parameters included
the use of DFT semi-core pseudopotentials (DSPPs) and a real space (or orbital) cutoff of
5.0 A, as dictated by the presence of gadolinium atoms. The convergence criteria were as
follows: an energy gradient of 2 x 10~° Ha, maximum force of 0.004 Ha/A, maximum
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displacement of 0.005 A, and SCF tolerance of 105 Ha. A special comment has to be added
about the use of thermal smearing to facilitate SCF convergence. In the present calculations,
we followed the general protocol explained in detail in earlier studies [32-34]. In principle,
it was found that the use of a very low value of 0.0001 Ha (equivalent temperature of 31.6 K)
yields stable and consistent results, which are essentially identical to those afforded by
applying Fermi occupancy (that is, zero smearing). Consequently, we usually set 0.0001 Ha
as the target value to elaborate on final publishable results [17-24]. While for the derivatives
of Tb and some other lanthanides, this value does not allow to achieve SCF convergence
and has to be increased, the Gd-containing systems (like the ones incorporating La and Lu
atoms) often can be successfully treated at the Fermi occupancy. We took advantage of this
possibility in the present paper.

We would like to mention one of the differences in functioning between Gaussian and
DMol? software, which is especially important in the present context of quantum chemical
calculations of lanthanide-containing systems. While in the Gaussian software, a total spin
of the system has to be assigned in the input (see, for example, references [15,35-37]), and it
is also possible to specify a particular spin value in DMol3, the option we employed for all
calculations was “Use formal spin as initial”. That is, the calculations were unconstrained.

The formation energies AEg4pe+s (or simply AE) were calculated by using the follow-
ing general equation:

AEGgprc2+s = EGapeca+s — (Egdpre2 + Es)

where E; is the respective absolute energy, and S is surface model.

3. Results and Discussion

The cluster models we tested for graphene and 41BN, as well as the typical optimized
geometry (staggered conformation) for GdPc;, are shown in Figure 1. All the models
simulating graphene and BN are hexagonal. The smallest ones are benzene (CgHg)
and borazine (B3N3Hg), respectively, in which each side of the hexagon has one H atom.
(Strictly speaking, these molecules may not adequately capture the electronic properties
of the extended sheets; they were included simply for the completeness of both series.)
Using a uniform and easily understood nomenclature, they are denoted as C-1H and
BN-1H, respectively. In a similar way, coronene and its BN analogue are referred to as
C-2H and BN-2H, respectively; supercoronene and its BN analogue are referred to as C-3H
and BN-3H, respectively, and so on. The largest members of the two series are C-7H and
BN-7H. Also, within the carbon-based models, we included fullerene Cg, for comparison:
the planar model closest to this fullerene (in terms of molecular weight) is C-3H, with the
chemical formula Cs4Hjg. The latter model has a slightly smaller diagonal span (about
14.4 A) compared to that of GdPc; (15.2 A), and the larger graphene models start with C-4H
(19.3 A). In the case of the BN models BN-3H and BN-4H, the measurements are similar,
14.7 and 19.7 A, respectively, despite the differences in the bond lengths of C-C and C-H
versus B-N, B-H, and N-H. In other words, only starting from C-4H and BN-4H, GdPc;
can fully fit onto the model surface.

Both components undergo a bending distortion, as a result of strong - stacking
interactions: this is exemplified for the GdPc; + C-6H and GdPc; + BN-6H complexes in
Figure 2. The surface model tends to ‘embrace’ the GdPc, molecule, which is more evident
here for the latter complex. In turn, the “lower” Pc ligand (the one in contact with the
surface) becomes more planar for the same reason, whereas the opposite one (denoted as
the “upper” one) does not exhibit visible changes, as compared to the Pc ligands in the
isolated bisphthalocyanine.
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Figure 1. The models employed in our cluster calculations. Atom colors: grey, carbon; white,
hydrogen; deep blue, nitrogen; pink, boron; light blue green, gadolinium.

GdPcy+C-6H

GdPcy+BN-6H

Figure 2. Representative geometries of GdPc; + C-nH and GdPc; + BN-nH complexes (exemplified
for n = 6, that is, C-6H and BN-6H in Figure 1). Pc ligands are denoted as “upper” or “lower”.

Among the central questions we addressed is that of the comparative strengths of
the GdPc; interactions for the graphene and /BN models. The numerical results for the
corresponding AE bonding energies are presented in Table 1, as well as in graphical form
in Figure 3a.
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Table 1. Total energies (E) for all isolated components and the corresponding noncovalent complexes,
formation energies (AE) for noncovalent complexes of GdPc, with carbon- and boron nitride-based
models, average Gd-N bond lengths, as well as charge and spin of Gd ion, along with the total spin
of GdPc; molecule, obtained from the Mulliken population analysis.

Eiota1 (Ha) (ke a?/fn ol) Gd(glgwer Gd-al;pper Gd ((fe};arge Gd Spin (e) SC:)?II:?;)
GdPcp —3528.7468834 2.450 2.450 1.300 7.007 6.011
C-1H —232.0208765
C-2H —921.0808194
C-3H —2067.1815845
C-4H —3670.3260780
C-5H —5730.5170328
C-6H —8247.7564282
C-7H —11,222.0439594
Ceo 22844334844
BN-1H —242.4167720
BN-2H —962.7988404
BN-3H —2161.1563381
BN-4H —3837.4911698
BN-5H —5991.8039867
BN-6H —8624.0947660
BN-7H —11,734.3621054
GdPc, + C-1H —3760.7904162 —14.2 2.447 2.453 1.367 —7.006 —6.010
GdPc, + C-2H —4449.8723439 —28.0 2.487 2473 1.364 —7.000 —6.096
GdPc; + C-3H —5596.0080928 —50.0 2.429 2.439 1.344 7.005 6.038
GdPc, + C-4H —7199.1737356 —63.2 2.439 2.426 1.353 —7.004 —6.065
GdPc, + C-5H —9259.3781214 —-71.7 2.427 2.445 1.324 7.004 6.041
GdPc; + C-6H —11,776.6182309 —-72.1 2.420 2.420 1.307 —7.002 —7.974
GdPc, + C-7H —14,750.9094551 —74.4 2.429 2.446 1.320 7.004 6.034
GdPc, + Cgo —5813.2211513 —-25.6 2.424 2.440 1.333 7.008 6.014
GdPc; + BN-1H —3771.1790578 —9.7 2.492 2.493 1.408 7.003 6.008
GdPc, + BN-2H —4491.6012679 —34.9 2.452 2.462 1.350 7.002 6.020
GdPc, + BN-3H —5689.9869344 —-52.5 2.443 2.427 1.328 7.005 6.019
GdPc; + BN-4H —7366.3531079 722 2.467 2.432 1.335 —7.004 —6.028
GdPc, + BN-5H —9520.6731475 —-76.7 2.429 2424 1.316 —7.005 —6.019
GdPc, + BN-6H —12,152.9688187 -79.8 2.415 2433 1.307 —7.002 —7.982
GdPc, + BN-7H —15,263.2324587 —77.5 2.434 2410 1.303 —7.007 —6.024
(GdPc)» —7057.5896494 —60.2 2.427 2.429 1.337,1.337 _77088121 _7708(6)21

? Lower, indicating Pc ligand is in contact with the surface in carbon- and boron nitride-based model; upper, for
opposite Pc ligand (Figure 2). Equivalent for isolated GdPc;.



Surfaces 2024, 7 409

1H 2H 3H  4H 5H  6H 7H
O L L L I L L L
10 ° da
- (a)
-20 4
3 -30 1
~_E. -40
©
£ 501 g
w ;5
< 60 [S) C
-70 4 ° ° o .
-80 A e ® ®
BN
-90
250
e]
AC (lower) (b)
248
2C (upper)
< 246 | °BN (upper)
e a BN (lower)
I A A A
© ]
(D 244 A A A
) o] @
A
8 . 2
242 4 A
(5]
o]
2.40

1H 2H 34 4H 5H 6H  T7H
Figure 3. Graphical representation of the changes in the energy of complex formation (a) and the

average Gd-N distance (b) depending on the size of C-nH and BN-nH cluster model. The case of Cgp
is not included.

In the case of the graphene models, the weakest interaction, of —14.2 kcal/mol, was log-
ically found with the benzene molecule (the smallest C-1H model), reaching —74.4 kcal /mol
for the largest nanocluster C-7H. Despite the fact that the molecular weight of Cg( fullerene
best matches that of the C-3H model, its strong spherical curvature prevents efficient
contact between the two components, and the AE value of —25.6 kcal/mol for GdPc; +
Cgp is actually closer to the one of —28.0 kcal/mol obtained for GdPc; + C-2H. With the
exception of the first member of the 1BN models, that is, borazine (AE of —9.7 kcal/mol),
their bonding with GdPc; is stronger compared to that of the analogous graphene models,
roughly by a few kcal/mol. From Figure 3a, it is more evident that until reaching the
complexes with C-4H and BN-4H, the AE values tend to decrease almost linearly, then
the changes become less apparent. While the lowest AE value in the carbon series was
obtained for the largest nanocluster C-7H, in the case of the BN series, the bonding strength
slightly fluctuates: —76.7, —79.8, and —77.5 kcal/mol for GdPc, + BN-5H, GdPc; + BN-6H,
and GdPc; + BN-7H, respectively. That is, the strongest bonding was obtained with the
BN-6H model. For comparison, we also calculated the formation energy for the (GdPcy),
m—7 stacking dimer, which is —60.2 kcal/mol, and thus is situated between those obtained
for the GdPc; + X-3H and GdPc; + X-4H (X = C, BN) noncovalent complexes.

The changes in GdPc, geometry were estimated in terms of average Gd-N distances,
both in the “lower” and in the “upper” phthalocyanine coordination spheres (Table 1 and
Figure 3b). In the case of the isolated GdPc; molecule, their values are equal to 2.450 A.
As a result of the flattening of the “lower” Pc unit, one might expect some shortening of
Gd-N coordination bonds compared to the ones found in the “upper” phthalocyanine part.
Nevertheless, no such trend can be observed; in some cases, the “lower” Gd-N distances
indeed become shorter (the largest difference of 0.018 A was found in the GdPc, + C-5H and
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Figure 4. Different observed patterns of spin density distribution (isosurfaces at 0.02 a.u.) exemplified

GdPc, + BN-6H complexes), in others, they increase (by up to 0.035 A in GdPc, + BN-4H).
As a whole, from Figure 3b, one can conclude that the shorter Gd-N coordination bonds
are associated with the larger graphene and /BN models. However, when considering each
of the four series of the Gd-N distances separately, the changes become rather random,
without any clear tendency.

One of the electronic parameters analyzed was the (positive) charge of the Gd ion
(Table 1). In the isolated GdPc, molecule, it is 1.300e, with a notable increase to 1.337¢ on
both gadolinium ions in the (GdPc;), dimer. Similarly, it increases upon complexation with
any graphene or 1BN model. In the latter case, the span of Gd charge values is especially
wide, from a very minor increase to 1.303¢ in GdPc; + BN-7H to a rather high value of
1.408e for the first member of the BN series, GdPc, + BN-1H. In the graphene series, the
corresponding values are found to be between 1.307 e (GdPc; + C-6H) and 1.367¢ (GdPc;
+ C-1H). At the same time, the spin of the Gd ion is a relatively invariant characteristic,
though its direction (up and down, meaning positive and negative values, respectively)
is random. In the isolated GdPc, molecule, it is 7.007¢ (spin-up, as shown in Figure 4). In
the (GdPc;), dimer, both absolute Gd spin values are the same of 7.004e, but with opposite
signs/directions (Table 1). The lowest absolute value of 7.000e was obtained for the GdPc,
+ C-2H complex, and the highest one of 7.008e was obtained for the fullerene derivative
GdPCz + C60.

by isolated GdPc;, noncovalent dimer (GdPc;),, and GdPc; adsorption complexes with C-5H, C-6H,
BN-5H, and BN-6H models. Lobe colors: blue, spin-up electrons; yellow, spin-down electrons.

Now, the most interesting question is related to the possibility of ferromagnetic spin
alignment within the GdPc, molecule. As was mentioned in the introduction, it was
antiferromagnetic only in a limited number of the previous calculations with defect-free and
defect-containing graphene models, such as in isolated GdPc,, whereas for most adsorption
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complexes, the coupling became ferromagnetic, reaching absolute spin values of almost
8e [24]. But the previous [24] and the present study employed the double-numerical basis
sets of different sizes: DN (with no polarization functions for any atoms) and DND (with
a polarization function on all non-H atoms), respectively: the use of the DND basis set is
supposed to yield a more realistic picture. All the numerical data obtained are summarized
in Table 1, and the most representative spin density plots are shown in Figure 4. The
molecular spin of the isolated GdPc; molecule, as computed with the DND basis set, is
6.011e due to the antiferromagnetic coupling typical for this and some other lanthanide
bisphthalocyanines [13,15,17], in which the 4f electrons of the Gd ion and the 7-electron
have opposite directions (Figure 4). As it could be expected, in the system composed of
two GdPcy molecules (that is, the (GdPc;), dimer), the two 7-electrons become paired, and
no spin density lobes are observed on phthalocyanine ligands; on the other hand, nothing
like this can happen to the 4f electrons of the two Gd ions. As a result, the absolute values
of the spins of the two GdPc; molecules are defined by the spins of their Gd ions, which
are essentially equal but have opposite signs (7.006 and —7.004e).

In the case of the GdPc; interacting with the graphene and /BN models, the situation
observed previously [24], in which the DN basis set was used, changes quantitatively, but
not qualitatively. Now, the dominating pattern of the spin alignment is antiferromagnetic,
as in the isolated GdPc; molecule; this is exemplified in Figure 4 for the GdPc; + C-5H
and GdPc; + BN-5H complexes. The spin directions (spin-up and spin-down) of the the
4f electrons of the Gd ion and the m-electron of Pc can invert, which does not imply any
changes in properties in the absence of an external field. We obtained a ferromagnetic
alignment in only two complexes, GdPc; + C-6H and GdPc; + BN-6H, though we cannot
offer an explanation why this was observed specifically for C-6H and BN-6H, but not
for smaller or larger models. The corresponding GdPc; molecular spins are —7.974e and
—7.982¢ (all the electrons are spin-down); that is, their absolute values almost reach 8e [24].
For all of the remaining antiferromagnetic cases, the absolute values of the GdPc; molecular
spin fluctuate insignificantly: for the graphene models, between 6.010e (GdPc; + C-1H)
and 6.096e (GdPc, + C-2H) and for 1BN models, between 6.008¢ (GdPc, + BN-1H) and
6.028¢ (GdPc; + BN-4H). In other words, no spin transfer is observed from the GdPc; to the
surface model, and no spin density lobes can be detected on the latter in the spin density
plots (Figure 4).

4. Conclusions

In terms of the bonding strength, changes in the Gd-N bond lengths, the charge and
spin of the Gd central ion, and the spin of the GdPc, molecule, the behaviors of graphene-
and hBN-based model systems are rather similar. When increasing the size of the graphene
and hBN cluster models, the strength of interactions with GdPc; naturally increases, and
the bonding with the sBN model is usually stronger by a few kcal/mol.

One of the main questions addressed in the present work was whether the change in
antiferromagnetic spin alignment, which is typical for gadolinium bisphthalocyanine, to a
ferromagnetic one is (at least theoretically) possible or it is just an artifact associated with
a smaller basis set DN (equivalent to 6-31G) [24]. In this regard, we found that the use of
the larger DND basis set dramatically reduces the occurrence of ferromagnetic adsorption
complexes, but does not exclude this possibility completely. It would be highly desirable
to have an explanation for why these changes occur specifically with certain cluster sizes
or structures. Unfortunately, one of the necessary steps this entails would be to explore a
much broader variety of graphene and hBN models, for example, in terms of nanocluster
size and geometry. However, this would entail increased computational cost and effort,
which goes beyond our capabilities at present.
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